1
|
Alzahrani FM, Mehreen A, Ain QU, Ali A, Alzahrani KJ, Alsharif KF. Modulation of TLR4 mediated HMGB1/RAGE/NF-κB axis through linarin against fenvalerate provoked cardiotoxicity. Tissue Cell 2025; 95:102931. [PMID: 40311324 DOI: 10.1016/j.tice.2025.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/04/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
Fenvalerate (FVN) is a potent insecticidal agent that exhibits a wide range of organ impairments including cardiac damage. Linarin (LIN) is a polyphenolic compound with a diverse range of pharmacological potentials. The present investigation was conducted to quantify the mitigative ability of LIN against FVN induced cardiotoxicity. Thirty-six male Sprague Dawley rats were divided into four groups i.e., the control, FVN (40 mg/kg), FVN (40 mg/kg) + LIN (50 mg/kg) and LIN (50 mg/kg) alone treated group. It was observed that FVN exposure exacerbated the gene expression of interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), receptor for advanced glycation end products (RAGE), interleukin-1β (IL-1β), high mobility group box 1 (HMGB1), cyclooxygenase-2 (COX-2), nuclear factor- kappa B (NF-κB), toll-like receptor 4 (TLR4), and tumor necrosis factor-α (TNF-α). Moreover, the levels of reactive oxygen species (ROS) & malondialdehyde (MDA) were surged-up while the enzymatic action of heme oxygenase-1 (HO-1), glutathione (GSH), glutathione Peroxidase (GPx), superoxide dismutase (SOD), glutathione reductase (GSR), and catalase (CAT) were decreased following the FVN intoxication. Besides, FVN administration upregulated the concentrations of troponin-I, troponin-T, c-reactive protein, creatine kinase-MB (CK-MB), creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) in cardiac tissues. FVN exposure increased the levels of Caspase-9, Bax and Caspase-3 while reducing the levels of Bcl-2. Cardiac tissues showed abnormal morphology after FVN intoxication. Nonetheless, LIN therapy remarkably alleviated cardiac damages instigated through FVN exposure due to its anti-inflammatory, anti-oxidative as well as anti-apoptotic potentials.
Collapse
Affiliation(s)
- Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Arifa Mehreen
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Pakistan
| | - Qurat Ul Ain
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Pakistan
| | - Adnan Ali
- Department of Zoology, University of Education, Faisalabad, Pakistan.
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
2
|
Li J, Wang Z, Li J, Zhao H, Ma Q. HMGB1: A New Target for Ischemic Stroke and Hemorrhagic Transformation. Transl Stroke Res 2025; 16:990-1015. [PMID: 38740617 PMCID: PMC12045843 DOI: 10.1007/s12975-024-01258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Stroke in China is distinguished by its high rates of morbidity, recurrence, disability, and mortality. The ultra-early administration of rtPA is essential for restoring perfusion in acute ischemic stroke, though it concurrently elevates the risk of hemorrhagic transformation. High-mobility group box 1 (HMGB1) emerges as a pivotal player in neuroinflammation after brain ischemia and ischemia-reperfusion. Released passively by necrotic cells and actively secreted, including direct secretion of HMGB1 into the extracellular space and packaging of HMGB1 into intracellular vesicles by immune cells, glial cells, platelets, and endothelial cells, HMGB1 represents a prototypical damage-associated molecular pattern (DAMP). It is intricately involved in the pathogenesis of atherosclerosis, thromboembolism, and detrimental inflammation during the early phases of ischemic stroke. Moreover, HMGB1 significantly contributes to neurovascular remodeling and functional recovery in later stages. Significantly, HMGB1 mediates hemorrhagic transformation by facilitating neuroinflammation, directly compromising the integrity of the blood-brain barrier, and enhancing MMP9 secretion through its interaction with rtPA. As a systemic inflammatory factor, HMGB1 is also implicated in post-stroke depression and an elevated risk of stroke-associated pneumonia. The role of HMGB1 extends to influencing the pathogenesis of ischemia by polarizing various subtypes of immune and glial cells. This includes mediating excitotoxicity due to excitatory amino acids, autophagy, MMP9 release, NET formation, and autocrine trophic pathways. Given its multifaceted role, HMGB1 is recognized as a crucial therapeutic target and prognostic marker for ischemic stroke and hemorrhagic transformation. In this review, we summarize the structure and redox properties, secretion and pathways, regulation of immune cell activity, the role of pathophysiological mechanisms in stroke, and hemorrhage transformation for HMGB1, which will pave the way for developing new neuroprotective drugs, reduction of post-stroke neuroinflammation, and expansion of thrombolysis time window.
Collapse
Affiliation(s)
- Jiamin Li
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Zixin Wang
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Jiameng Li
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Haiping Zhao
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China.
| | - Qingfeng Ma
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China.
| |
Collapse
|
3
|
Hu X, Xu Lou I, Chen Q. Integrated bioinformatic analysis of the shared molecular mechanisms between ANCA-associated vasculitis and atherosclerosis. Arthritis Res Ther 2024; 26:223. [PMID: 39702436 DOI: 10.1186/s13075-024-03448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Accumulated evidence supports the tendency of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis(AAV) to coexist with atherosclerosis (AS). However, the common etiology of these two diseases remains unclear. This study aims to explore the mechanisms underlying the concurrent occurrence of ANCA and AS. METHODS Microarray data of AAV and AS were examined in a comprehensive gene expression database. Weighted gene co-expression network analysis (WGCNA) and differential gene expression analysis (GEO2R) were performed to identify common genes between AAV and AS. Based on the co-expressed genes, functional enrichment analysis, protein-protein interaction (PPI) network analysis, and identification of hub genes (HGs) were conducted. Subsequently, co-expression analysis of HGs was performed, and their expression and diagnostic value were validated. We further explored immune cell infiltration and analyzed the correlation between HGs and infiltrating immune cells. Finally, the reliability of the selected pathways was verified. RESULTS The results of the common gene analysis suggest that immune and inflammatory responses may be common features in the pathophysiology of AAV and AS. Through the interaction of different analysis results, we confirmed five HGs (CYBB, FCER1G, TYROBP, IL10RA, CSF1R). The CytoHubba plugin and HG validation demonstrated the reliability of the selected five HGs. Co-expression network analysis revealed that these five HGs could influence monocyte migration. Analysis of immune cell infiltration showed that monocytes in ANCA and M0 macrophages in AS constituted a higher proportion of all infiltrating immune cells, with significant differences in infiltration. We also found significant positive correlations between CYBB, FCER1G, TYROBP, IL10RA, CSF1R, and monocytes/M0 macrophages in AAV, as well as between CYBB, FCER1G, TYROBP, IL10RA, CSF1R, and M0 macrophages in AS. CONCLUSION These five HGs can promote monocyte differentiation into macrophages, leading to the concurrent occurrence of AAV and AS. Our study provides insights into the mechanisms underlying the coexistence of AAV and AS.
Collapse
Affiliation(s)
- Xun Hu
- Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310025, China
| | - Inmaculada Xu Lou
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310025, China
| | - Qilan Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310025, China.
| |
Collapse
|
4
|
Alam MI, Sami N, Alam A, Wazib S, Dhyani N, Afghan S, Ansari MA. Estrogen-mediated modulation of sterile inflammatory markers and baroreflex sensitivity in ovariectomized female Wistar rats. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230521. [PMID: 39876967 PMCID: PMC11771758 DOI: 10.20945/2359-4292-2023-0521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/16/2024] [Indexed: 01/31/2025]
Abstract
Objective This study aims to explore the role of estrogen in providing cardioprotective benefits to premenopausal women, examining how hormonal differences between sexes influence the prevalence of cardiovascular diseases (CVDs) in women. Materials and methods Eighteen female Wistar rats were equally distributed into three treatment groups. Animals in Group I (sham-operated) and Group II (ovariectomized [OVX]) received oral saline solution at a dose of 2 mL/kg. Group III (OVX+E2) received oral E2 2 µg/mL/kg after ovariectomy. Hemodynamic parameters and baroreflex sensitivity were determined in all groups. Plasma levels of malondialdehyde (MDA), superoxide dismutase (SOD), and nitric oxide (NO) were measured, along with those of the inflammatory markers tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and high mobility group box-1 (HMGB-1). Results The OVX group, compared with the sham-operated group, displayed significantly altered hemodynamic parameters and baroreflex sensitivity, along with elevated MDA levels and decreased SOD and NO levels. This group also had higher levels of inflammatory cytokines than the sham-operated group. In the absence of estrogen, these factors led to the advancement of cardiovascular abnormalities. In the OVX+E2 group, estrogen treatment considerably improved baroreflex sensitivity and hemodynamic profile while reducing the expression of inflammatory cytokines compared with the OVX group, demonstrating anti-inflammatory actions of estrogen. Conclusion Estrogen mediates cardioprotection by improving baroreflex sensitivity in ovariectomized Wistar rats through modulation of the NO pathway.
Collapse
Affiliation(s)
- Md. Iqbal Alam
- Jamia Hamdard UniversityHamdard Institute of Medical Sciences and ResearchDepartment of PhysiologyNew DelhiIndiaDepartment of Physiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard University, New Delhi
| | - Naba Sami
- Jamia Hamdard UniversityHamdard Institute of Medical Sciences and ResearchDepartment of PhysiologyNew DelhiIndiaDepartment of Physiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard University, New Delhi
| | - Aftab Alam
- Coventry UniversitySchool of Life SciencesCoventryUKSchool of Life Sciences, Coventry University, Coventry, UK
| | - Sheema Wazib
- Jamia Hamdard UniversityHamdard Institute of Medical Sciences and ResearchDepartment of PhysiologyNew DelhiIndiaDepartment of Physiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard University, New Delhi
| | - Neha Dhyani
- Jamia Hamdard UniversityHamdard Institute of Medical Sciences and ResearchDepartment of PhysiologyNew DelhiIndiaDepartment of Physiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard University, New Delhi
| | - Sher Afghan
- Jamia Hamdard UniversityHamdard Institute of Medical Sciences and ResearchDepartment of PhysiologyNew DelhiIndiaDepartment of Physiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard University, New Delhi
| | - Mairaj Ahmed Ansari
- Jamia HamdardSchool of Chemical & Life SciencesDepartment of BiotechnologyNew DelhiIndiaDepartment of Biotechnology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi
| |
Collapse
|
5
|
Wasim R, Singh A, Islam A, Mohammed S, Anwar A, Mahmood T. High Mobility Group Box 1 and Cardiovascular Diseases: Study of Act and Connect. Cardiovasc Toxicol 2024; 24:1268-1286. [PMID: 39242448 DOI: 10.1007/s12012-024-09919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Cardiovascular disease is the deadly disease that can result in sudden death, and inflammation plays an important role in its onset and progression. High mobility group box 1 (HMGB1) is a nuclear protein that regulates transcription, DNA replication, repair, and nucleosome assembly. HMGB1 is released passively by necrotic tissues and actively secreted by stressed cells. Extracellular HMGB1 functions as a damage associated molecular patterns molecule, producing numerous redox forms that induce a range of cellular responses by binding to distinct receptors and interactors, including tissue inflammation and regeneration. Extracellular HMGB1 inhibition reduces inflammation and is protective in experimental models of myocardial ischemia/reperfusion damage, myocarditis, cardiomyopathies caused by mechanical stress, diabetes, bacterial infection, or chemotherapeutic drugs. HMGB1 administration following a myocardial infarction followed by permanent coronary artery ligation improves cardiac function by stimulating tissue regeneration. HMGB1 inhibits contractility and produces hypertrophy and death in cardiomyocytes, while also stimulating cardiac fibroblast activity and promoting cardiac stem cell proliferation and differentiation. Maintaining normal nuclear HMGB1 levels, interestingly, protects cardiomyocytes from apoptosis by limiting DNA oxidative stress, and mice with HMGB1cardiomyocyte-specific overexpression are partially protected from cardiac injury. Finally, elevated levels of circulating HMGB1 have been linked to human heart disease. As a result, following cardiac damage, HMGB1 elicits both detrimental and helpful responses, which may be due to the formation and stability of the various redox forms, the particular activities of which in this context are mostly unknown. This review covers recent findings in HMGB1 biology and cardiac dysfunction.
Collapse
Affiliation(s)
- Rufaida Wasim
- Department of Pharmacy, Integral University, Lucknow, 226026, India.
