1
|
Arneth B. Genes, Gene Loci, and Their Impacts on the Immune System in the Development of Multiple Sclerosis: A Systematic Review. Int J Mol Sci 2024; 25:12906. [PMID: 39684620 DOI: 10.3390/ijms252312906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Multiple sclerosis (MS) is a condition that is characterized by damage to the central nervous system (CNS) that causes patients to experience cognitive and physical difficulties. Although the disease has a complex etiology that involves genetic and environmental factors, little is known about the role of genes and gene loci in its development. Aims: This study aimed to investigate the effects of genes and gene loci on the immune system during the development of MS. We aimed to identify the main genes and gene loci that play roles in MS pathogenesis and the implications for the future development of clinical treatment approaches. A systematic review of articles published over the last decade was conducted. This review focused on studies about the genetic and epigenetic mechanisms underlying MS onset and progression. Genome-wide association studies (GWASs) as well as papers describing the role of the immune system in disease development were prioritized. Key genetic loci and immune system-related genes, such as HLA class II genes, are associated with MS susceptibility. Studies have also shown that epigenetic modifications, such as DNA methylation, influence disease progression via the immune system.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
| |
Collapse
|
2
|
Kinsey N, Belanger JM, Oberbauer AM. Differential Gene Expression Associated with Idiopathic Epilepsy in Belgian Shepherd Dogs. Genes (Basel) 2024; 15:1474. [PMID: 39596674 PMCID: PMC11593353 DOI: 10.3390/genes15111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/09/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Idiopathic epilepsy (IE) disproportionately affects Belgian shepherd dogs and although genomic risk markers have been identified previously in the breed, causative variants have not been described. METHODS The current study analyzed differences in whole blood RNA expression associated with IE and with a previously identified IE risk haplotype on canine chromosome (CFA) 14 using a transcriptomics RNA-seq approach. RESULTS MFSD2A and a likely pseudogene of RPL19, both of which are genes implicated in seizure activity, were upregulated in dogs with IE. Genes in the interferon signaling pathway were downregulated in Belgian shepherds with IE. The CFA14 risk haplotype was associated with upregulation of CLIC1, ACE2, and PIGN and downregulation of EPDR1, all known to be involved with epilepsy or the Wnt/β-catenin signaling pathway. CONCLUSIONS These results highlight the value of assessing gene expression in canine IE research to uncover genomic contributory factors.
Collapse
Affiliation(s)
| | | | - Anita M. Oberbauer
- Department of Animal Science, University of California, Davis, CA 95616, USA; (N.K.); (J.M.B.)
| |
Collapse
|
3
|
Torres Iglesias G, López-Molina M, Botella L, Laso-García F, Chamorro B, Fernández-Fournier M, Puertas I, Bravo SB, Alonso-López E, Díez-Tejedor E, Gutiérrez-Fernández M, Otero-Ortega L. Differential Protein Expression in Extracellular Vesicles Defines Treatment Responders and Non-Responders in Multiple Sclerosis. Int J Mol Sci 2024; 25:10761. [PMID: 39409091 PMCID: PMC11477160 DOI: 10.3390/ijms251910761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Multiple sclerosis (MS) remains the leading cause of neurological disability among young adults worldwide, underscoring the urgent need to define the best therapeutic strategy. Recent advances in proteomics have deepened our understanding of treatment mechanisms and revealed promising biomarkers for predicting therapeutic outcomes. This study focuses on the identification of a protein profile of circulating extracellular vesicles (EVs) derived from neurons, oligodendrocytes, and B and T cells able to differentiate treatment responders and non-responders in 80 patients with MS. In the patients who responded to treatment, T cell-derived EVs were enriched in LV151, a protein involved in the promotion of anti-inflammatory cytokines, whereas Bcell-derived EVs showed elevated PSMD6 and PTPRC, related to immunoproteasome function. Oligodendrocyte- and neuron-derived EVs showed upregulated CO6A1 and COEA1, involved in extracellular matrix reorganisation, as well as LAMA5, NonO, SPNT, and NCAM, which are critical for brain repair. In contrast, non-responders showed higher levels of PSMD7 and PRS10 from B cell-derived EVs, associated with DNA damage, and increased levels of PERM and PERL from T cell-derived EVs, linked to nuclear factor kappa B activation and drug-resistant proteins such as HS90A and RASK. These findings highlight a distinct panel of proteins in EVs that could serve as an early indicator of treatment efficacy in MS.
