1
|
Shi T, Fan D, Xu C, Zheng G, Zhong C, Feng F, Chow WS. The Fitting of the OJ Phase of Chlorophyll Fluorescence Induction Based on an Analytical Solution and Its Application in Urban Heat Island Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:452. [PMID: 38337985 PMCID: PMC10857409 DOI: 10.3390/plants13030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Chlorophyll (Chl) fluorescence induction (FI) upon a dark-light transition has been widely analyzed to derive information on initial events of energy conversion and electron transfer in photosystem II (PSII). However, currently, there is no analytical solution to the differential equation of QA reduction kinetics, raising a doubt about the fitting of FI by numerical iteration solution. We derived an analytical solution to fit the OJ phase of FI, thereby yielding estimates of three parameters: the functional absorption cross-section of PSII (σPSII), a probability parameter that describes the connectivity among PSII complexes (p), and the rate coefficient for QA- oxidation (kox). We found that σPSII, p, and kox exhibited dynamic changes during the transition from O to J. We postulated that in high excitation light, some other energy dissipation pathways may vastly outcompete against excitation energy transfer from a closed PSII trap to an open PSII, thereby giving the impression that connectivity seemingly does not exist. We also conducted a case study on the urban heat island effect on the heat stability of PSII using our method and showed that higher-temperature-acclimated leaves had a greater σPSII, lower kox, and a tendency of lower p towards more shade-type characteristics.
Collapse
Affiliation(s)
- Tongxin Shi
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (T.S.)
| | - Dayong Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (T.S.)
| | - Chengyang Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (T.S.)
| | - Guoming Zheng
- Yi Zong Qi Technology (Beijing) Co., Ltd., Beijing 100095, China
| | - Chuanfei Zhong
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Fei Feng
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (T.S.)
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
2
|
Garab G, Magyar M, Sipka G, Lambrev PH. New foundations for the physical mechanism of variable chlorophyll a fluorescence. Quantum efficiency versus the light-adapted state of photosystem II. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5458-5471. [PMID: 37410874 DOI: 10.1093/jxb/erad252] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Photosystem II (PSII) uses solar energy to oxidize water and delivers electrons to fix CO2. Although the structure at atomic resolution and the basic photophysical and photochemical functions of PSII are well understood, many important questions remain. The activity of PSII in vitro and in vivo is routinely monitored by recording the induction kinetics of chlorophyll a fluorescence (ChlF). According to the 'mainstream' model, the rise from the minimum level (Fo) to the maximum (Fm) of ChlF of dark-adapted PSII reflects the closure of all functionally active reaction centers, and the Fv/Fm ratio is equated with the maximum photochemical quantum yield of PSII (where Fv=Fm-Fo). However, this model has never been free of controversies. Recent experimental data from a number of studies have confirmed that the first single-turnover saturating flash (STSF), which generates the closed state (PSIIC), produces F1
Collapse
Affiliation(s)
- Győző Garab
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Melinda Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Gábor Sipka
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Petar H Lambrev
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
3
|
Sipka G, Nagy L, Magyar M, Akhtar P, Shen JR, Holzwarth AR, Lambrev PH, Garab G. Light-induced reversible reorganizations in closed Type II reaction centre complexes: physiological roles and physical mechanisms. Open Biol 2022; 12:220297. [PMID: 36514981 PMCID: PMC9748786 DOI: 10.1098/rsob.220297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The purpose of this review is to outline our understanding of the nature, mechanism and physiological significance of light-induced reversible reorganizations in closed Type II reaction centre (RC) complexes. In the so-called 'closed' state, purple bacterial RC (bRC) and photosystem II (PSII) RC complexes are incapable of generating additional stable charge separation. Yet, upon continued excitation they display well-discernible changes in their photophysical and photochemical parameters. Substantial stabilization of their charge-separated states has been thoroughly documented-uncovering light-induced reorganizations in closed RCs and revealing their physiological importance in gradually optimizing the operation of the photosynthetic machinery during the dark-to-light transition. A range of subtle light-induced conformational changes has indeed been detected experimentally in different laboratories using different bRC and PSII-containing preparations. In general, the presently available data strongly suggest similar structural dynamics of closed bRC and PSII RC complexes, and similar physical mechanisms, in which dielectric relaxation processes and structural memory effects of proteins are proposed to play important roles.