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| | - Aditya Singh
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Anas Islam
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Saad Mohammed
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Aamir Anwar
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
6
|
Zhang Z, Gao J, Wang J, Mi Z, Li H, Dai Z, Pan Y, Dong J, Chen S, Lu S, Tan X, Chen H. Mechanism of Zhishi Xiebai Guizhi decoction to treat atherosclerosis: Insights into experiments, network pharmacology and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118466. [PMID: 38885915 DOI: 10.1016/j.jep.2024.118466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhishi Xiebai Guizhi Decoction (ZSXBGZD) is a traditional herbal manuscript used to treat cardiovascular disease, including atherosclerosis and coronary heart disease. The decoction has demonstrated its capability to protect arteries and resist atherosclerosis. Its mechanisms for anti-atherosclerosis effect, nevertheless, remain unknown. AIMS OF THE STUDY The goal of the present study is to explore the effectiveness of ZSXBGZD acting on atherosclerosis and its key components based on experimental verification and network pharmacology analysis. MATERIALS AND METHODS The ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and databases were used to identify chemical components in ZSXBGZD. Network pharmacological analysis and molecular docking were implemented in order to reveal the possible therapeutic targets of ZSXBGZD. To form the model of atherosclerosis, we gave Apolipoprotein E knocked out mice a high-fat diet. H&E staining was performed to observe the effects of ZSXBGZD on atherosclerosis. Immunofluorescence and Western blot were used to investigate whether ZSXBGZD could affect autophagy, apoptosis, AGE-RAGE signaling pathway and other related mechanisms. RESULTS In total, 30 core compounds were screened through intersecting UPLC-Q-TOF-MS and the databases. The anti-atherosclerotic effect of ZSXBGZD might relate to the AGE-RAGE signaling pathway via network pharmacology analysis. ZSXBGZD could inhibit apoptosis, activate autophagy and ease inflammation by modifying AGE-RAGE signaling pathway to reduce the area of atherosclerotic plaque. CONCLUSION ZSXBGZD could treat atherosclerosis by regulating autophagy and apoptosis via adjusting the AGE-RAGE signaling pathway.
Collapse
Affiliation(s)
- Zhuojun Zhang
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Jin Gao
- School of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junpeng Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zishuo Mi
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haoyang Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhicen Dai
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Pan
- School of Public Administration, Hohai University, Nanjing, 210000, China
| | - Jiming Dong
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sihan Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shu Lu
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Xiaodong Tan
- Department of Cardiovascular, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, China.
| | - Hao Chen
- School of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Jiang J, Sun M, Wang Y, Huang W, Xia L. Deciphering the roles of the HMGB family in cancer: Insights from subcellular localization dynamics. Cytokine Growth Factor Rev 2024; 78:85-104. [PMID: 39019664 DOI: 10.1016/j.cytogfr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The high-mobility group box (HMGB) family consists of four DNA-binding proteins that regulate chromatin structure and function. In addition to their intracellular functions, recent studies have revealed their involvement as extracellular damage-associated molecular patterns (DAMPs), contributing to immune responses and tumor development. The HMGB family promotes tumorigenesis by modulating multiple processes including proliferation, metabolic reprogramming, metastasis, immune evasion, and drug resistance. Due to the predominant focus on HMGB1 in the literature, little is known about the remaining members of this family. This review summarizes the structural, distributional, as well as functional similarities and distinctions among members of the HMGB family, followed by a comprehensive exploration of their roles in tumor development. We emphasize the distributional and functional hierarchy of the HMGB family at both the organizational and subcellular levels, with a focus on their relationship with the tumor immune microenvironment (TIME), aiming to prospect potential strategies for anticancer therapy.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China.
| |
Collapse
|
8
|
Bian B, Chen H, Teng T, Huang J, Yu X. Circ_0104652 Promotes the Proliferation and Migration of ox-LDL-Stimulated Vascular Smooth Muscle Cells via Stabilizing ADAMTS7 and HMGB1. Am J Hypertens 2024; 37:465-476. [PMID: 38536049 DOI: 10.1093/ajh/hpae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 01/14/2024] [Accepted: 03/06/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) stands as the primary contributor to cardiovascular disease, a pervasive global health concern. Extensive research has underscored the pivotal role of circular RNAs (circRNAs) in cardiovascular disease development. However, the specific functions of numerous circRNAs in AS remain poorly understood. METHODS Quantitative real-time PCR analysis revealed a significant upregulation of circ_0104652 in oxidized low-density lipoprotein (ox-LDL)-induced vascular smooth muscle cells (VSMCs). Loss-of-function experiments were subsequently employed to assess the impact of circ_0104652 on ox-LDL-induced VSMCs. RESULTS Silencing circ_0104652 was found to impede the proliferation and migration while promoting the apoptosis of ox-LDL-stimulated VSMCs. Mechanistic assays unveiled that circ_0104652 stabilized ADAM metallopeptidase with thrombospondin type 1 motif 7 (ADAMTS7) and high mobility group box 1 (HMGB1) by recruiting eukaryotic translation initiation factor 4A3 (EIF4A3) protein. Rescue assays further confirmed that circ_0104652 exerted its influence on ox-LDL-induced VSMC proliferation through modulation of ADAMTS7 and HMGB1. CONCLUSIONS This study elucidates the role of the circ_0104652/EIF4A3/ADAMTS7/HMGB1 axis in ox-LDL-stimulated VSMCs, providing valuable insights into the intricate mechanisms involved.
Collapse
MESH Headings
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Lipoproteins, LDL/pharmacology
- Lipoproteins, LDL/metabolism
- Cell Proliferation/drug effects
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Cell Movement/drug effects
- Humans
- HMGB1 Protein/metabolism
- HMGB1 Protein/genetics
- ADAMTS7 Protein/metabolism
- ADAMTS7 Protein/genetics
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Cells, Cultured
- Signal Transduction
- Apoptosis/drug effects
Collapse
Affiliation(s)
- Bo Bian
- General Practice Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Heye Chen
- Department of Endocrinology and Metabolism, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Tianming Teng
- General Practice Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinyong Huang
- General Practice Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuefang Yu
- General Practice Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
9
|
De Meyer GRY, Zurek M, Puylaert P, Martinet W. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Rev Cardiol 2024; 21:312-325. [PMID: 38163815 DOI: 10.1038/s41569-023-00957-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is a progressive inflammatory disorder of the arterial vessel wall characterized by substantial infiltration of macrophages, which exert both favourable and detrimental functions. Early in atherogenesis, macrophages can clear cytotoxic lipoproteins and dead cells, preventing cytotoxicity. Efferocytosis - the efficient clearance of dead cells by macrophages - is crucial for preventing secondary necrosis and stimulating the release of anti-inflammatory cytokines. In addition, macrophages can promote tissue repair and proliferation of vascular smooth muscle cells, thereby increasing plaque stability. However, advanced atherosclerotic plaques contain large numbers of pro-inflammatory macrophages that secrete matrix-degrading enzymes, induce death in surrounding cells and contribute to plaque destabilization and rupture. Importantly, macrophages in the plaque can undergo apoptosis and several forms of regulated necrosis, including necroptosis, pyroptosis and ferroptosis. Regulated necrosis has an important role in the formation and expansion of the necrotic core during plaque progression, and several triggers for necrosis are present within atherosclerotic plaques. This Review focuses on the various forms of programmed macrophage death in atherosclerosis and the pharmacological interventions that target them as a potential means of stabilizing vulnerable plaques and improving the efficacy of currently available anti-atherosclerotic therapies.
Collapse
Affiliation(s)
- Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Michelle Zurek
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Jin Q, Zhang C, Chen R, Jiang L, Li H, Wu P, Li L. Quinic acid regulated TMA/TMAO-related lipid metabolism and vascular endothelial function through gut microbiota to inhibit atherosclerotic. J Transl Med 2024; 22:352. [PMID: 38622667 PMCID: PMC11017595 DOI: 10.1186/s12967-024-05120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Quinic acid (QA) and its derivatives have good lipid-lowering and hepatoprotective functions, but their role in atherosclerosis remains unknown. This study attempted to investigate the mechanism of QA on atherogenesis in Apoe-/- mice induced by HFD. METHODS HE staining and oil red O staining were used to observe the pathology. The PCSK9, Mac-3 and SM22a expressions were detected by IHC. Cholesterol, HMGB1, TIMP-1 and CXCL13 levels were measured by biochemical and ELISA. Lipid metabolism and the HMGB1-SREBP2-SR-BI pathway were detected by PCR and WB. 16 S and metabolomics were used to detect gut microbiota and serum metabolites. RESULTS QA or low-frequency ABX inhibited weight gain and aortic tissue atherogenesis in HFD-induced Apoe-/- mice. QA inhibited the increase of cholesterol, TMA, TMAO, CXCL13, TIMP-1 and HMGB1 levels in peripheral blood of Apoe-/- mice induced by HFD. Meanwhile, QA or low-frequency ABX treatment inhibited the expression of CAV-1, ABCA1, Mac-3 and SM22α, and promoted the expression of SREBP-1 and LXR in the vascular tissues of HFD-induced Apoe-/- mice. QA reduced Streptococcus_danieliae abundance, and promoted Lactobacillus_intestinalis and Ileibacterium_valens abundance in HFD-induced Apoe-/- mice. QA altered serum galactose metabolism, promoted SREBP-2 and LDLR, inhibited IDOL, FMO3 and PCSK9 expression in liver of HFD-induced Apoe-/- mice. The combined treatment of QA and low-frequency ABX regulated microbe-related Glycoursodeoxycholic acid and GLYCOCHENODEOXYCHOLATE metabolism in HFD-induced Apoe-/- mice. QA inhibited TMAO or LDL-induced HCAECs damage and HMGB1/SREBP2 axis dysfunction, which was reversed by HMGB1 overexpression. CONCLUSIONS QA regulated the gut-liver lipid metabolism and chronic vascular inflammation of TMA/TMAO through gut microbiota to inhibit the atherogenesis in Apoe-/- mice, and the mechanism may be related to the HMGB1/SREBP2 pathway.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, 410013, China
| | - Chiyuan Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ran Chen
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China
| | - Luping Jiang
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China
| | - Hongli Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Pengcui Wu
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China.
| | - Liang Li
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China.
| |
Collapse
|
11
|
Mattke J, Darden CM, Lawrence MC, Kuncha J, Shah YA, Kane RR, Naziruddin B. Toll-like receptor 4 in pancreatic damage and immune infiltration in acute pancreatitis. Front Immunol 2024; 15:1362727. [PMID: 38585277 PMCID: PMC10995222 DOI: 10.3389/fimmu.2024.1362727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Acute pancreatitis is a complex inflammatory disease resulting in extreme pain and can result in significant morbidity and mortality. It can be caused by several factors ranging from genetics, alcohol use, gall stones, and ductal obstruction caused by calcification or neutrophil extracellular traps. Acute pancreatitis is also characterized by immune cell infiltration of neutrophils and M1 macrophages. Toll-like receptor 4 (TLR4) is a pattern recognition receptor that has been noted to respond to endogenous ligands such as high mobility group box 1 (HMGB1) protein and or exogenous ligands such as lipopolysaccharide both of which can be present during the progression of acute pancreatitis. This receptor can be found on a variety of cell types from endothelial cells to resident and infiltrating immune cells leading to production of pro-inflammatory cytokines as well as immune cell activation and maturation resulting in the furthering of pancreatic damage during acute pancreatitis. In this review we will address the various mechanisms mediated by TLR4 in the advancement of acute pancreatitis and how targeting this receptor could lead to improved outcomes for patients suffering from this condition.