Collapse
Affiliation(s)
- Gabriel Torres Iglesias
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - MariPaz López-Molina
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Lucía Botella
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Beatriz Chamorro
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Mireya Fernández-Fournier
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Inmaculada Puertas
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Susana B. Bravo
- Proteomics Unit, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Elisa Alonso-López
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| |
Collapse
|
4
|
Reder AT, Goel A, Garcia T, Feng X. Alternative Splicing of RNA Is Excessive in Multiple Sclerosis and Not Linked to Gene Expression Levels: Dysregulation Is Corrected by IFN-β. J Interferon Cytokine Res 2024; 44:355-371. [PMID: 38695855 DOI: 10.1089/jir.2024.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Affiliation(s)
- Anthony T Reder
- Department of Neurology MC-2030, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Aika Goel
- Department of Neurology MC-2030, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Tzintzuni Garcia
- Center for Translational Data Sciences, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Xuan Feng
- Department of Neurology MC-2030, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| |
Collapse
|
5
|
Dhib-Jalbut S. Alternative Splicing in Multiple Sclerosis: A Promising Biomarker of Therapeutic Response to Interferon-β. J Interferon Cytokine Res 2024; 44:335-336. [PMID: 38800963 DOI: 10.1089/jir.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Affiliation(s)
- Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers Biomedical and Health Sciences, New Brunswick, New Jersey, USA
| |
Collapse
|
6
|
Behr M, Kumbier K, Cordova-Palomera A, Aguirre M, Ronen O, Ye C, Ashley E, Butte AJ, Arnaout R, Brown B, Priest J, Yu B. Learning epistatic polygenic phenotypes with Boolean interactions. PLoS One 2024; 19:e0298906. [PMID: 38625909 PMCID: PMC11020961 DOI: 10.1371/journal.pone.0298906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/31/2024] [Indexed: 04/18/2024] Open
Abstract
Detecting epistatic drivers of human phenotypes is a considerable challenge. Traditional approaches use regression to sequentially test multiplicative interaction terms involving pairs of genetic variants. For higher-order interactions and genome-wide large-scale data, this strategy is computationally intractable. Moreover, multiplicative terms used in regression modeling may not capture the form of biological interactions. Building on the Predictability, Computability, Stability (PCS) framework, we introduce the epiTree pipeline to extract higher-order interactions from genomic data using tree-based models. The epiTree pipeline first selects a set of variants derived from tissue-specific estimates of gene expression. Next, it uses iterative random forests (iRF) to search training data for candidate Boolean interactions (pairwise and higher-order). We derive significance tests for interactions, based on a stabilized likelihood ratio test, by simulating Boolean tree-structured null (no epistasis) and alternative (epistasis) distributions on hold-out test data. Finally, our pipeline computes PCS epistasis p-values that probabilisticly quantify improvement in prediction accuracy via bootstrap sampling on the test set. We validate the epiTree pipeline in two case studies using data from the UK Biobank: predicting red hair and multiple sclerosis (MS). In the case of predicting red hair, epiTree recovers known epistatic interactions surrounding MC1R and novel interactions, representing non-linearities not captured by logistic regression models. In the case of predicting MS, a more complex phenotype than red hair, epiTree rankings prioritize novel interactions surrounding HLA-DRB1, a variant previously associated with MS in several populations. Taken together, these results highlight the potential for epiTree rankings to help reduce the design space for follow up experiments.
Collapse
Affiliation(s)
- Merle Behr
- Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Karl Kumbier
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
| | | | - Matthew Aguirre
- Department of Pediatrics, Stanford Medicine, Stanford, CA, United States of America
- Department of Biomedical Data Science, Stanford Medicine, Stanford, CA, United States of America
| | - Omer Ronen
- Department of Statistics, University of California at Berkeley, Berkeley, CA, United States of America
| | - Chengzhong Ye
- Department of Statistics, University of California at Berkeley, Berkeley, CA, United States of America
| | - Euan Ashley
- Division of Cardiovascular Medicine, Stanford Medicine, Stanford, CA, United States of America
| | - Atul J. Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | - Rima Arnaout
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States of America
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Ben Brown
- Department of Statistics, University of California at Berkeley, Berkeley, CA, United States of America
- Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - James Priest
- Department of Pediatrics, Stanford Medicine, Stanford, CA, United States of America
| | - Bin Yu
- Department of Statistics, University of California at Berkeley, Berkeley, CA, United States of America
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California at Berkeley, Berkeley, CA, United States of America
| |
Collapse
|
7
|
Salapa HE, Thibault PA, Libner CD, Ding Y, Clarke JPWE, Denomy C, Hutchinson C, Abidullah HM, Austin Hammond S, Pastushok L, Vizeacoumar FS, Levin MC. hnRNP A1 dysfunction alters RNA splicing and drives neurodegeneration in multiple sclerosis (MS). Nat Commun 2024; 15:356. [PMID: 38191621 PMCID: PMC10774274 DOI: 10.1038/s41467-023-44658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
Neurodegeneration is the primary driver of disease progression in multiple sclerosis (MS) resulting in permanent disability, creating an urgent need to discover its underlying mechanisms. Herein, we establish that dysfunction of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) results in differential of binding to RNA targets causing alternative RNA splicing, which contributes to neurodegeneration in MS and its models. Using RNAseq of MS brains, we discovered differential expression and aberrant splicing of hnRNP A1 target RNAs involved in neuronal function and RNA homeostasis. We confirmed this in vivo in experimental autoimmune encephalomyelitis employing CLIPseq specific for hnRNP A1, where hnRNP A1 differentially binds and regulates RNA, including aberrantly spliced targets identified in human samples. Additionally, dysfunctional hnRNP A1 expression in neurons caused neurite loss and identical changes in splicing, corroborating hnRNP A1 dysfunction as a cause of neurodegeneration. Collectively, these data indicate hnRNP A1 dysfunction causes altered neuronal RNA splicing, resulting in neurodegeneration in MS.
