1
|
Kim K, Han M, Lee D. InTiCAR: Network-based identification of significant inter-tissue communicators for autoimmune diseases. Comput Struct Biotechnol J 2025; 27:333-345. [PMID: 39897058 PMCID: PMC11782887 DOI: 10.1016/j.csbj.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
Inter-tissue communicators (ITCs) are intricate and essential aspects of our body, as they are the keepers of homeostatic equilibrium. It is no surprise that the dysregulation of the exchange between tissues are at the core of various disorders. Among such conditions, autoimmune diseases (AIDs) refer to a collection of pathological conditions where the miscommunication drives the immune system to mistakenly attack one's own body. Due to their myriad and diverse pathophysiologies, AIDs cannot be easily diagnosed or treated, and continuous efforts are required to seek for potential diagnostic markers or therapeutic targets. The identification of ITCs with significant involvement in the disease states is therefore crucial. Here, we present InTiCAR, Inter-Tissue Communicators for Autoimmune diseases by Random walk with restart, which is a network exploration-based analysis method that suggests disease-specific ITCs based on prior knowledge of disease genes, without the need for the external expression data. We first show that distinct ITC profile s can be acquired for various diseases by InTiCAR. We further illustrate that, for autoimmune diseases (AIDs) specifically, the disease-specific ITCs outperform disease genes in diagnosing patients using the UK Biobank plasma proteome dataset. Also, through CMap LINCS dataset, we find that high perturbation on the AIDs genes can be observed by the disease-specific ITCs. Our results provide and highlight unique perspectives on biological network analysis by focusing on the entities of extracellular communications.
Collapse
Affiliation(s)
- Kwansoo Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Manyoung Han
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
The 2014 ACR annual meeting: a bird’s eye view of autoimmunity in 2015. Autoimmun Rev 2015; 14:622-32. [DOI: 10.1016/j.autrev.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022]
|
3
|
Selmi C. Hot topics in autoimmune diseases: Perspectives from the 2013 Asian Congress of Autoimmunity. Autoimmun Rev 2014; 13:781-7. [DOI: 10.1016/j.autrev.2014.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 05/05/2014] [Indexed: 12/12/2022]
|
4
|
Maiti AK, Kim-Howard X, Motghare P, Pradhan V, Chua KH, Sun C, Arango-Guerrero MT, Ghosh K, Niewold TB, Harley JB, Anaya JM, Looger LL, Nath SK. Combined protein- and nucleic acid-level effects of rs1143679 (R77H), a lupus-predisposing variant within ITGAM. Hum Mol Genet 2014; 23:4161-76. [PMID: 24608226 PMCID: PMC4082363 DOI: 10.1093/hmg/ddu106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/31/2014] [Accepted: 03/04/2014] [Indexed: 12/21/2022] Open
Abstract
Integrin alpha M (ITGAM; CD11b) is a component of the macrophage-1 antigen complex, which mediates leukocyte adhesion, migration and phagocytosis as part of the immune system. We previously identified a missense polymorphism, rs1143679 (R77H), strongly associated with systemic lupus erythematosus (SLE). However, the molecular mechanisms of this variant are incompletely understood. A meta-analysis of published and novel data on 28 439 individuals with European, African, Hispanic and Asian ancestries reinforces genetic association between rs1143679 and SLE [Pmeta = 3.60 × 10(-90), odds ratio (OR) = 1.76]. Since rs1143679 is in the most active region of chromatin regulation and transcription factor binding in ITGAM, we quantitated ITGAM RNA and surface protein levels in monocytes from patients with each rs1143679 genotype. We observed that transcript levels significantly decreased for the risk allele ('A') relative to the non-risk allele ('G'), in a dose-dependent fashion: ('AA' < 'AG' < 'GG'). CD11b protein levels in patients' monocytes were directly correlated with RNA levels. Strikingly, heterozygous individuals express much lower (average 10- to 15-fold reduction) amounts of the 'A' transcript than 'G' transcript. We found that the non-risk sequence surrounding rs1143679 exhibits transcriptional enhancer activity in vivo and binds to Ku70/80, NFKB1 and EBF1 in vitro, functions that are significantly reduced with the risk allele. Mutant CD11b protein shows significantly reduced binding to fibrinogen and vitronectin, relative to non-risk, both in purified protein and in cellular models. This two-pronged contribution (nucleic acid- and protein-level) of the rs1143679 risk allele to decreasing ITGAM activity provides insight into the molecular mechanisms of its potent association with SLE.
Collapse
MESH Headings
- Alleles
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- CD11b Antigen/genetics
- CD11b Antigen/metabolism
- Chromatin/metabolism
- Chromatin/pathology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Fibrinogen/genetics
- Fibrinogen/metabolism
- Gene Expression Regulation
- Gene Frequency
- Genetic Predisposition to Disease
- Humans
- Ku Autoantigen
- Lupus Erythematosus, Systemic/ethnology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Male
- Monocytes/metabolism
- Monocytes/pathology
- NF-kappa B p50 Subunit/genetics
- NF-kappa B p50 Subunit/metabolism
- Odds Ratio
- Polymorphism, Genetic
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Racial Groups
- Risk
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Vitronectin/genetics
- Vitronectin/metabolism
Collapse
Affiliation(s)
- Amit K Maiti
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xana Kim-Howard
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Prasenjeet Motghare
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Kek Heng Chua
- Department of Biomedical Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Celi Sun
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - María Teresa Arango-Guerrero
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Timothy B Niewold
- Division of Rheumatology and Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - John B Harley
- Cincinnati Children's Hospital Medical Center and the US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Juan-Manual Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Loren L Looger
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA, USA
| | - Swapan K Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
5
|
A pharmacogenetic study of ABCB1 polymorphisms and cyclosporine treatment response in patients with psoriasis in the Greek population. THE PHARMACOGENOMICS JOURNAL 2014; 14:523-5. [DOI: 10.1038/tpj.2014.23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/22/2014] [Accepted: 04/15/2014] [Indexed: 11/08/2022]
|
6
|
Safari-Alighiarloo N, Taghizadeh M, Rezaei-Tavirani M, Goliaei B, Peyvandi AA. Protein-protein interaction networks (PPI) and complex diseases. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2014; 7:17-31. [PMID: 25436094 PMCID: PMC4017556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 12/23/2013] [Indexed: 11/16/2022]
Abstract
The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network.
Collapse
Affiliation(s)
- Nahid Safari-Alighiarloo
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadeh
- Bioinformatics Department, Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Goliaei
- Bioinformatics Department, Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
| | - Ali Asghar Peyvandi
- Hearing Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Wildner G, Kaufmann U. What causes relapses of autoimmune diseases? The etiological role of autoreactive T cells. Autoimmun Rev 2013; 12:1070-5. [DOI: 10.1016/j.autrev.2013.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
|