Collapse
Affiliation(s)
- G. Sipka
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - L. Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
- Institute of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1, 6720 Szeged, Hungary
| | - M. Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - P. Akhtar
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - J.-R. Shen
- Institute of Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
- Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, People's Republic of China
| | - A. R. Holzwarth
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim a.d. Ruhr, Germany
| | - P. H. Lambrev
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - G. Garab
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| |
Collapse
|
4
|
Zharmukhamedov SK, Shabanova MS, Rodionova MV, Huseynova IM, Karacan MS, Karacan N, Aşık KB, Kreslavski VD, Alwasel S, Allakhverdiev SI. Effects of Novel Photosynthetic Inhibitor [CuL2]Br2 Complex on Photosystem II Activity in Spinach. Cells 2022; 11:cells11172680. [PMID: 36078088 PMCID: PMC9455146 DOI: 10.3390/cells11172680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
The effects of the novel [CuL2]Br2 complex (L = bis{4H-1,3,5-triazino [2,1-b]benzothiazole-2-amine,4-(2-imidazole)}copper(II) bromide complex) on the photosystem II (PSII) activity of PSII membranes isolated from spinach were studied. The absence of photosynthetic oxygen evolution by PSII membranes without artificial electron acceptors, but in the presence of [CuL2]Br2, has shown that it is not able to act as a PSII electron acceptor. In the presence of artificial electron acceptors, [CuL2]Br2 inhibits photosynthetic oxygen evolution. [CuL2]Br2 also suppresses the photoinduced changes of the PSII chlorophyll fluorescence yield (FV) related to the photoreduction of the primary quinone electron acceptor, QA. The inhibition of both characteristic PSII reactions depends on [CuL2]Br2 concentration. At all studied concentrations of [CuL2]Br2, the decrease in the FM level occurs exclusively due to a decrease in Fv. [CuL2]Br2 causes neither changes in the F0 level nor the retardation of the photoinduced rise in FM, which characterizes the efficiency of the electron supply from the donor-side components to QA through the PSII reaction center (RC). Artificial electron donors (sodium ascorbate, DPC, Mn2+) do not cancel the inhibitory effect of [CuL2]Br2. The dependences of the inhibitory efficiency of the studied reactions of PSII on [CuL2]Br2 complex concentration practically coincide. The inhibition constant Ki is about 16 µM, and logKi is 4.8. As [CuL2]Br2 does not change the aromatic amino acids’ intrinsic fluorescence of the PSII protein components, it can be proposed that [CuL2]Br2 has no significant effect on the native state of PSII proteins. The results obtained in the present study are compared to the literature data concerning the inhibitory effects of PSII Cu(II) aqua ions and Cu(II)-organic complexes.
Collapse
Affiliation(s)
- Sergey K. Zharmukhamedov
- Institute of Basic Biological Problems, FRC PSCBR RAS, 142290 Pushchino, Russia
- Correspondence: (S.K.Z.); (S.I.A.)
| | - Mehriban S. Shabanova
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, AZ1073 Baku, Azerbaijan
| | - Margarita V. Rodionova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Irada M. Huseynova
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, AZ1073 Baku, Azerbaijan
| | - Mehmet Sayım Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara 06500, Turkey
| | - Nurcan Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara 06500, Turkey
| | - Kübra Begüm Aşık
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara 06500, Turkey
| | | | - Saleh Alwasel
- College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Suleyman I. Allakhverdiev
- Institute of Basic Biological Problems, FRC PSCBR RAS, 142290 Pushchino, Russia
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, AZ1073 Baku, Azerbaijan
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119991 Moscow, Russia
- Correspondence: (S.K.Z.); (S.I.A.)