Collapse
Affiliation(s)
- Hannah E Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Patricia A Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Cole D Libner
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Yulian Ding
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
- Division of Biomedical Engineering, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| | - Joseph-Patrick W E Clarke
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Connor Denomy
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Catherine Hutchinson
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Hashim M Abidullah
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - S Austin Hammond
- Next-Generation Sequencing Facility, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Landon Pastushok
- Advanced Diagnostics Research Laboratory, Department of Pathology and Lab Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Michael C Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada.
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada.
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada.
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
8
|
Tomečková V, Tkáčiková S, Talian I, Fabriciová G, Hovan A, Kondrakhova D, Zakutanská K, Skirková M, Komanický V, Tomašovičová N. Experimental Analysis of Tear Fluid and Its Processing for the Diagnosis of Multiple Sclerosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115251. [PMID: 37299978 DOI: 10.3390/s23115251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
A pilot analysis of the tear fluid of patients with multiple sclerosis (MS) collected by glass microcapillary was performed using various experimental methods: liquid chromatography-mass spectrometry, Raman spectroscopy, infrared spectroscopy, and atomic-force microscopy. Infrared spectroscopy found no significant difference between the tear fluid of MS patients and the control spectra; all three significant peaks were located at around the same positions. Raman analysis showed differences between the spectra of the tear fluid of MS patients and the spectra of healthy subjects, which indicated a decrease in tryptophan and phenylalanine content and changes in the relative contributions of the secondary structures of the polypeptide chains of tear proteins. Atomic-force microscopy exhibited a surface fern-shaped dendrite morphology of the tear fluid of patients with MS, with less roughness on both oriented silicon (100) and glass substrates compared to the tear fluid of control subjects. The results of liquid chromatography-mass spectrometry showed downregulation of glycosphingolipid metabolism, sphingolipid metabolism, and lipid metabolism. Proteomic analysis identified upregulated proteins in the tear fluid of patients with MS such as cystatine, phospholipid transfer protein, transcobalamin-1, immunoglobulin lambda variable 1-47, lactoperoxidase, and ferroptosis suppressor protein 1; and downregulated proteins such as haptoglobin, prosaposin, cytoskeletal keratin type I pre-mRNA-processing factor 17, neutrophil gelatinase-associated lipocalin, and phospholipase A2. This study showed that the tear proteome in patients with MS is modified and can reflect inflammation. Tear fluid is not a commonly used biological material in clinico-biochemical laboratories. Experimental proteomics has the potential to become a promising contemporary tool for personalized medicine, and it might be applied in clinical practice by providing a detailed analysis of the tear-fluid proteomic profile of patients with MS.
