1
|
Timofeeva P, Finisguerra A, D’Argenio G, García AM, Carreiras M, Quiñones I, Urgesi C, Amoruso L. Switching off: disruptive TMS reveals distinct contributions of the posterior middle temporal gyrus and angular gyrus to bilingual speech production. Cereb Cortex 2024; 34:bhae188. [PMID: 38741267 PMCID: PMC11090997 DOI: 10.1093/cercor/bhae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The role of the left temporoparietal cortex in speech production has been extensively studied during native language processing, proving crucial in controlled lexico-semantic retrieval under varying cognitive demands. Yet, its role in bilinguals, fluent in both native and second languages, remains poorly understood. Here, we employed continuous theta burst stimulation to disrupt neural activity in the left posterior middle-temporal gyrus (pMTG) and angular gyrus (AG) while Italian-Friulian bilinguals performed a cued picture-naming task. The task involved between-language (naming objects in Italian or Friulian) and within-language blocks (naming objects ["knife"] or associated actions ["cut"] in a single language) in which participants could either maintain (non-switch) or change (switch) instructions based on cues. During within-language blocks, cTBS over the pMTG entailed faster naming for high-demanding switch trials, while cTBS to the AG elicited slower latencies in low-demanding non-switch trials. No cTBS effects were observed in the between-language block. Our findings suggest a causal involvement of the left pMTG and AG in lexico-semantic processing across languages, with distinct contributions to controlled vs. "automatic" retrieval, respectively. However, they do not support the existence of shared control mechanisms within and between language(s) production. Altogether, these results inform neurobiological models of semantic control in bilinguals.
Collapse
Affiliation(s)
- Polina Timofeeva
- BCBL, Basque Center on Cognition, Brain, and Language (BCBL), Paseo Mikeletegi 69, 2nd floor, 20009 San Sebastian, Spain
- Universidad del País Vasco (UPV/EHU), Doctoral School, 48940, Sarriena s/n, Leioa, Spain
| | - Alessandra Finisguerra
- Scientific Institute, IRCCS E. Medea, Via Cialdini 29, 33037, Pasian di Prato, UD, Italy
| | - Giulia D’Argenio
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Via Margreth 3, 33100, Udine, Italy
| | - Adolfo M García
- Cognitive Neuroscience Center (CNC), University of San Andres, Vito Dumas 284, B1644 BID, Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California, Parnassus 513, CA 94143, San Franscisco, United States & Trinity College Dublin, College Green, Dublin 2, D02X9W9, Ireland
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Av. Libertador B. O'Higgins 3363, 9170022, Santiago de Chile, Chile
| | - Manuel Carreiras
- BCBL, Basque Center on Cognition, Brain, and Language (BCBL), Paseo Mikeletegi 69, 2nd floor, 20009 San Sebastian, Spain
- Universidad del País Vasco (UPV/EHU), Doctoral School, 48940, Sarriena s/n, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Ileana Quiñones
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
- Neurosciences Department, BioGipuzkoa Health Research Institute, Paseo Dr. Begiristain s/n, 20014, San Sebastian, Spain
| | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, Via Cialdini 29, 33037, Pasian di Prato, UD, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Via Margreth 3, 33100, Udine, Italy
| | - Lucia Amoruso
- BCBL, Basque Center on Cognition, Brain, and Language (BCBL), Paseo Mikeletegi 69, 2nd floor, 20009 San Sebastian, Spain
- Cognitive Neuroscience Center (CNC), University of San Andres, Vito Dumas 284, B1644 BID, Buenos Aires, Argentina
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| |
Collapse
|
3
|
Similar activation patterns in the bilateral dorsal inferior frontal gyrus for monolingual and bilingual contexts in second language production. Neuropsychologia 2021; 156:107857. [PMID: 33857531 DOI: 10.1016/j.neuropsychologia.2021.107857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022]
Abstract
Language production is a vital process of communication. Although many studies have devoted to the neural mechanisms of language production in bilinguals, they mainly focused on the mechanisms of cognitive control during language switching. Therefore, it is not clear how naming context influences the neural representations of linguistic information during language production in bilinguals. To address that question, the present study adopted representational similarity analysis (RSA) to investigate the neural pattern similarity (PS) between the monolingual and bilingual contexts separately for native and second languages. Consistent with previous findings, bilinguals behaviorally performed worse, and showed greater activation in brain regions for cognitive control including the anterior cingulate cortex and dorsolateral prefrontal cortex in the bilingual context relative to the monolingual context. More importantly, RSA revealed that bilinguals exhibited similar neural activation patterns in the bilateral dorsal inferior frontal gyrus between the monolingual and bilingual contexts in the production of the second language. Moreover, higher cross-context PS in the right inferior frontal gyrus was associated with smaller differences in naming speed of second language between the monolingual and bilingual contexts. These results suggest that similar linguistic representations are encoded for the monolingual and bilingual contexts in the production of non-dominant language.