Collapse
Affiliation(s)
- Jordan Mattke
- Baylor University, Institute of Biomedical Studies, Waco, TX, United States
| | - Carly M. Darden
- Baylor University Medical Center, Annette C. and Harold C. Simmons Transplant Institute, Dallas, TX, United States
| | - Michael C. Lawrence
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Jayachandra Kuncha
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Yumna Ali Shah
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Robert R. Kane
- Baylor University, Institute of Biomedical Studies, Waco, TX, United States
| | - Bashoo Naziruddin
- Baylor University Medical Center, Annette C. and Harold C. Simmons Transplant Institute, Dallas, TX, United States
| |
Collapse
|
12
|
Liang W, Wei R, Zhu X, Li J, Lin A, Chen J, Wu W, Jie Q. Downregulation of HMGB1 carried by macrophage-derived extracellular vesicles delays atherosclerotic plaque formation through Caspase-11-dependent macrophage pyroptosis. Mol Med 2024; 30:38. [PMID: 38493291 PMCID: PMC10943908 DOI: 10.1186/s10020-023-00753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/02/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Macrophage-derived extracellular vesicle (macrophage-EV) is highly studied for its regulatory role in atherosclerosis (AS). Our current study tried to elucidate the possible role of macrophage-EV loaded with small interfering RNA against high-mobility group box 1 (siHMGB1) affecting atherosclerotic plaque formation. METHODS In silico analysis was performed to find critical factors in mouse atherosclerotic plaque formation. EVs secreted by RAW 264.7 cells were collected by ultracentrifugation and characterized, followed by the preparation of macrophage-EV-loaded siHMGB1 (macrophage-EV/siHMGB1). ApoE-/- mice were used to construct an AS mouse model by a high-fat diet, followed by injection of macrophage-EV/siHMGB1 to assess the in vivo effect of macrophage-EV/siHMGB1 on AS mice. RAW264.7 cells were subjected to ox-LDL, LPS or macrophage-EV/siHMGB1 for analyzing the in vitro effect of macrophage-EV/siHMGB1 on macrophage pyrophosis and inflammation. RESULTS In silico analysis found that HMGB1 was closely related to the development of AS. Macrophage-EV/siHMGB could inhibit the release of HMGB1 from macrophages to outside cells, and the reduced HMGB1 release could inhibit foam cell formation. Besides, macrophage-EV/siHMGB also inhibited the LPS-induced Caspase-11 activation, thus inhibiting macrophage pyroptosis and preventing atherosclerotic plaque formation. CONCLUSION Our results proved that macrophage-EV/siHMGB could inhibit foam cell formation and suppress macrophage pyroptosis, finally preventing atherosclerotic plaque formation in AS mice.
Collapse
Affiliation(s)
- Weijie Liang
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Ruibin Wei
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Xingxing Zhu
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Jinliang Li
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Aiwen Lin
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Jun Chen
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Wen Wu
- Department of Endocrinology, Guangdong Geriatrics Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, No. 106, Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Qiang Jie
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China.
| |
Collapse
|
13
|
Tsoporis JN, Triantafyllis AS, Kalogeropoulos AS, Izhar S, Rigopoulos AG, Rallidis LS, Sakadakis E, Toumpoulis IK, Salpeas V, Leong-Poi H, Parker TG, Rizos I. Differential Expression of Circulating Damage-Associated Molecular Patterns in Patients with Coronary Artery Ectasia. Biomolecules 2023; 14:10. [PMID: 38275751 PMCID: PMC10813324 DOI: 10.3390/biom14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Coronary artery ectasia (CAE) is defined as abnormal dilation of a coronary artery with a diameter exceeding that of adjacent normal arterial segment by >1.5 times. CAE is a pathological entity of the coronary arteries and characterized as a variant of coronary atherosclerosis. CAE frequently coexists with coronary artery disease (CAD). While inflammation appears to be involved, the pathophysiology of CAE remains unclear. Damage-associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue, are deemed as alarm signals by the innate immune system. Inflammatory agents can generate DAMPs and DAMPs can create a pro-inflammatory state. In a prospective cross-sectional study, we enrolled 29 patients with CAE and non-obstructive CAD, 19 patients with obstructive CAD without CAE, and 14 control subjects with normal (control) coronary arteries age- and sex-matched with the CAE patients, to investigate the differential expression of plasma DAMPs. Patients with CAE and non-obstructive CAD had increased plasma levels of the DAMPs S100B, S100A12, HMGB1, and HSP70, the DAMPs receptor TLR4, and miR328a-3p compared to CAD and controls. Plasma levels of the mir328a-3p target the protective soluble form of the DAMPs receptor for advanced glycation end products (sRAGE), and the antioxidant DJ-1 was decreased in both CAE and CAD compared to controls. In an in vitro human umbilical vein endothelial cells model, circulating levels of S100B, HMGB1, HSP70 as well as CAE patient plasma induced inflammatory responses. The differential expression of the DAMPs S100B, HSP70, HMGB1, and their receptors TLR4 and sRAGE in CAE versus CAD makes them attractive novel biomarkers as therapeutic targets and therapeutics.
Collapse
Affiliation(s)
- James N. Tsoporis
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond St., Toronto, ON M5B 1W8, Canada; (S.I.); (H.L.-P.); (T.G.P.)
| | - Andreas S. Triantafyllis
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
- Askepeion General Hospital, 16673 Athens, Greece
| | - Andreas S. Kalogeropoulos
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
- Hygeia HealthCare Group, Department of Cardiology, Mitera General Hospital, 15123 Athens, Greece
| | - Shehla Izhar
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond St., Toronto, ON M5B 1W8, Canada; (S.I.); (H.L.-P.); (T.G.P.)
| | - Angelos G. Rigopoulos
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| | - Loukianos S. Rallidis
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| | - Eleftherios Sakadakis
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| | - Ioannis K. Toumpoulis
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| | - Vasileios Salpeas
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| | - Howard Leong-Poi
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond St., Toronto, ON M5B 1W8, Canada; (S.I.); (H.L.-P.); (T.G.P.)
| | - Thomas G. Parker
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond St., Toronto, ON M5B 1W8, Canada; (S.I.); (H.L.-P.); (T.G.P.)
| | - Ioannis Rizos
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| |
Collapse
|
14
|
Wątroba M, Grabowska AD, Szukiewicz D. Effects of Diabetes Mellitus-Related Dysglycemia on the Functions of Blood-Brain Barrier and the Risk of Dementia. Int J Mol Sci 2023; 24:10069. [PMID: 37373216 DOI: 10.3390/ijms241210069] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases worldwide, and its long-term complications include neuropathy, referring both to the peripheral and to the central nervous system. Detrimental effects of dysglycemia, especially hyperglycemia, on the structure and function of the blood-brain barrier (BBB), seem to be a significant backgrounds of diabetic neuropathy pertaining to the central nervous system (CNS). Effects of hyperglycemia, including excessive glucose influx to insulin-independent cells, may induce oxidative stress and secondary innate immunity dependent inflammatory response, which can damage cells within the CNS, thus promoting neurodegeneration and dementia. Advanced glycation end products (AGE) may exert similar, pro-inflammatory effects through activating receptors for advanced glycation end products (RAGE), as well as some pattern-recognition receptors (PRR). Moreover, long-term hyperglycemia can promote brain insulin resistance, which may in turn promote Aβ aggregate accumulation and tau hyperphosphorylation. This review is focused on a detailed analysis of the effects mentioned above towards the CNS, with special regard to mechanisms taking part in the pathogenesis of central long-term complications of diabetes mellitus initiated by the loss of BBB integrity.
Collapse
Affiliation(s)
- Mateusz Wątroba
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| | - Anna D Grabowska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
15
|
Zhao S, Zhou L, Wang Q, Cao JH, Chen Y, Wang W, Zhu BD, Wei ZH, Li R, Li CY, Zhou GY, Tan ZJ, Zhou HP, Li CX, Gao HK, Qin XJ, Lian K. Elevated branched-chain amino acid promotes atherosclerosis progression by enhancing mitochondrial-to-nuclear H2O2-disulfide HMGB1 in macrophages. Redox Biol 2023; 62:102696. [PMID: 37058999 PMCID: PMC10130699 DOI: 10.1016/j.redox.2023.102696] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
As the essential amino acids, branched-chain amino acid (BCAA) from diets is indispensable for health. BCAA supplementation is often recommended for patients with consumptive diseases or healthy people who exercise regularly. Latest studies and ours reported that elevated BCAA level was positively correlated with metabolic syndrome, diabetes, thrombosis and heart failure. However, the adverse effect of BCAA in atherosclerosis (AS) and its underlying mechanism remain unknown. Here, we found elevated plasma BCAA level was an independent risk factor for CHD patients by a human cohort study. By employing the HCD-fed ApoE-/- mice of AS model, ingestion of BCAA significantly increased plaque volume, instability and inflammation in AS. Elevated BCAA due to high dietary BCAA intake or BCAA catabolic defects promoted AS progression. Furthermore, BCAA catabolic defects were found in the monocytes of patients with CHD and abdominal macrophages in AS mice. Improvement of BCAA catabolism in macrophages alleviated AS burden in mice. The protein screening assay revealed HMGB1 as a potential molecular target of BCAA in activating proinflammatory macrophages. Excessive BCAA induced the formation and secretion of disulfide HMGB1 as well as subsequent inflammatory cascade of macrophages in a mitochondrial-nuclear H2O2 dependent manner. Scavenging nuclear H2O2 by overexpression of nucleus-targeting catalase (nCAT) effectively inhibited BCAA-induced inflammation in macrophages. All of the results above illustrate that elevated BCAA promotes AS progression by inducing redox-regulated HMGB1 translocation and further proinflammatory macrophage activation. Our findings provide novel insights into the role of animo acids as the daily dietary nutrients in AS development, and also suggest that restricting excessive dietary BCAA consuming and promoting BCAA catabolism may serve as promising strategies to alleviate and prevent AS and its subsequent CHD.
Collapse
|
16
|
Yang B, Xiaping Z. The clinical significance of serum HMGB1 in patients with lower extremity arteriosclerosis obliterans after interventional vascular restenosis. Front Surg 2023; 9:1031108. [PMID: 36704514 PMCID: PMC9872960 DOI: 10.3389/fsurg.2022.1031108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/28/2022] [Indexed: 01/08/2023] Open
Abstract
Objective This study explored the correlation between serum HMGB1 levels and postoperative vascular restenosis in patients with lower extremity arteriosclerosis obliterans (LEASO). Methods A total of 362 patients LEASO who received vascular intervention were recruited in this study. Serum HMGB1 levels were measured by enzyme-linked immunosorbent assay. Logistic regression analysis was used to identify the influencing factors associated with vascular restenosis. The R procedure was used to create nomogram model. Receiver operating characteristic (ROC) analysis was used to determine the predictive value of serum HMGB1 and nomogram model for vascular restenosis. Results Of the 362 LEASO patients included, 103 (28.45%) developed restenosis within 6 months of postoperative follow-up. Postoperative HMGB1 levels were significantly higher in patients with restenosis compared to those with non-restenosis. Postoperative HMGB1 levels were significantly and positively correlated with the severity of postoperative restenosis (r = 0.819). The AUC of postoperative HMGB1 for the diagnosis of postoperative restenosis was 0.758 (95% CI: 0.703-0.812), with a sensitivity and specificity of 56.31% and 82.24%, respectively. Multivariate logistic regression analysis showed that diabetes, smoking, regular postoperative medication, increased fibrinogen, decreased red blood cells, increased hs-CRP, and increased postoperative HMGB1 were independently associated with postoperative restenosis in patients with LEASO. The C-index of the nomogram prediction model constructed based on the seven influencing factors mentioned above was 0.918. The nomogram model was significantly more predictive of postoperative restenosis in LEASO patients compared with a single postoperative HMGB1 (AUC: 0.918, 95% CI: 0.757-0.934). Conclusion Postoperative serum HMGB1 is an independent risk factor associated with postoperative vascular restenosis in patients with LEASO, and a novel nomogram model based on postoperative serum HMGB1 combined with clinical characteristics may help to accurately predict the risk of postoperative restenosis in patients with LEASO.