Collapse
Affiliation(s)
- Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Soňa Tkáčiková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Gabriela Fabriciová
- Department of Biophysics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Andrej Hovan
- Department of Biophysics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Daria Kondrakhova
- Department of Condensed Matter Physics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Katarína Zakutanská
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Miriama Skirková
- Department of Opthalmology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Vladimír Komanický
- Department of Condensed Matter Physics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Natália Tomašovičová
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| |
Collapse
|
9
|
Cardamone G, Paraboschi EM, Soldà G, Liberatore G, Rimoldi V, Cibella J, Airi F, Tisato V, Cantoni C, Gallia F, Gemmati D, Piccio L, Duga S, Nobile-Orazio E, Asselta R. The circular RNA landscape in multiple sclerosis: Disease-specific associated variants and exon methylation shape circular RNA expression profile. Mult Scler Relat Disord 2023; 69:104426. [PMID: 36446168 DOI: 10.1016/j.msard.2022.104426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) are a class of non-coding RNAs increasingly emerging as crucial actors in the pathogenesis of human diseases, including autoimmune and neurological disorders as multiple sclerosis (MS). Despite several efforts, the mechanisms regulating circRNAs expression are still largely unknown and the circRNA profile and regulation in MS-relevant cell models has not been completely investigated. In this work, we aimed at exploring the global landscape of circRNA expression in MS patients, also evaluating a possible correlation with their genetic and epigenetic background. METHODS We performed RNA-seq experiments on circRNA-enriched samples, derived from peripheral blood mononuclear cells (PBMCs) of 10 MS patients and 10 matched controls and performed differential circRNA expression. The genetic background was evaluated using array genotyping, and an expression quantitative trait loci (eQTL) analysis was carried out. RESULTS Expression analysis revealed 166 differentially expressed circRNAs in MS patients, 125 of which are downregulated. One of the top dysregulated circRNAs, hsa_circ_0007990, derives from the PGAP3 gene, encoding a protein relevant for the control of autoimmune responses. The downregulation of this circRNA was confirmed in two independent replication cohorts, suggesting its implementation as a possible RNA-based biomarker. The eQTL analysis evidenced a significant association between 89 MS-associated loci and the expression of at least one circRNA, suggesting that MS-associated variants could impact on disease pathogenesis by altering circRNA profiles. Finally, we found a significant correlation between exon methylation and circRNA expression levels, supporting the hypothesis that epigenetic features may play an important role in the definition of the cell circRNA pool. CONCLUSION We described the circRNA expression profile of PBMCs in MS patients, suggesting that MS-associated variants may tune the expression levels of circRNAs acting as "circ-QTLs", and proposing a role for exon-based DNA methylation in regulating circRNA expression.
Collapse
Affiliation(s)
- Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy.
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giuseppe Liberatore
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Javier Cibella
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Federica Airi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, Italy
| | - Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Francesca Gallia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, Italy; Center Haemostasis & Thrombosis, University of Ferrara, Italy
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA; Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Eduardo Nobile-Orazio
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Milan University, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| |
Collapse
|
10
|
Putscher E, Hecker M, Fitzner B, Boxberger N, Schwartz M, Koczan D, Lorenz P, Zettl UK. Genetic risk variants for multiple sclerosis are linked to differences in alternative pre-mRNA splicing. Front Immunol 2022; 13:931831. [PMID: 36405756 PMCID: PMC9670805 DOI: 10.3389/fimmu.2022.931831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/12/2022] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system to which a genetic predisposition contributes. Over 200 genetic regions have been associated with increased disease risk, but the disease-causing variants and their functional impact at the molecular level are mostly poorly defined. We hypothesized that single-nucleotide polymorphisms (SNPs) have an impact on pre-mRNA splicing in MS. METHODS Our study focused on 10 bioinformatically prioritized SNP-gene pairs, in which the SNP has a high potential to alter alternative splicing events (ASEs). We tested for differential gene expression and differential alternative splicing in B cells from MS patients and healthy controls. We further examined the impact of the SNP genotypes on ASEs and on splice isoform expression levels. Novel genotype-dependent effects on splicing were verified with splicing reporter minigene assays. RESULTS We were able to confirm previously described findings regarding the relation of MS-associated SNPs with the ASEs of the pre-mRNAs from GSDMB and SP140. We also observed an increased IL7R exon 6 skipping when comparing relapsing and progressive MS patients to healthy subjects. Moreover, we found evidence that the MS risk alleles of the SNPs rs3851808 (EFCAB13), rs1131123 (HLA-C), rs10783847 (TSFM), and rs2014886 (TSFM) may contribute to a differential splicing pattern. Of particular interest is the genotype-dependent exon skipping of TSFM due to the SNP rs2014886. The minor allele T creates a donor splice site, resulting in the expression of the exon 3 and 4 of a short TSFM transcript isoform, whereas in the presence of the MS risk allele C, this donor site is absent, and thus the short transcript isoform is not expressed. CONCLUSION In summary, we found that genetic variants from MS risk loci affect pre-mRNA splicing. Our findings substantiate the role of ASEs with respect to the genetics of MS. Further studies on how disease-causing genetic variants may modify the interactions between splicing regulatory sequence elements and RNA-binding proteins can help to deepen our understanding of the genetic susceptibility to MS.