| |
Collapse
|
5
|
Magyar M, Akhtar P, Sipka G, Han W, Li X, Han G, Shen JR, Lambrev P, Garab G. Dependence of the rate-limiting steps in the dark-to-light transition of photosystem II on the lipidic environment of the reaction center. PHOTOSYNTHETICA 2022; 60:147-156. [PMID: 39648999 PMCID: PMC11559480 DOI: 10.32615/ps.2022.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/07/2022] [Indexed: 12/10/2024]
Abstract
In our earlier works, we have identified rate-limiting steps in the dark-to-light transition of PSII. By measuring chlorophyll a fluorescence transients elicited by single-turnover saturating flashes (STSFs) we have shown that in diuron-treated samples an STSF generates only F1 (< Fm) fluorescence level, and to produce the maximum (Fm) level, additional excitations are required, which, however, can only be effective if sufficiently long Δτ waiting times are allowed between the excitations. Biological variations in the half-rise time (Δτ 1/2) of the fluorescence increment suggest that it may be sensitive to the physicochemical environment of PSII. Here, we investigated the influence of the lipidic environment on Δτ 1/2 of PSII core complexes of Thermosynechococcus vulcanus. We found that while non-native lipids had no noticeable effects, thylakoid membrane lipids considerably shortened the Δτ 1/2, from ~ 1 ms to ~ 0.2 ms. The importance of the presence of native lipids was confirmed by obtaining similarly short Δτ 1/2 values in the whole T. vulcanus cells and isolated pea thylakoid membranes. Minor, lipid-dependent reorganizations were also observed by steady-state and time-resolved spectroscopic measurements. These data show that the processes beyond the dark-to-light transition of PSII depend significantly on the lipid matrix of the reaction center.
Collapse
Affiliation(s)
- M. Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - P. Akhtar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - G. Sipka
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - W. Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - X. Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - G. Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - J.-R. Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - P.H. Lambrev
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - G. Garab
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
6
|
Oja V, Laisk A. Time- and reduction-dependent rise of photosystem II fluorescence during microseconds-long inductions in leaves. PHOTOSYNTHESIS RESEARCH 2020; 145:209-225. [PMID: 32918663 DOI: 10.1007/s11120-020-00783-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 05/16/2023]
Abstract
Lettuce (Lactuca sativa) and benth (Nicotiana benthamiana) leaves were illuminated with 720 nm background light to mix S-states and oxidize electron carriers. Green-filtered xenon flashes of different photon dose were applied and O2 evolution induced by a flash was measured. After light intensity gradient across the leaf was mathematically considered, the flash-induced PSII electron transport (= 4·O2 evolution) exponentially increased with the flash photon dose in any differential layer of the leaf optical density. This proved the absence of excitonic connectivity between PSII units. Time courses of flash light intensity and 680 nm chlorophyll fluorescence emission were recorded. While with connected PSII the sigmoidal fluorescence rise has been explained by quenching of excitation in closed PSII by its open neighbors, in the absence of connectivity the sigmoidicity indicates gradual rise of the fluorescence yield of an individual closed PSII during the induction. Two phases were discerned: the specific fluorescence yield immediately increased from Fo to 1.8Fo in a PSII, whose reaction center became closed; fluorescence yield of the closed PSII was keeping time-dependent rise from 1.8Fo to about 3Fo, approaching the flash fluorescence yield Ff = 0.6Fm during 40 μs. The time-dependent fluorescence rise was resolved from the quenching by 3Car triplets and related to protein conformational change. We suggest that QA reduction induces a conformational change, which by energetic or structural means closes the gate for excitation entrance into the central radical pair trap-efficiently when QB cannot accept the electron, but less efficiently when it can.
Collapse
Affiliation(s)
- Vello Oja
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia
| | - Agu Laisk
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia.