Collapse
Affiliation(s)
- Bo Yang
- Department of Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhang Xiaping
- Department of Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China,Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Correspondence: Zhang XiaPing
| |
Collapse
|
17
|
Norda S, Papadantonaki R. Regulation of cells of the arterial wall by hypoxia and its role in the development of atherosclerosis. VASA 2023; 52:6-21. [PMID: 36484144 DOI: 10.1024/0301-1526/a001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell's response to hypoxia depends on stabilization of the hypoxia-inducible factor 1 complex and transactivation of nuclear factor kappa-B (NF-κB). HIF target gene transcription in cells resident to atherosclerotic lesions adjoins a complex interplay of cytokines and mediators of inflammation affecting cholesterol uptake, migration, and inflammation. Maladaptive activation of the HIF-pathway and transactivation of nuclear factor kappa-B causes monocytes to invade early atherosclerotic lesions, maintaining inflammation and aggravating a low-oxygen environment. Meanwhile HIF-dependent upregulation of the ATP-binding cassette transporter ABCA1 causes attenuation of cholesterol efflux and ultimately macrophages becoming foam cells. Hypoxia facilitates neovascularization by upregulation of vascular endothelial growth factor (VEGF) secreted by endothelial cells and vascular smooth muscle cells lining the arterial wall destabilizing the plaque. HIF-knockout animal models and inhibitor studies were able to show beneficial effects on atherogenesis by counteracting the HIF-pathway in the cell wall. In this review the authors elaborate on the up-to-date literature on regulation of cells of the arterial wall through activation of HIF-1α and its effect on atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Stephen Norda
- Department of Cardiovascular Medicine, University Hospital Münster, Germany
| | - Rosa Papadantonaki
- Emergency Department, West Middlesex University Hospital, Chelsea and Westminster NHS Trust, London, United Kingdom
| |
Collapse
|
18
|
Parry R, Majeed K, Pixley F, Hillis GS, Francis RJ, Schultz CJ. Unravelling the role of macrophages in cardiovascular inflammation through imaging: a state-of-the-art review. Eur Heart J Cardiovasc Imaging 2022; 23:e504-e525. [PMID: 35993316 PMCID: PMC9671294 DOI: 10.1093/ehjci/jeac167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death and disability for patients across the world. Our understanding of atherosclerosis as a primary cholesterol issue has diversified, with a significant dysregulated inflammatory component that largely remains untreated and continues to drive persistent cardiovascular risk. Macrophages are central to atherosclerotic inflammation, and they exist along a functional spectrum between pro-inflammatory and anti-inflammatory extremes. Recent clinical trials have demonstrated a reduction in major cardiovascular events with some, but not all, anti-inflammatory therapies. The recent addition of colchicine to societal guidelines for the prevention of recurrent cardiovascular events in high-risk patients with chronic coronary syndromes highlights the real-world utility of this class of therapies. A highly targeted approach to modification of interleukin-1-dependent pathways shows promise with several novel agents in development, although excessive immunosuppression and resulting serious infection have proven a barrier to implementation into clinical practice. Current risk stratification tools to identify high-risk patients for secondary prevention are either inadequately robust or prohibitively expensive and invasive. A non-invasive and relatively inexpensive method to identify patients who will benefit most from novel anti-inflammatory therapies is required, a role likely to be fulfilled by functional imaging methods. This review article outlines our current understanding of the inflammatory biology of atherosclerosis, upcoming therapies and recent landmark clinical trials, imaging modalities (both invasive and non-invasive) and the current landscape surrounding functional imaging including through targeted nuclear and nanobody tracer development and their application.
Collapse
Affiliation(s)
- Reece Parry
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| | - Kamran Majeed
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Waikato District Health Board, Hamilton 3204, New Zealand
| | - Fiona Pixley
- School of Biomedical Sciences, Pharmacology and Toxicology, University of Western Australia, Perth 6009, Australia
| | - Graham Scott Hillis
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| | - Roslyn Jane Francis
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth 6009, Australia
| | - Carl Johann Schultz
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| |
Collapse
|
19
|
Puylaert P, Zurek M, Rayner KJ, De Meyer GRY, Martinet W. Regulated Necrosis in Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:1283-1306. [PMID: 36134566 DOI: 10.1161/atvbaha.122.318177] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During atherosclerosis, lipid-rich plaques are formed in large- and medium-sized arteries, which can reduce blood flow to tissues. This situation becomes particularly precarious when a plaque develops an unstable phenotype and becomes prone to rupture. Despite advances in identifying and treating vulnerable plaques, the mortality rate and disability caused by such lesions remains the number one health threat in developed countries. Vulnerable, unstable plaques are characterized by a large necrotic core, implying a prominent role for necrotic cell death in atherosclerosis and plaque destabilization. Necrosis can occur accidentally or can be induced by tightly regulated pathways. Over the past decades, different forms of regulated necrosis, including necroptosis, ferroptosis, pyroptosis, and secondary necrosis, have been identified, and these may play an important role during atherogenesis. In this review, we describe several forms of necrosis that may occur in atherosclerosis and how pharmacological modulation of these pathways can stabilize vulnerable plaques. Moreover, some challenges of targeting necrosis in atherosclerosis such as the presence of multiple death-inducing stimuli in plaques and extensive cross-talk between necrosis pathways are discussed. A better understanding of the role of (regulated) necrosis in atherosclerosis and the mechanisms contributing to plaque destabilization may open doors to novel pharmacological strategies and will enable clinicians to tackle the residual cardiovascular risk that remains in many atherosclerosis patients.
Collapse
Affiliation(s)
- Pauline Puylaert
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| | - Michelle Zurek
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology and Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, ON, Canada (K.J.R.).,University of Ottawa Heart Institute, ON, Canada (K.J.R.)
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| | - Wim Martinet
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| |
Collapse
|
20
|
Hisham FA, Tharwat S, Samra NE, Mostafa N, Nassar MK, El-Desoky MM. High mobility group box protein 1 (HMGB1) serum and urinary levels and gene polymorphism in Egyptian patients with systemic lupus erythematosus: A possible relation to lupus nephritis. Lupus 2022; 31:1777-1785. [DOI: 10.1177/09612033221132484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective The aim of this study was to evaluate the effects of the high mobility group box protein 1 (HMGB1) serum and urinary levels and gene polymorphisms on systemic lupus erythematosus (SLE) development and investigate their link to lupus nephritis (LN). Methods We enrolled 120 Egyptian SLE patients and 120 healthy controls. Thorough medical and clinical evaluation were carried out, and SLE disease activity index (SLEDAI) was assessed. Lupus patients were divided into two groups according to the presence of LN. Measurement of HMGB1 serum and urinary levels was done using ELISA and genotyping for HMGB1 ( rs1045411) was performed. Results There were statistically significantly higher HMGB1 serum and urinary levels in SLE patients ( p < 0.001). There was a marginally significant association between lupus and alleles ( p = 0.059, φ = −0.086). ‘C’ allele was marginally significant risk allele for SLE. After classifying SLE patients based on the presence or absence of LN, there was no significant difference as regard sex ( p = 0.387), age ( p = 0.208) and disease duration ( p = 0.094).However, there was a significant difference between the 2 groups in regard to the frequency of musculoskeletal manifestations ( p = 0.035), SLEDAI score ( p < 0.001), both serum ( p < 0.001) and urinary HMGB1 levels ( p < 0.001) in addition to the frequency of HMGB1 genotypes ( p = 0.003). Lupus patients with C/T-T/T HMGB1 genotypes had 3.5-times higher odds to exhibit LN. Conclusions Serum and urine HMGB1 measurements are helpful in the diagnosis of SLE and the prediction of LN. There is a link between HMGB1 gene variations and the risk of SLE, with evidence that the C/T-T/T HMGB1 genotype is linked to a significantly greater risk of LN in the Egyptian population.
Collapse
Affiliation(s)
- Fatma A Hisham
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Samar Tharwat
- Rheumatology and Immunology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Egypt
| | - Nouran E Samra
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Nora Mostafa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Mohammed K Nassar
- Mansoura Nephrology and Dialysis Unit (MNDU), Internal Medicine Department, Faculty of Medicine, Mansoura University, Egypt
| | - Manal M. El-Desoky
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
21
|
Suica VI, Uyy E, Ivan L, Boteanu RM, Cerveanu-Hogas A, Hansen R, Antohe F. Cardiac Alarmins as Residual Risk Markers of Atherosclerosis under Hypolipidemic Therapy. Int J Mol Sci 2022; 23:ijms231911174. [PMID: 36232476 PMCID: PMC9569654 DOI: 10.3390/ijms231911174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 12/01/2022] Open
Abstract
Increased levels of low-density lipoproteins are the main risk factor in the initiation and progression of atherosclerosis. Although statin treatment can effectively lower these levels, there is still a residual risk of cardiovascular events. We hypothesize that a specific panel of stress-sensing molecules (alarmins) could indicate the persistence of silent atherosclerosis residual risk. New Zealand White rabbits were divided into: control group (C), a group that received a high-fat diet for twelve weeks (Au), and a treated hyperlipidemic group with a lipid diet for eight weeks followed by a standard diet and hypolipidemic treatment (atorvastatin and PCSK9 siRNA-inhibitor) for four weeks (Asi). Mass spectrometry experiments of left ventricle lysates were complemented by immunologic and genomic studies to corroborate the data. The hyperlipidemic diet determined a general alarmin up-regulation tendency over the C group. A significant spectral abundance increase was measured for specific heat shock proteins, S100 family members, HMGB1, and Annexin A1. The hypolipidemic treatment demonstrated a reversed regulation trend with non-significant spectral alteration over the C group for some of the identified alarmins. Our study highlights the discriminating potential of alarmins in hyperlipidemia or following hypolipidemic treatment. Data are available via ProteomeXchange with identifier PXD035692.
Collapse
Affiliation(s)
- Viorel I. Suica
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Elena Uyy
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Luminita Ivan
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Raluca M. Boteanu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Aurel Cerveanu-Hogas
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Rune Hansen
- SINTEF Digital, 7465 Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Felicia Antohe
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
- Correspondence: ; Tel.: +40-213194518
| |
Collapse
|
22
|
Jeong JH, Lee DH, Song J. HMGB1 signaling pathway in diabetes-related dementia: Blood-brain barrier breakdown, brain insulin resistance, and Aβ accumulation. Biomed Pharmacother 2022; 150:112933. [PMID: 35413600 DOI: 10.1016/j.biopha.2022.112933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetes contributes to the onset of various diseases, including cancer and cardiovascular and neurodegenerative diseases. Recent studies have highlighted the similarities and relationship between diabetes and dementia as an important issue for treating diabetes-related cognitive deficits. Diabetes-related dementia exhibits several features, including blood-brain barrier disruption, brain insulin resistance, and Aβ over-accumulation. High-mobility group box1 (HMGB1) is a protein known to regulate gene transcription and cellular mechanisms by binding to DNA or chromatin via receptor for advanced glycation end-products (RAGE) and toll-like receptor 4 (TLR4). Recent studies have demonstrated that the interplay between HMGB1, RAGE, and TLR4 can impact both neuropathology and diabetic alterations. Herein, we review the recent research regarding the roles of HMGB1-RAGE-TLR4 axis in diabetes-related dementia from several perspectives and emphasize the importance of the influence of HMGB1 in diabetes-related dementia.
Collapse
Affiliation(s)
- Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Dong Hoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School, and Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
23
|
A Novel Rodent Model of Hypertensive Cerebral Small Vessel Disease with White Matter Hyperintensities and Peripheral Oxidative Stress. Int J Mol Sci 2022; 23:ijms23115915. [PMID: 35682594 PMCID: PMC9180536 DOI: 10.3390/ijms23115915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is the second most common cause of stroke and a major contributor to dementia. Manifestations of CSVD include cerebral microbleeds, intracerebral hemorrhages (ICH), lacunar infarcts, white matter hyperintensities (WMH) and enlarged perivascular spaces. Chronic hypertensive models have been found to reproduce most key features of the disease. Nevertheless, no animal models have been identified to reflect all different aspects of the human disease. Here, we described a novel model for CSVD using salt-sensitive ‘Sabra’ hypertension-prone rats (SBH/y), which display chronic hypertension and enhanced peripheral oxidative stress. SBH/y rats were either administered deoxycorticosteroid acetate (DOCA) (referred to as SBH/y-DOCA rats) or sham-operated and provided with 1% NaCl in drinking water. Rats underwent neurological assessment and behavioral testing, followed by ex vivo MRI and biochemical and histological analyses. SBH/y-DOCA rats show a neurological decline and cognitive impairment and present multiple cerebrovascular pathologies associated with CSVD, such as ICH, lacunes, enlarged perivascular spaces, blood vessel stenosis, BBB permeability and inflammation. Remarkably, SBH/y-DOCA rats show severe white matter pathology as well as WMH, which are rarely reported in commonly used models. Our model may serve as a novel platform for further understanding the mechanisms underlying CSVD and for testing novel therapeutics.