Collapse
Affiliation(s)
- Elena Putscher
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Michael Hecker
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Brit Fitzner
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Nina Boxberger
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Margit Schwartz
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Dirk Koczan
- Rostock University Medical Center, Institute of Immunology, Rostock, Germany
| | - Peter Lorenz
- Rostock University Medical Center, Institute of Immunology, Rostock, Germany
| | - Uwe Klaus Zettl
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| |
Collapse
|
11
|
Zhang L, Abendroth F, Vázquez O. A Chemical Biology Perspective to Therapeutic Regulation of RNA Splicing in Spinal Muscular Atrophy (SMA). ACS Chem Biol 2022; 17:1293-1307. [PMID: 35639849 DOI: 10.1021/acschembio.2c00161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Manipulation of RNA splicing machinery has emerged as a drug modality. Here, we illustrate the potential of this novel paradigm to correct aberrant splicing events focused on the recent therapeutic advances in spinal muscular atrophy (SMA). SMA is an incurable neuromuscular disorder and at present the primary genetic cause of early infant death. This Review summarizes the exciting journey from the first reported SMA cases to the currently approved splicing-switching treatments, i.e., antisense oligonucleotides and small-molecule modifiers. We emphasize both chemical structures and molecular bases for recognition. We briefly discuss the advantages and disadvantages of these treatments and include the remaining challenges and future directions. Finally, we also predict that these success stories will contribute to further therapies for human diseases by RNA-splicing control.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Frank Abendroth
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Olalla Vázquez
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| |
Collapse
|
12
|
Alanazi IO, Alamery SF, Ebrahimie E, Mohammadi-Dehcheshmeh M. Splice-disrupt genomic variants in prostate cancer. Mol Biol Rep 2022; 49:4237-4246. [PMID: 35286517 PMCID: PMC9262760 DOI: 10.1007/s11033-022-07257-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022]
Abstract
Background Splice-disrupt genomic variants are one of the causes of cancer-causing errors in gene expression. Little is known about splice-disrupt genomic variants. Methods and results Here, pattern of splice-disrupt variants was investigated using 21,842,764 genomic variants in different types of prostate cancer. A particular attention was paid to genomic locations of splice-disrupt variants on target genes. HLA-A in prostate cancer, MSR1 in familial prostate cancer, and EGFR in both castration-resistant prostate cancer and metastatic castration-resistant had the highest allele frequencies of splice-disrupt variations. Some splice-disrupt variants, located on coding sequences of NCOR2, PTPRC, and CRP, were solely present in the advanced metastatic castration-resistant prostate cancer. High-risk splice-disrupt variants were identified based on computationally calculated Polymorphism Phenotyping (PolyPhen), Sorting Intolerant From Tolerant (SIFT), and Genomic Evolutionary Rate Profiling (GERP) + + scores as well as the recorded clinical significance in dbSNP database of NCBI. Functional annotation of damaging splice-disrupt variants highlighted important cancer-associated functions, including endocrine resistance, lipid metabolic process, steroid metabolic process, regulation of mitotic cell cycle, and regulation of metabolic process. This is the first study that profiles the splice-disrupt genomic variants and their target genes in prostate cancer. Literature mining based variant analysis highlighted the importance of rs1800716 variant, located on the CYP2D6 gene, involved in a range of important functions, such as RNA spicing, drug interaction, death, and urotoxicity. Conclusions This is the first study that profiles the splice-disrupt genomic variants and their target genes in different types of prostate cancer. Unravelling alternative splicing opens a new avenue towards the establishment of new diagnostic and prognostic markers for prostate cancer progression and metastasis. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07257-9.