Collapse
|
4
|
Tao L, Wang G, Zhu M, Cai Q. Bilingualism and domain-general cognitive functions from a neural perspective: A systematic review. Neurosci Biobehav Rev 2021; 125:264-295. [PMID: 33631315 DOI: 10.1016/j.neubiorev.2021.02.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022]
Abstract
A large body of research has indicated that bilingualism - through continual practice in language control - may impact cognitive functions, as well as relevant aspects of brain function and structure. The present review aimed to bring together findings on the relationship between bilingualism and domain-general cognitive functions from a neural perspective. The final sample included 210 studies, covering findings regarding neural responses to bilingual language control and/or domain-general cognitive tasks, as well as findings regarding effects of bilingualism on non-task-related brain function and brain structure. The evidence indicates that a) bilingual language control likely entails neural mechanisms responsible for domain-general cognitive functions; b) bilingual experiences impact neural responses to domain-general cognitive functions; and c) bilingual experiences impact non-task-related brain function (both resting-state and metabolic function) as well as aspects of brain structure (both macrostructure and microstructure), each of which may in turn impact mental processes, including domain-general cognitive functions. Such functional and structural neuroplasticity associated with bilingualism may contribute to both cognitive and neural reserves, producing benefits across the lifespan.
Collapse
Affiliation(s)
- Lily Tao
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, China
| | - Gongting Wang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, China
| | - Miaomiao Zhu
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, China
| | - Qing Cai
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, China; Institute of Brain and Education Innovation, East China Normal University, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, China.
| |
Collapse
|
5
|
Zhang Y, Cao N, Yue C, Dai L, Wu YJ. The Interplay Between Language Form and Concept During Language Switching: A Behavioral Investigation. Front Psychol 2020; 11:791. [PMID: 32425858 PMCID: PMC7205015 DOI: 10.3389/fpsyg.2020.00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yong Zhang
- School of Foreign Languages, Southwest University of Political Science and Law, Chongqing, China
- College of International Studies, Southwest University, Chongqing, China
| | - Ningning Cao
- School of English Studies, Dalian University of Foreign Languages, Dalian, China
| | - Chang Yue
- School of Foreign Languages, Southwest University of Political Science and Law, Chongqing, China
| | - Lina Dai
- Ningbo Yongjiang Vocational High School, Ningbo, China
| | - Yan Jing Wu
- Faculty of Foreign Languages, Ningbo University, Ningbo, China
- *Correspondence: Yan Jing Wu,
| |
Collapse
|
6
|
Cortical network underlying audiovisual semantic integration and modulation of attention: An fMRI and graph-based study. PLoS One 2019; 14:e0221185. [PMID: 31442242 PMCID: PMC6707554 DOI: 10.1371/journal.pone.0221185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023] Open
Abstract
Many neuroimaging and electrophysiology studies have suggested that semantic integration as a high-level cognitive process involves various cortical regions and is modulated by attention. However, the cortical network specific to semantic integration and the modulatory mechanism of attention remain unclear. Here, we designed an fMRI experiment using “bimodal stimulus” to extract information regarding the cortical activation related to the effects of semantic integration with and without attention, and then analyzed the characteristics of the cortical network and the modulating effect of attention on semantic integration. To further investigate the related cortical regions, we constructed a functional brain network for processing attended AV stimuli to evaluate the nodal properties using a graph-based method. The results of the fMRI and graph-based analyses showed that the semantic integration with attention activated the anterior temporal lobe (ATL), temporoparietal junction (TPJ), and frontoparietal cortex, with the ATL showing the highest nodal degree and efficiency; in contrast, semantic integration without attention involved a relatively small cortical network, including the posterior superior temporal gyrus (STG), Heschl’s gyrus (HG), and precentral gyrus. These results indicated that semantic integration is a complex cognitive process that occurs not only in the attended condition but also in the unattended condition, and that attention could modulate the distribution of cortical networks related to semantic integration. We suggest that semantic integration with attention is a conscious process and needs a wide cortical network working together, in which the ATL plays the role of a central hub; in contrast, semantic integration without attention is a pre-attentive process and involves a relatively smaller cortical network, in which the HG may play an important role. Our study will provide valuable insights into semantic integration and will be useful for investigations on multisensory integration and attention mechanism at multiple processing stages and levels within the cortical hierarchy.
Collapse
|