Collapse
|
24
|
Namba T, Yashiro M, Fujii Y, Tsuge M, Liu K, Nishibori M, Tsukahara H. Decreased Levels of Histidine-Rich Glycoprotein and Increased Levels of High-Mobility Group Box 1 are Risk Factors for Refractory Kawasaki Disease. Mod Rheumatol 2022; 33:599-607. [PMID: 35484824 DOI: 10.1093/mr/roac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/08/2022] [Accepted: 04/23/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Histidine-rich glycoprotein (HRG) and high-mobility group box 1 (HMGB1) regulate the activation of neutrophils and vascular endothelium. The aim of this study was to quantify HRG and HMGB1 levels in patients with Kawasaki disease (KD) and evaluate their use in the clinical management of KD. METHODS This study was prospectively performed. Patients were divided into two groups and analyzed depending on whether KD symptoms improved by day 10 of illness. HRG, HMGB1, and other laboratory variables were measured before the first treatment in all cases and, in most cases, afterwards, for assessing trends. RESULTS In this prospective study, we enrolled 60 patients with KD and 48 healthy controls. The HRG level in the KD group was significantly lower than that in the healthy control group; HMGB1 levels showed no obvious differences. In the KD group, HRG levels were negatively correlated with white blood cell and neutrophil counts. In the poor responders and responders groups, a tendency for a decrease in HRG and HMGB1 levels, respectively, was observed from pretreatment to post-treatment. CONCLUSIONS HRG and HMGB1 are related to the pathogenesis of KD; low HRG and high HMGB1 levels cause resistance against KD treatment.
Collapse
Affiliation(s)
- Takahiro Namba
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Department of Pediatrics, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Masato Yashiro
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Fujii
- Department of Pediatrics, Fukuyama City Hospital, Hiroshima, Japan
| | - Mitsuru Tsuge
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
25
|
Kim JO, Baek SE, Jeon EY, Choi JM, Jang EJ, Kim CD. PDGFR-β signaling mediates HMGB1 release in mechanically stressed vascular smooth muscle cells. PLoS One 2022; 17:e0265191. [PMID: 35294955 PMCID: PMC8926240 DOI: 10.1371/journal.pone.0265191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
Mechanically stressed vascular smooth muscle cells (VSMCs) have potential roles in the development of vascular complications. However, the underlying mechanisms are unclear. Using VSMCs cultured from rat thoracic aorta explants, we investigated the effects of mechanical stretch (MS) on the cellular secretion of high mobility group box 1 (HMGB1), a major damage-associated molecular pattern that mediates vascular complications in stressed vasculature. Enzyme-linked immunosorbent assay (ELISA) demonstrated an increase in the secretion of HMGB1 in VSMCs stimulated with MS (0–3% strain, 60 cycles/min), and this secretion was markedly and time-dependently increased at 3% MS. The increased secretion of HMGB1 at 3% MS was accompanied by an increased cytosolic translocation of nuclear HMGB1; the acetylated and phosphorylated forms of this protein were significantly increased. Among various inhibitors of membrane receptors mediating mechanical signals, AG1295 (a platelet-derived growth factor receptor (PDGFR) inhibitor) attenuated MS-induced HMGB1 secretion. Inhibitors of other receptors, including epidermal growth factor, insulin-like growth factor, and fibroblast growth factor receptors, did not inhibit this secretion. Additionally, MS-induced HMGB1 secretion was markedly attenuated in PDGFR-β-deficient cells but not in cells transfected with PDGFR-α siRNA. Likewise, PDGF-DD, but not PDGF-AA, directly increased HMGB1 secretion in VSMCs, indicating a pivotal role of PDGFR-β signaling in the secretion of this protein in VSMCs. Thus, targeting PDGFR-β-mediated secretion of HMGB1 in VSMCs might be a promising therapeutic strategy for vascular complications associated with hypertension.
Collapse
Affiliation(s)
- Ji On Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Seung Eun Baek
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Eun Yeong Jeon
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Jong Min Choi
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Eun Jeong Jang
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- * E-mail:
| |
Collapse
|
26
|
Dong H, Jiang G, Zhang J, Kang Y. LncRNA OIP5-AS1 Promotes the Proliferation and Migration of Vascular Smooth Muscle Cells via Regulating miR-141-3p/HMGB1 Pathway. Am J Med Sci 2022; 363:538-547. [DOI: 10.1016/j.amjms.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/11/2022] [Accepted: 02/11/2022] [Indexed: 11/24/2022]
|
27
|
Hendrix P, Berger A, Person TN, Gupta M, Zand R, Li J, Abedi V, Goren O, Schirmer CM, Griessenauer CJ. Sex-specific association of RAGE and HMGB1 genotype variations with susceptibility to ischemic stroke in Caucasians. J Clin Neurosci 2021; 94:328-331. [PMID: 34863459 DOI: 10.1016/j.jocn.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The role of genotype variants of HMGB1 and RAGE in susceptibility to acute ischemic stroke remains inconclusive. METHODS Caucasian acute ischemic stroke patients admitted to three hospitals within a large healthcare system in the U.S. between 2009 and 2017 were reviewed. For each stroke case, three age and sex-matched non-stroke patients were identified as controls. Associations of phased-genotype data for RAGE (rs1035798, rs2070600, rs1800624, rs1800625) and HMGB1 (rs1360485, rs1045411, rs3742305, rs2249825, rs1412125) single-nucleotide-polymorphisms (SNPs) and haplotypes with stroke susceptibility were analyzed. The Benjamini-Hochberg procedure was performed. RESULTS Collectively, 4,264 patients, 1,066 acute ischemic stroke and 3,198 controls were identified. Genotype distributions were in Hardy-Weinberg equilibrium. None of the SNPs alternate allele frequencies differed from the NCBI SNP database. No differences were found in the genotype distributions when analyzing each SNP and the two most common haplotypes in a covariate adjusted model. In a sex-specific stratification, males harboring the RAGE SNP rs1800625 AG or GG genotype had an independently increased risk for ischemic strokes compared to controls (adjusted OR = 1.27,95%CI 1.03-1.57, pa = 0.0276). After the Benjamini-Hochberg procedure, a trend towards this association remained (pBH = 0.1104). CONCLUSION No association of RAGE and HMGB1 genotypes variations with risk for overall ischemic stroke or specific stroke subtypes could be observed. Congruent with the literature, a sex-specific role of RAGE SNPs might associate with stroke susceptibility. The functional role of the HMGB1-RAGE axis in this context warrants further exploration.
Collapse
Affiliation(s)
- Philipp Hendrix
- Department of Neurosurgery, Geisinger, Danville, PA, USA; Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg/Saar, Germany
| | - Andrea Berger
- Department of Population Health Sciences, Biostatistics Core, Geisinger, Danville, PA, USA
| | - Thomas N Person
- Geisinger Health System Phenomic Analytics and Clinical Data Core, Danville, PA, USA
| | - Mudit Gupta
- Geisinger Health System Phenomic Analytics and Clinical Data Core, Danville, PA, USA
| | - Ramin Zand
- Department of Neurosurgery, Geisinger, Danville, PA, USA
| | - Jiang Li
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Vida Abedi
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA; Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Oded Goren
- Department of Neurosurgery, Geisinger, Danville, PA, USA
| | - Clemens M Schirmer
- Department of Neurosurgery, Geisinger, Danville, PA, USA; Research Institute of Neurointervention, Paracelsus Medical University, Salzburg, Austria
| | - Christoph J Griessenauer
- Department of Neurosurgery, Geisinger, Danville, PA, USA; Research Institute of Neurointervention, Paracelsus Medical University, Salzburg, Austria; Department of Neurosurgery, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.
| | | |
Collapse
|
28
|
Li Y, Li H, Chen B, Yang F, Hao Z. miR-141-5p suppresses vascular smooth muscle cell inflammation, proliferation, and migration via inhibiting the HMGB1/NF-κB pathway. J Biochem Mol Toxicol 2021; 35:e22828. [PMID: 34128295 DOI: 10.1002/jbt.22828] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/20/2021] [Accepted: 05/18/2021] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) have been identified as significant modulators in the pathogenesis of atherosclerosis (AS). Additionally, the dysregulation of vascular smooth muscle cells (VSMCs) is a crucial biological event during AS. Our study aimed to explore the functional roles and molecular mechanisms of miR-141-5p in VSMCs dysfunction. C57BL/6 mice were used to establish AS animal model. Human VSMCs were treated by oxidized low-density lipoprotein (ox-LDL) to establish AS cell model. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to probe miR-141-5p and high-mobility group box 1 (HMGB1) mRNA expressions in VSMCs or plasma samples of the mice. Inflammatory cytokines were detected by enzyme-linked immunosorbent assay kits. Cell counting kit-8 and bromodeoxyuridine assays were performed to evaluate cell proliferation. Cell migration and apoptosis were detected with Transwell assay and flow cytometry analysis, respectively. The target gene of miR-141-5p was predicted with the TargetScan database, and the interaction between miR-141-5p and HMGB1/nuclear factor-κB (NF-κB) was further validated by dual-luciferase reporter assay, qRT-PCR, and Western blot analysis. miR-141-5p was found to be decreased in the plasma of patients and mice model with AS. Its expression was also downregulated in VSMCs treated by ox-LDL. miR-141-5p overexpression inhibited the inflammation, proliferation, migration of VSMCs, and promoted the apoptosis of VSMCs. HMGB1 was identified as a direct target of miR-141-5p, and miR-141-5p could repress the activity of HMGB1/NF-κB signaling. HMGB1 restoration reversed the effects of miR-141-5p, and NF-κB inhibitor JSH-23 showed similar effects with miR-141-5p mimics. miR-141-5p inhibits VSMCs' dysfunction by targeting the HMGB1/NF-κB pathway, which probably functions as a protective factor during the development of AS.
Collapse
Affiliation(s)
- Yadong Li
- Department of Emergency, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haide Li
- Department of Cardiovascular Medicine, Linyi Central Hospital, Linyi, Shandong, China
| | - Bin Chen
- Department of Cardiovascular Medicine, Linyi Central Hospital, Linyi, Shandong, China
| | - Fan Yang
- Department of Cardiovascular Medicine, Linyi Central Hospital, Linyi, Shandong, China
| | - Zhiying Hao
- Department of Pharmacy, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
29
|
High-mobility group box 1 serves as an inflammation driver of cardiovascular disease. Biomed Pharmacother 2021; 139:111555. [PMID: 33865014 DOI: 10.1016/j.biopha.2021.111555] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is the most deadly disease, which can cause sudden death, in which inflammation is a key factor in its occurrence and development. High-mobility group box 1 (HMGB1) is a novel nuclear DNA-binding protein that activates innate immunity to induce inflammation in CVD. HMGB1 exists in the cytoplasm and nucleus of different cell types, including those in the heart. By binding to its receptors, HMGB1 triggers a variety of signaling cascades, leading to inflammation and CVD. To help develop HMGB1-targeted therapies, here we discuss HMGB1 and its biological functions, receptors, signaling pathways, and pathophysiology related to inflammation and CVD, including cardiac remodeling, cardiac hypertrophy, myocardial infarction, heart failure, pulmonary hypertension, atherosclerosis, and cardiomyopathy.
Collapse
|
30
|
Morichi S, Yamanaka G, Watanabe Y, Takamatsu T, Kasuga A, Takeshita M, Go S, Ishida Y, Oana S, Kashiwagi Y, Kawashima H. High mobility group box 1 and angiogenetic growth factor levels in children with central nerve system infections. J Infect Chemother 2021; 27:840-844. [PMID: 33583741 DOI: 10.1016/j.jiac.2021.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION To clarify the pathology of children with acute encephalopathy and other neurological disorders, the involvement of high-mobility group box 1 (HMGB1), which is a representative of danger-associated molecular patterns, and angiogenesis-related growth factors were investigated. PATIENTS AND METHODS Participants were 12 children with acute encephalopathy (influenza, rotavirus, and others), 7 with bacterial meningitis, and 6 with epilepsy disease (West syndrome). Twenty-four patients with non-central nervous system (CNS) infections as a control group were admitted to our hospital. We examined the levels of HMGB1, platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and other cytokines in the serum and cerebrospinal fluid (CSF) of the subjects. RESULTS Serum and CSF HMGB1 levels were significantly higher in the encephalopathy and meningitis groups than in the West syndrome and control groups. CSF HMGB1 levels correlated with those of interleukin-6 and -8. CSF HMGB1 and VEGF levels were correlated, and PDGF showed a positive relationship. CONCLUSION HMGB1 and angiogenesis-related growth factors appear to play pivotal roles in the pathophysiology of CNS infections.