Collapse
Affiliation(s)
- Ibrahim O. Alanazi
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Salman F. Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, VIC 3086 Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, 5371 Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - Manijeh Mohammadi-Dehcheshmeh
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, VIC 3086 Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, 5371 Australia
| |
Collapse
|
13
|
Aliaga-Gaspar P, Hurtado-Guerrero I, Ciano-Petersen NL, Urbaneja P, Brichette-Mieg I, Reyes V, Rodriguez-Bada JL, Alvarez-Lafuente R, Arroyo R, Quintana E, Ramió-Torrentà L, Alonso A, Leyva L, Fernández O, Oliver-Martos B. Soluble Receptor Isoform of IFN-Beta (sIFNAR2) in Multiple Sclerosis Patients and Their Association With the Clinical Response to IFN-Beta Treatment. Front Immunol 2021; 12:778204. [PMID: 34975865 PMCID: PMC8716373 DOI: 10.3389/fimmu.2021.778204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose Interferon beta receptor 2 subunit (IFNAR2) can be produced as a transmembrane protein, but also as a soluble form (sIFNAR2) generated by alternative splicing or proteolytic cleavage, which has both agonist and antagonist activities for IFN-β. However, its role regarding the clinical response to IFN-β for relapsing-remitting multiple sclerosis (RRMS) is unknown. We aim to evaluate the in vitro short-term effects and after 6 and 12 months of IFN-β therapy on sIFNAR2 production and their association with the clinical response in MS patients. Methods Ninety-four RRMS patients were included and evaluated at baseline, 6 and 12 months from treatment onset. A subset of 41 patients were classified as responders and non-responders to IFN-β therapy. sIFNAR2 serum levels were measured by ELISA. mRNA expression for IFNAR1, IFNAR2 splice variants, MxA and proteases were assessed by RT-PCR. The short-term effect was evaluated in PBMC from RRMS patients after IFN-β stimulation in vitro. Results Protein and mRNA levels of sIFNAR2 increased after IFN-β treatment. According to the clinical response, only non-responders increased sIFNAR2 significantly at both protein and mRNA levels. sIFNAR2 gene expression correlated with the transmembrane isoform expression and was 2.3-fold higher. While MxA gene expression increased significantly after treatment, IFNAR1 and IFNAR2 only slightly increased. After short-term IFN-β in vitro induction of PBMC, 6/7 patients increased the sIFNAR2 expression. Conclusions IFN-β administration induces the production of sIFNAR2 in RRMS and higher levels might be associated to the reduction of therapeutic response. Thus, levels of sIFNAR2 could be monitored to optimize an effective response to IFN-β therapy.
Collapse
Affiliation(s)
- Pablo Aliaga-Gaspar
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Isaac Hurtado-Guerrero
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Neuroinflammation Unit, Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, Copenhagen Biocentre, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas Lundahl Ciano-Petersen
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-Reca), Málaga, Spain
| | - Patricia Urbaneja
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-Reca), Málaga, Spain
| | - Isabel Brichette-Mieg
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Virginia Reyes
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-Reca), Málaga, Spain
| | - Jose Luis Rodriguez-Bada
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Roberto Alvarez-Lafuente
- Grupo de Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Rafael Arroyo
- Servicio de Neurología, Hospital Universitario Quirónsalud, Madrid, Spain
| | - Ester Quintana
- Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
- Servicio de Neurología, Hospital Universitari de Girona Doctor Josep Trueta, Girona, Spain
| | - Lluis Ramió-Torrentà
- Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
- Servicio de Neurología, Hospital Universitari de Girona Doctor Josep Trueta, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- Medical Sciences Department, University of Girona, Girona, Spain
| | - Ana Alonso
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-Reca), Málaga, Spain
| | - Laura Leyva
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Oscar Fernández
- Departmento de Farmacología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- *Correspondence: Begoña Oliver-Martos, ; Oscar Fernández,
| | - Begoña Oliver-Martos
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-Reca), Málaga, Spain
- Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
- Departamento de Biología Celular, Genética y Fisiología, Área de Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- *Correspondence: Begoña Oliver-Martos, ; Oscar Fernández,
| |
Collapse
|
14
|
Louadi Z, Elkjaer ML, Klug M, Lio CT, Fenn A, Illes Z, Bongiovanni D, Baumbach J, Kacprowski T, List M, Tsoy O. Functional enrichment of alternative splicing events with NEASE reveals insights into tissue identity and diseases. Genome Biol 2021; 22:327. [PMID: 34857024 PMCID: PMC8638120 DOI: 10.1186/s13059-021-02538-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing (AS) is an important aspect of gene regulation. Nevertheless, its role in molecular processes and pathobiology is far from understood. A roadblock is that tools for the functional analysis of AS-set events are lacking. To mitigate this, we developed NEASE, a tool integrating pathways with structural annotations of protein-protein interactions to functionally characterize AS events. We show in four application cases how NEASE can identify pathways contributing to tissue identity and cell type development, and how it highlights splicing-related biomarkers. With a unique view on AS, NEASE generates unique and meaningful biological insights complementary to classical pathways analysis.