Collapse
Affiliation(s)
- Shinichiro Morichi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University.
| | - Gaku Yamanaka
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Yusuke Watanabe
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Tomoko Takamatsu
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Akiko Kasuga
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Mika Takeshita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Soken Go
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Yu Ishida
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Shingo Oana
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Yasuyo Kashiwagi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Hisashi Kawashima
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| |
Collapse
|
31
|
Murray KD, Singh MV, Zhuang Y, Uddin MN, Qiu X, Weber MT, Tivarus ME, Wang HZ, Sahin B, Zhong J, Maggirwar SB, Schifitto G. Pathomechanisms of HIV-Associated Cerebral Small Vessel Disease: A Comprehensive Clinical and Neuroimaging Protocol and Analysis Pipeline. Front Neurol 2020; 11:595463. [PMID: 33384655 PMCID: PMC7769815 DOI: 10.3389/fneur.2020.595463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: We provide an in-depth description of a comprehensive clinical, immunological, and neuroimaging study that includes a full image processing pipeline. This approach, although implemented in HIV infected individuals, can be used in the general population to assess cerebrovascular health. Aims: In this longitudinal study, we seek to determine the effects of neuroinflammation due to HIV-1 infection on the pathomechanisms of cerebral small vessel disease (CSVD). The study focuses on the interaction of activated platelets, pro-inflammatory monocytes and endothelial cells and their impact on the neurovascular unit. The effects on the neurovascular unit are evaluated by a novel combination of imaging biomarkers. Sample Size: We will enroll 110 HIV-infected individuals on stable combination anti-retroviral therapy for at least three months and an equal number of age-matched controls. We anticipate a drop-out rate of 20%. Methods and Design: Subjects are followed for three years and evaluated by flow cytometric analysis of whole blood (to measure platelet activation, platelet monocyte complexes, and markers of monocyte activation), neuropsychological testing, and brain MRI at the baseline, 18- and 36-month time points. MRI imaging follows the recommended clinical small vessel imaging standards and adds several advanced sequences to obtain quantitative assessments of brain tissues including white matter microstructure, tissue susceptibility, and blood perfusion. Discussion: The study provides further understanding of the underlying mechanisms of CSVD in chronic inflammatory disorders such as HIV infection. The longitudinal study design and comprehensive approach allows the investigation of quantitative changes in imaging metrics and their impact on cognitive performance.
Collapse
Affiliation(s)
- Kyle D Murray
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
| | - Meera V Singh
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Md Nasir Uddin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics, University of Rochester, Rochester, NY, United States
| | - Miriam T Weber
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Madalina E Tivarus
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Henry Z Wang
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| | - Bogachan Sahin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Jianhui Zhong
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States.,Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States.,Department of Biostatistics, University of Rochester, Rochester, NY, United States
| | - Sanjay B Maggirwar
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester, Rochester, NY, United States.,Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| |
Collapse
|
32
|
Lin CH, Chen HY, Wei KC. Role of HMGB1/TLR4 Axis in Ischemia/Reperfusion-Impaired Extracellular Glutamate Clearance in Primary Astrocytes. Cells 2020; 9:E2585. [PMID: 33287126 PMCID: PMC7761728 DOI: 10.3390/cells9122585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Abnormal accumulation of extracellular glutamate can occur as dysfunction of astrocytic glutamate transporters, which has been linked to ischemic brain injury. Excessive extracellular glutamate-induced abnormal excitotoxicity is the major cause of secondary neuronal damage after cerebral ischemia/reperfusion. However, the definite mechanism of impaired astrocytic glutamate reuptake remains unclear. (2) Methods: We investigated the mechanism of the HMGB1/TLR4 axis in extracellular glutamate clearance in primary astrocytes exposed to ischemia/reperfusion by using OGD/R (oxygen-glucose deprivation/reoxygenation) model. (3) Results: OGD/R insult activated the HMGB1/TLR4 axis for reducing the activity of glutamate clearance by inhibiting GLAST (glutamate aspartate transporter) expression in primary astrocytes. Interestingly, OGD/R-untreated astrocytes showed impairment of glutamate clearance after exposure to exogenous HMGB1 or conditioned medium from OGD/R-treated astrocytes culture. Inhibition of HMGB1 or TLR4 effectively prevented impaired glutamate clearance, which was induced by OGD/R, exogenous HMGB1, or conditioned medium from OGD/R-treated astrocytes. Furthermore, glycyrrhizic acid attenuated OGD/R-induced impairment of astrocytic glutamate clearance mediated by the HMGB1-TLR4 axis. (4) Conclusion: The HMGB1/TLR4 axis is a potential target for the treatment of post-ischemic excitotoxicity caused by GLAST dysfunction in astrocytes.
Collapse
Affiliation(s)
- Chia-Ho Lin
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-H.L.); (H.-Y.C.)
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Han-Yu Chen
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-H.L.); (H.-Y.C.)
| | - Kai-Che Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 802, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Faculty of Yuh-Ing Junior College of Health Care and Management, Kaohsiung 802, Taiwan
| |
Collapse
|
33
|
Stempkowska A, Walicka M, Franek E, Naruszewicz M, Panczyk M, Sanchak Y, Filipek A. Hp1-1 as a Genetic Marker Regulating Inflammation and the Possibility of Developing Diabetic Complications in Patients with Type 2 Diabetes-Cohort Studies. Genes (Basel) 2020; 11:genes11111253. [PMID: 33114431 PMCID: PMC7716206 DOI: 10.3390/genes11111253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background: This study assessed the influence of the haptoglobin phenotype on markers regulating inflammation in patients with type 2 diabetes. Methods: The haptoglobin phenotypes, soluble form of CD163 receptor (sCD163), p53 concentrations and high mobility group box protein 1 (HMGB1), interleukin 10 (IL-10) secretion in serum were assayed via ELISA tests. In the first part of the project, patients were divided into three groups which differed by the haptoglobin phenotype, and afterwards into two groups according to the criterion of the presence or absence of cardiovascular disease. Results: Diabetic patients with haptoglobin phenotype 1-1 (Hp1-1) had a significantly higher concentration of IL-10 and sCD163 compared to haptoglobin phenotype 2-1 (Hp2-1) and haptoglobin phenotype 2-2 (Hp2-2). Moreover, diabetic patients with Hp1-1 had a significantly lower concentration of p53 and HMGB1 compared to diabetic patients with Hp2-1 and Hp2-2. The results have shown that diabetics with Hp2-1 had a significantly lower postprandial glucose level compared to diabetics with Hp2-2. Apart from that, there were no differences in the occurrence of haptoglobin variants between patients with or without cardiovascular disease. Conclusions: Our study provides new data for a relationship between the type of haptoglobin in patients with type 2 diabetes and the concentration of factors that regulate the body’s inflammation. We have shown that the Hp1-1 can serve as a genetic marker of inflammatory processes.
Collapse
Affiliation(s)
- Anna Stempkowska
- Clinical Department of Internal Diseases, Endocrinology and Diabetology, Central Clinical Hospital of the MSWiA in Warsaw, Wołoska 137, 02-507 Warsaw, Poland; (A.S.); (M.W.); (E.F.); (Y.S.)
| | - Magdalena Walicka
- Clinical Department of Internal Diseases, Endocrinology and Diabetology, Central Clinical Hospital of the MSWiA in Warsaw, Wołoska 137, 02-507 Warsaw, Poland; (A.S.); (M.W.); (E.F.); (Y.S.)
| | - Edward Franek
- Clinical Department of Internal Diseases, Endocrinology and Diabetology, Central Clinical Hospital of the MSWiA in Warsaw, Wołoska 137, 02-507 Warsaw, Poland; (A.S.); (M.W.); (E.F.); (Y.S.)
| | - Marek Naruszewicz
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Mariusz Panczyk
- Department of Education and Research in Health Sciences, Faculty of Health Sciences, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Yaroslav Sanchak
- Clinical Department of Internal Diseases, Endocrinology and Diabetology, Central Clinical Hospital of the MSWiA in Warsaw, Wołoska 137, 02-507 Warsaw, Poland; (A.S.); (M.W.); (E.F.); (Y.S.)
| | - Agnieszka Filipek
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-572-09-85
| |
Collapse
|
34
|
Ghosh SS, Ghosh S. HMGB1 (High-Mobility Group Box-1): A Common Link Determining the Consequences of Tissue Injury, Sterile/Microbial and Low-Grade Chronic Inflammation. Arterioscler Thromb Vasc Biol 2020; 40:2561-2563. [PMID: 33085519 DOI: 10.1161/atvbaha.120.315189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Siddhartha S Ghosh
- Department of Internal Medicine, VCU Medical Center, Richmond, VA (S.S.G., S.G.)
| | - Shobha Ghosh
- Hunter Homes McGuire VA Medical Center, Richmond, VA (S.G.)
| |
Collapse
|
35
|
Vijayakumar EC, Bhatt LK, Prabhavalkar KS. High Mobility Group Box-1 (HMGB1): A Potential Target in Therapeutics. Curr Drug Targets 2020; 20:1474-1485. [PMID: 31215389 DOI: 10.2174/1389450120666190618125100] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
High mobility group box-1 (HMGB1) mainly belongs to the non-histone DNA-binding protein. It has been studied as a nuclear protein that is present in eukaryotic cells. From the HMG family, HMGB1 protein has been focused particularly for its pivotal role in several pathologies. HMGB-1 is considered as an essential facilitator in diseases such as sepsis, collagen disease, atherosclerosis, cancers, arthritis, acute lung injury, epilepsy, myocardial infarction, and local and systemic inflammation. Modulation of HMGB1 levels in the human body provides a way in the management of these diseases. Various strategies, such as HMGB1-receptor antagonists, inhibitors of its signalling pathway, antibodies, RNA inhibitors, vagus nerve stimulation etc. have been used to inhibit expression, release or activity of HMGB1. This review encompasses the role of HMGB1 in various pathologies and discusses its therapeutic potential in these pathologies.
Collapse
Affiliation(s)
- Eyaldeva C Vijayakumar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
36
|
Zhu Z, Guo Y, Li X, Teng S, Peng X, Zou P, Zhou S. Glycyrrhizic Acid Attenuates Balloon-Induced Vascular Injury Through Inactivation of RAGE Signaling Pathways. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2020. [DOI: 10.15212/cvia.2019.0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Percutaneous coronary intervention is a well-established technique used to treat coronary artery disease, but the risk of coronary artery in-stent restenosis following percutaneous coronary intervention is still high. Previous studies revealed that high mobility group protein B1 (HMGB1)
plays a critical role in neointima formation. In this study, we aimed to investigate the role of glycyrrhizic acid (GA), an HMGB1 inhibitor, in the process of neointima formation and the potential mechanisms. We investigated the role of GA in neointima formation through an iliac artery balloon
injury model in rabbits. Proliferation, migration, and phenotype transformation of human vascular smooth muscle cells (VSMCs) were observed. Besides, inflammation and receptor for advanced glycosylation end products (RAGE) signaling pathways were studied. The results indicate that GA attenuated
neointima formation and downregulated HMGB1 expression in injured artery in rabbits. HMGB1 promoted proliferation, migration, and phenotype transformation through the activation of RAGE signaling pathways in VSMCs, and blockade of HMGB1 by GA (1, 10, and 100 μM) could attenuate those processes
and reduce proliferation of human VSMCs. In conclusion, the HMGB1 inhibitor GA might be useful to treat proliferative vascular diseases by downregulating RAGE signaling pathways. Our results indicate a new and promising therapeutic agent for restenosis.
Collapse
Affiliation(s)
- Zhaowei Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanan Guo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuping Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Teng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaofan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pu Zou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
37
|
Xu J, Lu S, Wu P, Kong L, Ning C, Li H. Molecular mechanism whereby paraoxonase-2 regulates coagulation activation through endothelial tissue factor in rat haemorrhagic shock model. Int Wound J 2020; 17:735-741. [PMID: 32090497 PMCID: PMC7949017 DOI: 10.1111/iwj.13329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 01/17/2023] Open
Abstract
We investigated the molecular mechanism of paraoxonase-2 (PON-2) in regulating blood coagulation activation in rats with haemorrhagic shock through endothelial tissue factor (TF). Thirty adult Sprague Dawley rats were randomly divided into three groups: healthy control group (group A), the haemorrhagic shock PON-2 treatment group (group B), and the haemorrhagic shock group (group C). After the model was established, blood was withdrawn from the inferior vena cava of all rats. The difference in plasma thrombomodulin (TM) levels of the three groups was determined by Western blotting. The expression of transcription factors Egr-1 and Sp1 was detected by Western blotting assays. reverse transcription-polymerase chain Reaction (RT-PCR) was used to determine the mRNA expression of t-PA, PAI-1, TM, and PON-2 in the serum of three groups of rats. Endothelial TF was measured by enzyme linked immunosorbent assay (ELISA), and coagulation assay was used to detect the activity of coagulation factor VIII. Histopathological examination of the arteries of the rats was performed. The molecular mechanism of PON-2 in regulating blood coagulation activation in haemorrhagic shock model rats by endothelial tissue factor was analysed. The expression of thrombin was determined by electrophoresis. Compared with the healthy control group, the expression of TM in groups B and C decreased, both 188.64 ± 12.47 and 137.48 ± 9.72, respectively, with a significant difference. The mRNA expression of TM and PON was determined by RT-PCR. The mRNA expression of TM and PON in group B was 0.97 ± 0.07 and 1.14 ± 0.09, compared with the control group, and the mRNA expression of TM and PON in group C was 0.86 ± 0.38 and 1.12 ± 0.41, both of which increased, and there were significant differences. By measuring the expression of endothelial TF, the expression of TF in groups B and C was elevated to 12.69 ± 1.07 and 11.59 ± 0.87, with significant differences. The enzyme activities of PON-2 in groups B and C, which were 110.34 ± 14.37 and 52.37 ± 8.06, respectively, were increased compared with the healthy control group and there were significant differences. PON-2 regulates the activation of coagulation in rats with haemorrhagic shock by regulating the expression of endothelial tissue-related genes such as plasma TM and endothelial TF under hypoxic and ischaemic conditions.
Collapse
Affiliation(s)
- Jian‐Hua Xu
- Intensive Care UnitLinyi Central HospitalLinyiShandongChina
| | - Shi‐Jun Lu
- Intensive Care UnitLinyi Central HospitalLinyiShandongChina
| | - Peng Wu
- Intensive Care UnitLinyi Central HospitalLinyiShandongChina
| | - Ling‐Chen Kong
- Intensive Care UnitLinyi Central HospitalLinyiShandongChina
| | - Chao Ning
- Intensive Care UnitLinyi Central HospitalLinyiShandongChina
| | - Hai‐Yan Li
- Intensive Care UnitLinyi Central HospitalLinyiShandongChina
| |
Collapse
|
38
|
Jiang T, Zhang W, Wang Z. Laquinimod Protects Against TNF-α-Induced Attachment of Monocytes to Human Aortic Endothelial Cells (HAECs) by Increasing the Expression of KLF2. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1683-1691. [PMID: 32440094 PMCID: PMC7222522 DOI: 10.2147/dddt.s243666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/06/2020] [Indexed: 01/01/2023]
Abstract
Introduction As a worldwide health issue, the treatment and prevention of atherosclerosis present an important goal. Increased levels of proinflammatory cytokines such as TNF-α-associated chronic inflammatory response cause endothelial cells to lose their ability to regulate vascular function. Lipid-laden immune cells are recruited to the endothelium where they adhere to the endothelial wall and invade the intimal space, thereby leading to the development of atherosclerotic lesions, fatty plaques, and thickening of the arterial wall. In the present study, for the first time, we investigated the effects of laquinimod, an immunomodulatory agent used for the treatment of multiple sclerosis, on human aortic endothelial in a TNF-α-induced atherosclerotic microenvironment. At present, the mechanism of action of laquinimod is not well defined. Methods The effects of laquinimod on the gene expression of IL-6, MCP-1, VCAM-1, E-selectin, and KLF2 were measured by real-time PCR. ELISA assay was used to determine protein secretion and expression. Phosphorylation of ERK5 and the protein level of KLF2 were measured by Western blot analysis. The attachment of monocytes to endothelial cells was assayed by calcein-AM staining and fluorescent microscopy. Results Our findings demonstrate that laquinimod reduced the expression of key inflammatory cytokines and chemokines, including IL-6, MCP-1, and HMGB1. We further demonstrate that laquinimod significantly reduced the attachment of monocytes to endothelial cells, which is mediated through reduced expression of the cellular adhesion molecules VCAM-1 and E-selectin. Here, we found that laquinimod could significantly increase the expression of KLF2 through activation of ERK5 signaling. The results of our KLF2 knockdown experiment confirm that the effects of laquinimod observed in vitro are dependent on KLF2 expression. Conclusion Together, these findings suggest a potential antiatherosclerotic capacity of laquinimod. Further research will elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Tiechao Jiang
- Department of Cardiovascular Medicine, The Third Hospital of Jilin University, Changchun 130033, People's Republic of China.,Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, The Third Hospital of Jilin University, Changchun 130033, People's Republic of China.,Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, The Third Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Wenhao Zhang
- Department of Cardiovascular Medicine, The Third Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Zhongyu Wang
- Department of Cardiovascular Medicine, The Third Hospital of Jilin University, Changchun 130033, People's Republic of China.,Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, The Third Hospital of Jilin University, Changchun 130033, People's Republic of China.,Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, The Third Hospital of Jilin University, Changchun 130033, People's Republic of China
| |
Collapse
|
39
|
Kim N, Lee S, Lee JR, Kwak YL, Jun JH, Shim JK. Prognostic role of serum high mobility group box 1 concentration in cardiac surgery. Sci Rep 2020; 10:6293. [PMID: 32286371 PMCID: PMC7156763 DOI: 10.1038/s41598-020-63051-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/24/2020] [Indexed: 11/12/2022] Open
Abstract
Outcomes of cardiac surgery are influenced by systemic inflammation. High mobility group box 1 (HMGB1), a pivotal inflammatory mediator, plays a potential role as a prognostic biomarker in cardiovascular disease. The aim of this prospective, observational study was to investigate the relationship between serum HMGB1 concentrations and composite of morbidity endpoints in cardiac surgery. Arterial blood samples for HMGB1 measurement were collected from 250 patients after anaesthetic induction (baseline) and 1 h after weaning from cardiopulmonary bypass (post-CPB). The incidence of composite of morbidity endpoints (death, myocardial infarction, stroke, renal failure and prolonged ventilator care) was compared in relation to the tertile distribution of serum HMGB1 concentrations. The incidence of composite of morbidity endpoints was significantly different with respect to the tertile distribution of post-CPB HMGB1 concentrations (p = 0.005) only, and not to the baseline. Multivariable analysis revealed post-CPB HMGB1 concentration (OR, 1.072; p = 0.044), pre-operative creatinine and duration of CPB as independent risk factors of adverse outcome. Accounting for its prominent role in mediating sterile inflammation and its relation to detrimental outcome, HMGB1 measured 1 h after weaning from CPB would serve as a useful biomarker for accurate risk stratification in cardiac surgical patients and may guide tailored anti-inflammatory therapy.
Collapse
Affiliation(s)
- Namo Kim
- Department of Anaesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Anaesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sak Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Rim Lee
- Department of Anaesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Anaesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Lan Kwak
- Department of Anaesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Anaesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hae Jun
- Anaesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kwang Shim
- Department of Anaesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Anaesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Zhou DM, Ran F, Ni HZ, Sun LL, Xiao L, Li XQ, Li WD. Metformin inhibits high glucose-induced smooth muscle cell proliferation and migration. Aging (Albany NY) 2020; 12:5352-5361. [PMID: 32208365 PMCID: PMC7138554 DOI: 10.18632/aging.102955] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
We investigated the protective effects and mechanism of action of metformin on high glucose-induced smooth muscle cell proliferation and migration. Vascular smooth muscle cells (VSMCs) were subjected to a series of concentrations (0-10 mM) of metformin. CCK-8, wound healing, and transwell assays were performed. Correlations between metformin concentration and high-mobility group box 1 (HMGB1) and miR-142-3p levels were assessed. In addition, miR-142-3p mimic and siRNA were used to investigate VSMC migration in the presence or absence of metformin. In the high-glucose condition, metformin decreased cell growth and inhibited cell migration. HMGB1 gene expression correlated negatively with metformin concentration, whereas miR-142-3p expression correlated positively with metformin concentration. In addition, mimic-induced miR-142-3p elevation resulted in decreased HMGB1 and LC3II levels and elevated p62 levels in the high-glucose condition, whereas miR-142-3p knockdown had the reverse effects, and metformin abolished those effects. Metformin inhibits high glucose–induced VSMC hyperproliferation and increased migration by inducing miR-142-3p-mediated inhibition of HMGB1 expression via the HMGB1-autophagy related pathway.
Collapse
Affiliation(s)
- Dong-Ming Zhou
- Department of Hematology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Jiangsu, China
| | - Feng Ran
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Jiangsu, China
| | - Hai-Zhen Ni
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu, China.,Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Li-Li Sun
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu, China
| | - Lun Xiao
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Jiangsu, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Jiangsu, China
| | - Wen-Dong Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Jiangsu, China
| |
Collapse
|
41
|
Role of HMGB1 in an Animal Model of Vascular Cognitive Impairment Induced by Chronic Cerebral Hypoperfusion. Int J Mol Sci 2020; 21:ijms21062176. [PMID: 32245271 PMCID: PMC7139598 DOI: 10.3390/ijms21062176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 01/10/2023] Open
Abstract
The pathophysiology of vascular cognitive impairment (VCI) is associated with chronic cerebral hypoperfusion (CCH). Increased high-mobility group box protein 1 (HMGB1), a nonhistone protein involved in injury and inflammation, has been established in the acute phase of CCH. However, the role of HMGB1 in the chronic phase of CCH remains unclear. We developed a novel animal model of CCH with a modified bilateral common carotid artery occlusion (BCCAO) in C57BL/6 mice. Cerebral blood flow (CBF) reduction, the expression of HMGB1 and its proinflammatory cytokines (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β, and IL-6), and brain pathology were assessed. Furthermore, we evaluated the effect of HMGB1 suppression through bilateral intrahippocampus injection with the CRISPR/Cas9 knockout plasmid. Three months after CCH induction, CBF decreased to 30–50% with significant cognitive decline in BCCAO mice. The 7T-aMRI showed hippocampal atrophy, but amyloid positron imaging tomography showed nonsignificant amyloid-beta accumulation. Increased levels of HMGB1, TNF-α, IL-1β, and IL-6 were observed 3 months after BCCAO. HMGB1 suppression with CRISPR/Cas9 knockout plasmid restored TNF-α, IL-1β, and IL-6 and attenuated hippocampal atrophy and cognitive decline. We believe that HMGB1 plays a pivotal role in CCH-induced VCI pathophysiology and can be a potential therapeutic target of VCI.
Collapse
|
42
|
Qian B, Huang H, Cheng M, Qin T, Chen T, Zhao J. Mechanism of HMGB1-RAGE in Kawasaki disease with coronary artery injury. Eur J Med Res 2020; 25:8. [PMID: 32183905 PMCID: PMC7079349 DOI: 10.1186/s40001-020-00406-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/18/2020] [Indexed: 01/11/2023] Open
Abstract
Background Kawasaki disease (KD) is a common, yet unknown etiology disease in Asian countries, which causes acquired heart disease in childhood. It is characterized by an inflammatory acute febrile vasculitis of medium-sized arteries, particularly the coronary arteries. High-mobility group box-1 protein (HMGB1) is a non-histone chromosomal-binding protein present in the nucleus of eukaryotic cells, which contains 215 amino acid residues. Although the cellular signal transduction mechanisms of HMGB1 are currently unclear, the important role of the receptor for advanced glycation end-products (RAGE), the main receptor for HMGB1 has been reported in detail. The purpose of our study was to verify the mechanism and clinical significance of HMGB1-RAGE in coronary artery injury of Kawasaki disease. Methods 52 blood samples of patients in KD were collected, and the coronary artery Z score was calculated according to the echocardiographic results. The Z score ≥ 2.0 was classified as coronary artery lesions (CAL); otherwise, it was no-coronary artery lesions (NCAL). In addition, the fever group and control group were set. Among them, the fever group were children with fever due to respiratory tract infection at the same time period as KD (heat peak ≥ 38.5 ℃). The normal group were children at a routine physical examination in the outpatient clinic of Nantong University and the physical examination center of the child care insurance, and there were no infectious diseases and heart diseases. The serum levels of HMGB1, RAGE, and NF-κB in each group were detected by ELISA. The animal model of KD was established using the New Zealand young rabbits. We used RT-qPCR/H&E staining/immunohistochemistry/ELISA and western blot to detect the level of HMGB1/RAGE and NF-κB. Results In this study, we found that the HMGB1/RAGE/NF-κB axis was elevated in the serum of children with KD. In addition, an animal model of KD was subsequently prepared to examine the pathological changes of the coronary arteries. We found that the serum levels of HMGB1/RAGE/NF-κB in rabbits with KD were significantly higher than those of the control group. Moreover, the lumen diameter of the coronary artery was slightly enlarged, and the wall of the tube became thinner and deformed. In addition, the HMGB1/RAGE/NF-κB levels in the coronary artery were higher in the rabbits with KD in the acute phase. Conclusions On the whole, the findings of this study demonstrate that the expression of HMGB1/RAGE/NF-κB is altered at different stages of KD, suggesting that the HMGB1/RAGE/NF-κB signaling pathway plays an important role in vascular injury in KD. The results of this study may have important implications for the early warning of coronary artery lesions in KD.