Collapse
Affiliation(s)
- Zakaria Louadi
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Melissa Klug
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Chit Tong Lio
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Amit Fenn
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dario Bongiovanni
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center IRCCS and Humanitas University, Rozzano, Milan, Italy
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
- Institute of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5000, Odense, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany.
| |
Collapse
|
15
|
Hauer L, Perneczky J, Sellner J. A global view of comorbidity in multiple sclerosis: a systematic review with a focus on regional differences, methodology, and clinical implications. J Neurol 2021; 268:4066-4077. [PMID: 32719975 PMCID: PMC8505322 DOI: 10.1007/s00415-020-10107-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system which is associated with numerous comorbidities. These include cardiovascular disease, psychiatric and neurologic disturbances, restless leg syndrome, migraine, cancer, autoimmune diseases, and metabolic disorders. Comorbid disease is an important consideration for clinicians treating patients with MS; early presentation of comorbidities can obscure or delay MS diagnosis, as well as significantly impacting the disease course. Improved understanding of comorbidities and their emergence in MS populations is important for improving the quality of life and optimizing treatment for patients. Therefore, we evaluated published studies reporting epidemiologic data on comorbidities and their associated impact on disease progression in patients with MS (PwMS). The prevalence of neurologic, cardiovascular, metabolic, and autoimmune comorbidities was elevated in PwMS in general, and furthermore, this adversely affected a broad range of outcomes. Compared with PwMS, cancer rates in people without MS or the general population were lower, which should prompt further studies into the mechanisms of both diseases. Studies were under-represented in many regions owing to the latitudinal gradient of MS and possible underfunding of studies.
Collapse
Affiliation(s)
- Larissa Hauer
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Julian Perneczky
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Liechtensteinstrase 67, 2130, Mistelbach, Austria
| | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Liechtensteinstrase 67, 2130, Mistelbach, Austria.
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
16
|
Putscher E, Hecker M, Fitzner B, Lorenz P, Zettl UK. Principles and Practical Considerations for the Analysis of Disease-Associated Alternative Splicing Events Using the Gateway Cloning-Based Minigene Vectors pDESTsplice and pSpliceExpress. Int J Mol Sci 2021; 22:5154. [PMID: 34068052 PMCID: PMC8152502 DOI: 10.3390/ijms22105154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
Splicing is an important RNA processing step. Genetic variations can alter the splicing process and thereby contribute to the development of various diseases. Alterations of the splicing pattern can be examined by gene expression analyses, by computational tools for predicting the effects of genetic variants on splicing, and by splicing reporter minigene assays for studying alternative splicing events under defined conditions. The minigene assay is based on transient transfection of cells with a vector containing a genomic region of interest cloned between two constitutive exons. Cloning can be accomplished by the use of restriction enzymes or by site-specific recombination using Gateway cloning. The vectors pDESTsplice and pSpliceExpress represent two minigene systems based on Gateway cloning, which are available through the Addgene plasmid repository. In this review, we describe the features of these two splicing reporter minigene systems. Moreover, we provide an overview of studies in which determinants of alternative splicing were investigated by using pDESTsplice or pSpliceExpress. The studies were reviewed with regard to the investigated splicing regulatory events and the experimental strategy to construct and perform a splicing reporter minigene assay. We further elaborate on how analyses on the regulation of RNA splicing offer promising prospects for gaining important insights into disease mechanisms.
Collapse
Affiliation(s)
- Elena Putscher
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| | - Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| | - Peter Lorenz
- Rostock University Medical Center, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany;
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| |
Collapse
|
17
|
Small noncoding RNA profiling across cellular and biofluid compartments and their implications for multiple sclerosis immunopathology. Proc Natl Acad Sci U S A 2021; 118:2011574118. [PMID: 33879606 PMCID: PMC8092379 DOI: 10.1073/pnas.2011574118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs), a type of small noncoding RNAs (sncRNAs), has frequently been associated with multiple sclerosis (MS). However, most studies have focused on peripheral blood, and few investigated other classes of sncRNAs. To address this, we analyzed all classes of sncRNAs in matching peripheral blood mononuclear cells, plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from MS patients and controls. We demonstrate widespread alterations of small nuclear (snRNA)–derived RNAs, small nucleolar-derived RNAs (sdRNAs), transfer RNA–derived fragments, and miRNAs, particularly in CSF cells. The striking contrast between the periphery and central nervous system and between relapse and remission phases of disease highlights the importance of sncRNA-mediated mechanisms in MS, in particular alternative splicing and mRNA translation. Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system (CNS). Small non-coding RNAs (sncRNAs) and, in particular, microRNAs (miRNAs) have frequently been associated with MS. Here, we performed a comprehensive analysis of all classes of sncRNAs in matching samples of peripheral blood mononuclear cells (PBMCs), plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from relapsing-remitting (RRMS, n = 12 in relapse and n = 11 in remission) patients, secondary progressive (SPMS, n = 6) MS patients, and noninflammatory and inflammatory neurological disease controls (NINDC, n = 11; INDC, n = 5). We show widespread changes in miRNAs and sncRNA-derived fragments of small nuclear, nucleolar, and transfer RNAs. In CSF cells, 133 out of 133 and 115 out of 117 differentially expressed sncRNAs were increased in RRMS relapse compared to remission and RRMS compared to NINDC, respectively. In contrast, 65 out of 67 differentially expressed PBMC sncRNAs were decreased in RRMS compared to NINDC. The striking contrast between the periphery and CNS suggests that sncRNA-mediated mechanisms, including alternative splicing, RNA degradation, and mRNA translation, regulate the transcriptome of pathogenic cells primarily in the CNS target organ.