Collapse
Affiliation(s)
- Biying Qian
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China.,Department of Emergency Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, 200062, People's Republic of China
| | - Hua Huang
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Mingye Cheng
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tingting Qin
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tao Chen
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jianmei Zhao
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
43
|
Ahn JG, Bae Y, Shin D, Nam J, Kim KY, Kim DS. HMGB1 gene polymorphism is associated with coronary artery lesions and intravenous immunoglobulin resistance in Kawasaki disease. Rheumatology (Oxford) 2020; 58:770-775. [PMID: 30535242 DOI: 10.1093/rheumatology/key356] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/25/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Kawasaki disease (KD) is an acute systemic vasculitis of unknown aetiology that affects infants and young children. Recent reports of elevated serum high mobility group box 1 (HMGB1) level during the acute phase of KD and its relationship to poor response to IVIG treatment suggest a possible association of HMGB1 polymorphisms with KD. We investigated the association between the polymorphisms of the HMGB1 gene, KD susceptibility, coronary artery lesions, and KD response to IVIG treatment. METHODS Whole genome sequencing of the HMGB1 gene was performed to identify causative variants. Two tagging single nucleotide polymorphisms of the HMGB1 gene were selected using linkage disequilibrium analysis. The tagging single nucleotide polymorphisms were genotyped using the TaqMan Allelic Discrimination assay in a total of 468 subjects (265 KD patients and 203 controls). RESULTS The HMGB1 single nucleotide polymorphisms were not associated with KD susceptibility. However, in KD patients, there was a significant association of rs1412125 with coronary artery lesions formation in the recessive model (GG vs AA + GA: odds ratio = 4.98, 95% CI = 1.69-14.66, P = 0.005). In addition, rs1412125 was associated with IVIG resistance in the recessive (GG vs AA + GA: odds ratio = 4.11, 95% CI = 1.38-12.23, P = 0.017) and allelic models (G vs A: odds ratio = 1.80, 95% CI = 1.06-3.06, P = 0.027). CONCLUSION The rs1412125 in HMGB1 might be a risk factor for the development of coronary artery lesions and IVIG resistance in KD patients.
Collapse
Affiliation(s)
- Jong Gyun Ahn
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine
| | - Yoonsun Bae
- Department of Microbiology, College of Medicine, The Catholic University of Korea.,Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea.,Research and Development Center, Medizen Humancare Incorporated, Seoul, Republic of Korea
| | - Dongjik Shin
- Research and Development Center, Medizen Humancare Incorporated, Seoul, Republic of Korea
| | - Jiho Nam
- Research and Development Center, Medizen Humancare Incorporated, Seoul, Republic of Korea
| | - Kyu Yeun Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine
| | - Dong Soo Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine
| |
Collapse
|
44
|
Gao W, Cui H, Li Q, Zhong H, Yu J, Li P, He X. Upregulation of microRNA-218 reduces cardiac microvascular endothelial cells injury induced by coronary artery disease through the inhibition of HMGB1. J Cell Physiol 2019; 235:3079-3095. [PMID: 31566720 DOI: 10.1002/jcp.29214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
This study is performed to examine the impacts of microRNA-218 (miR-218) on cardiac microvascular endothelial cells (CMECs) injury induced by coronary artery disease (CAD). Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was applied for detecting miR-218 expression in serum of patients with CAD and healthy controls, and the correlation between miR-218 expression and the clinical indexes such as creatine kinase, creatine kinase-myocardial band, cardiac troponin I, and coronary Gensini score was analyzed. CMECs were coincubated with homocysteine for 24 hr for CMECs injury, and the cells were transfected with miR-218 mimics or miR-218 inhibitors. Besides, we used oxidized low density lipoprotein as an inducer to incubate with CMECs for 24 hr, and the model of CMECs injury was established to be transfected with miR-218 mimics. RT-qPCR and western blot analysis were used to detect miR-218 and HMGB1 expression in CMECs. A series of experiments were used to determine cell proliferation, apoptosis, migration, and angiogenesis ability of CMECs. Vascular endothelial growth factor expression and inflammatory factor contents were measured. The obtained results suggested that miR-218 expression in peripheral blood of patients with CAD descended substantially versus that of healthy controls. Low miR-218 expression was found in CAD-induced CMECs injury. Overexpressed miR-218 promoted the proliferation, migration, angiogenesis ability, induced apoptosis, and alleviated the inflammatory injury of CAD-induced CMECs. miR-218 may negatively regulate the expression of HMGB1 in CAD. This study demonstrates that upregulation of miR-218 reduces CMECs injury induced by CAD through the inhibition of HMGB1.
Collapse
Affiliation(s)
- Wenhui Gao
- Department of Cardiovascular, Hangzhouwan Hospital, Ningbo, Zhejiang Province, China
| | - Hanbin Cui
- Department of Cardiovascular, No. 1 Hospital, Ningbo, Zhejiang Province, China
| | - Qianjun Li
- Department of Respiratory, No. 2 Hospital Yinzhou County, Ningbo, Zhejiang Province, China
| | - Hai Zhong
- Department of Thoracic Surgery, No. 2 Hospital Yinzhou County, Ningbo, Zhejiang Province, China
| | - Jingjing Yu
- Department of Pathology, No. 2 Hospital Yinzhou County, Ningbo, Zhejiang Province, China
| | - Ping Li
- Department of Anesthesiology, No. 2 Hospital Yinzhou County, Ningbo, Zhejiang Province, China
| | - Xijie He
- Department of Cardiology, No. 2 Hospital Yinzhou County, Ningbo, Zhejiang Province, China
| |
Collapse
|
45
|
High Mobility Group Box 1 Mediates TMAO-Induced Endothelial Dysfunction. Int J Mol Sci 2019; 20:ijms20143570. [PMID: 31336567 PMCID: PMC6678463 DOI: 10.3390/ijms20143570] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
The intestinal microbe-derived metabolite trimethylamine N-oxide (TMAO) is implicated in the pathogenesis of cardiovascular diseases (CVDs). The molecular mechanisms of how TMAO induces atherosclerosis and CVDs’ progression are still unclear. In this regard, high-mobility group box protein 1 (HMGB1), an inflammatory mediator, has been reported to disrupt cell–cell junctions, resulting in vascular endothelial hyper permeability leading to endothelial dysfunction. The present study tested whether TMAO associated endothelial dysfunction results via HMGB1 activation. Biochemical and RT-PCR analysis showed that TMAO increased the HMGB1 expression in a dose-dependent manner in endothelial cells. However, prior treatment with glycyrrhizin, an HMGB1 binder, abolished the TMAO-induced HMGB1 production in endothelial cells. Furthermore, Western blot and immunofluorescent analysis showed significant decrease in the expression of cell–cell junction proteins ZO-2, Occludin, and VE-cadherin in TMAO treated endothelial cells compared with control cells. However, prior treatment with glycyrrhizin attenuated the TMAO-induced cell–cell junction proteins’ disruption. TMAO increased toll-like receptor 4 (TLR4) expression in endothelial cells. Inhibition of TLR4 expression by TLR4 siRNA protected the endothelial cells from TMAO associated tight junction protein disruption via HMGB1. In conclusion, our results demonstrate that HMGB1 is one of the important mediators of TMAO-induced endothelial dysfunction.
Collapse
|
46
|
Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 2019; 16:142. [PMID: 31291966 PMCID: PMC6617684 DOI: 10.1186/s12974-019-1516-2] [Citation(s) in RCA: 905] [Impact Index Per Article: 150.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
Stroke, the third leading cause of death and disability worldwide, is undergoing a change in perspective with the emergence of new ideas on neurodegeneration. The concept that stroke is a disorder solely of blood vessels has been expanded to include the effects of a detrimental interaction between glia, neurons, vascular cells, and matrix components, which is collectively referred to as the neurovascular unit. Following the acute stroke, the majority of which are ischemic, there is secondary neuroinflammation that both promotes further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. The proinflammatory signals from immune mediators rapidly activate resident cells and influence infiltration of a wide range of inflammatory cells (neutrophils, monocytes/macrophages, different subtypes of T cells, and other inflammatory cells) into the ischemic region exacerbating brain damage. In this review, we discuss how neuroinflammation has both beneficial as well as detrimental roles and recent therapeutic strategies to combat pathological responses. Here, we also focus on time-dependent entry of immune cells to the ischemic area and the impact of other pathological mediators, including oxidative stress, excitotoxicity, matrix metalloproteinases (MMPs), high-mobility group box 1 (HMGB1), arachidonic acid metabolites, mitogen-activated protein kinase (MAPK), and post-translational modifications that could potentially perpetuate ischemic brain damage after the acute injury. Understanding the time-dependent role of inflammatory factors could help in developing new diagnostic, prognostic, and therapeutic neuroprotective strategies for post-stroke inflammation.
Collapse
Affiliation(s)
- Richard L. Jayaraj
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Fakhreya Y. Jalal
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Gary A. Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| |
Collapse
|
47
|
Martinet W, Coornaert I, Puylaert P, De Meyer GRY. Macrophage Death as a Pharmacological Target in Atherosclerosis. Front Pharmacol 2019; 10:306. [PMID: 31019462 PMCID: PMC6458279 DOI: 10.3389/fphar.2019.00306] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder characterized by the gradual build-up of plaques within the vessel wall of middle-sized and large arteries. Over the past decades, treatment of atherosclerosis mainly focused on lowering lipid levels, which can be accomplished by the use of statins. However, some patients do not respond sufficiently to statin therapy and therefore still have a residual cardiovascular risk. This issue highlights the need for novel therapeutic strategies. As macrophages are implicated in all stages of atherosclerotic lesion development, they represent an important alternative drug target. A variety of anti-inflammatory strategies have recently emerged to treat or prevent atherosclerosis. Here, we review the canonical mechanisms of macrophage death and their impact on atherogenesis and plaque stability. Macrophage death is a prominent feature of advanced plaques and is a major contributor to necrotic core formation and plaque destabilization. Mechanisms of macrophage death in atherosclerosis include apoptosis, passive or accidental necrosis as well as secondary necrosis, a type of death that typically occurs when apoptotic cells are insufficiently cleared by neighboring cells via a phagocytic process termed efferocytosis. In addition, less-well characterized types of regulated necrosis in macrophages such as necroptosis, pyroptosis, ferroptosis, and parthanatos may occur in advanced plaques and are also discussed. Autophagy in plaque macrophages is an important survival pathway that protects against cell death, yet massive stimulation of autophagy promotes another type of death, usually referred to as autosis. Multiple lines of evidence indicate that a better insight into the different mechanisms of macrophage death, and how they mutually interact, will provide novel pharmacological strategies to resolve atherosclerosis and stabilize vulnerable, rupture-prone plaques.
Collapse
Affiliation(s)
- Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Isabelle Coornaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
48
|
Ding JW, Luo CY, Wang XA, Zhou T, Zheng XX, Zhang ZQ, Yu B, Zhang J, Tong XH. Glycyrrhizin, a High-Mobility Group Box 1 Inhibitor, Improves Lipid Metabolism and Suppresses Vascular Inflammation in Apolipoprotein E Knockout Mice. J Vasc Res 2019; 55:365-377. [DOI: 10.1159/000495310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022] Open
|
49
|
Gawaz M, Borst O. The Role of Platelets in Atherothrombosis. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Lijuan S, Shu L, Yonghua Z, Qingmin X, Chungang Z, Lan L. Effect of Shenqi Yangxin decoction on high mobility group box 1 and inflammatory signal pathway in a rat model of dilated cardiomyopathy. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30985-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|