Collapse
|
18
|
Badihian N, Riahi R, Goli P, Badihian S, Poursafa P, Kelishadi R. Prenatal and perinatal factors associated with developing multiple sclerosis later in life: A systematic review and meta-analysis. Autoimmun Rev 2021; 20:102823. [PMID: 33866064 DOI: 10.1016/j.autrev.2021.102823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Both genetic and environmental factors play roles in Multiple Sclerosis (MS) etiopathogenesis. The relationship between prenatal/perinatal factors/exposures and future MS occurrence in the offspring remains controversial. Here, we aimed to review the available evidence on prenatal/perinatal factors associated with later MS occurrence. METHOD We performed systematic search of PubMed, Web of Science, and Scopus from inception to October 2020. We included original observational studies conducted on human participants addressing the association between prenatal/perinatal factors and MS occurrence. Data were extracted according to the PRISMA guideline. The adjusted odds ratio (OR) with 95% confidence interval (CI) was considered as the desired effect size. The heterogeneity was evaluated by Cochran's Q and I2 and the publication bias was assessed. We excluded gestational/neonatal vitamin D level, season of birth, and latitude because of recently published systematic reviews/meta-analyses on these subjects. RESULTS Overall, 2306 records were identified in the primary search. After excluding irrelevant studies, we evaluated 34 studies with contributing data on 100 prenatal/perinatal factors associated with an increased or decreased risk of MS occurrence. In the meta-analyses, we found no statistically significant associations between later MS occurrence in offspring and prenatal smoking exposure (OR = 1.01, 95% CI = 0.77-1.34), mode of delivery (OR = 0.90, 95% CI = 0.52-1.56), birth order (OR = 0.85, 95% CI = 0.72-1.00), and maternal age (OR = 1.34, 95% CI = 0.88-2.04). Paternal age and parents' marital status at the time of childbirth, maternal preeclampsia/ toxemia, forceps use, birth weight, plurality, and preterm birth were the other most studied factors, and none reported to affect MS risk. CONCLUSION We found that prenatal smoking exposure, mode of delivery, birth order, and maternal age do not affect risk of future MS development. Moreover, most of the other investigated factors were reported not to affect MS risk in the offspring.
Collapse
Affiliation(s)
- Negin Badihian
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Riahi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Goli
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shervin Badihian
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Parnian Poursafa
- Department of Cell and Molecular Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Meyer SM, Williams CC, Akahori Y, Tanaka T, Aikawa H, Tong Y, Childs-Disney JL, Disney MD. Small molecule recognition of disease-relevant RNA structures. Chem Soc Rev 2020; 49:7167-7199. [PMID: 32975549 PMCID: PMC7717589 DOI: 10.1039/d0cs00560f] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeting RNAs with small molecules represents a new frontier in drug discovery and development. The rich structural diversity of folded RNAs offers a nearly unlimited reservoir of targets for small molecules to bind, similar to small molecule occupancy of protein binding pockets, thus creating the potential to modulate human biology. Although the bacterial ribosome has historically been the most well exploited RNA target, advances in RNA sequencing technologies and a growing understanding of RNA structure have led to an explosion of interest in the direct targeting of human pathological RNAs. This review highlights recent advances in this area, with a focus on the design of small molecule probes that selectively engage structures within disease-causing RNAs, with micromolar to nanomolar affinity. Additionally, we explore emerging RNA-target strategies, such as bleomycin A5 conjugates and ribonuclease targeting chimeras (RIBOTACs), that allow for the targeted degradation of RNAs with impressive potency and selectivity. The compounds discussed in this review have proven efficacious in human cell lines, patient-derived cells, and pre-clinical animal models, with one compound currently undergoing a Phase II clinical trial and another that recently garnerd FDA-approval, indicating a bright future for targeted small molecule therapeutics that affect RNA function.
Collapse
Affiliation(s)
- Samantha M Meyer
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Christopher C Williams
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Yoshihiro Akahori
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Toru Tanaka
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Haruo Aikawa
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Yuquan Tong
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|