| |
Collapse
|
7
|
Magyar M, Sipka G, Kovács L, Ughy B, Zhu Q, Han G, Špunda V, Lambrev PH, Shen JR, Garab G. Rate-limiting steps in the dark-to-light transition of Photosystem II - revealed by chlorophyll-a fluorescence induction. Sci Rep 2018; 8:2755. [PMID: 29426901 DOI: 10.1038/s41598-41018-21195-41592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/31/2018] [Indexed: 05/28/2023] Open
Abstract
Photosystem II (PSII) catalyses the photoinduced oxygen evolution and, by producing reducing equivalents drives, in concert with PSI, the conversion of carbon dioxide to sugars. Our knowledge about the architecture of the reaction centre (RC) complex and the mechanisms of charge separation and stabilisation is well advanced. However, our understanding of the processes associated with the functioning of RC is incomplete: the photochemical activity of PSII is routinely monitored by chlorophyll-a fluorescence induction but the presently available data are not free of controversy. In this work, we examined the nature of gradual fluorescence rise of PSII elicited by trains of single-turnover saturating flashes (STSFs) in the presence of a PSII inhibitor, permitting only one stable charge separation. We show that a substantial part of the fluorescence rise originates from light-induced processes that occur after the stabilisation of charge separation, induced by the first STSF; the temperature-dependent relaxation characteristics suggest the involvement of conformational changes in the additional rise. In experiments using double flashes with variable waiting times (∆τ) between them, we found that no rise could be induced with zero or short ∆τ, the value of which depended on the temperature - revealing a previously unknown rate-limiting step in PSII.
Collapse
Affiliation(s)
- Melinda Magyar
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, H-6726, Szeged, Hungary
| | - Gábor Sipka
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, H-6726, Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, H-6726, Szeged, Hungary
| | - Bettina Ughy
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, H-6726, Szeged, Hungary
| | - Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany the Chinese Academy of Sciences, Beijing, 100093, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany the Chinese Academy of Sciences, Beijing, 100093, China
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-710 00, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Petar H Lambrev
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, H-6726, Szeged, Hungary
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany the Chinese Academy of Sciences, Beijing, 100093, China
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 1-1, Naka 3-chome, Tsushima, Okayama, 700-8530, Japan
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, H-6726, Szeged, Hungary.
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-710 00, Ostrava, Czech Republic.
| |
Collapse
|
8
|
Rate-limiting steps in the dark-to-light transition of Photosystem II - revealed by chlorophyll-a fluorescence induction. Sci Rep 2018; 8:2755. [PMID: 29426901 PMCID: PMC5807364 DOI: 10.1038/s41598-018-21195-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
Photosystem II (PSII) catalyses the photoinduced oxygen evolution and, by producing reducing equivalents drives, in concert with PSI, the conversion of carbon dioxide to sugars. Our knowledge about the architecture of the reaction centre (RC) complex and the mechanisms of charge separation and stabilisation is well advanced. However, our understanding of the processes associated with the functioning of RC is incomplete: the photochemical activity of PSII is routinely monitored by chlorophyll-a fluorescence induction but the presently available data are not free of controversy. In this work, we examined the nature of gradual fluorescence rise of PSII elicited by trains of single-turnover saturating flashes (STSFs) in the presence of a PSII inhibitor, permitting only one stable charge separation. We show that a substantial part of the fluorescence rise originates from light-induced processes that occur after the stabilisation of charge separation, induced by the first STSF; the temperature-dependent relaxation characteristics suggest the involvement of conformational changes in the additional rise. In experiments using double flashes with variable waiting times (∆τ) between them, we found that no rise could be induced with zero or short ∆τ, the value of which depended on the temperature - revealing a previously unknown rate-limiting step in PSII.
Collapse
|
9
|
Sylak-Glassman EJ, Zaks J, Amarnath K, Leuenberger M, Fleming GR. Characterizing non-photochemical quenching in leaves through fluorescence lifetime snapshots. PHOTOSYNTHESIS RESEARCH 2016; 127:69-76. [PMID: 25762378 DOI: 10.1007/s11120-015-0104-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
We describe a technique to measure the fluorescence decay profiles of intact leaves during adaptation to high light and subsequent relaxation to dark conditions. We show how to ensure that photosystem II reaction centers are closed and compare data for wild type Arabidopsis thaliana with conventional pulse-amplitude modulated (PAM) fluorescence measurements. Unlike PAM measurements, the lifetime measurements are not sensitive to photobleaching or chloroplast shielding, and the form of the fluorescence decay provides additional information to test quantitative models of excitation dynamics in intact leaves.
Collapse
Affiliation(s)
- Emily J Sylak-Glassman
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- IDA Science and Technology Policy Institute, 1899 Pennsylvania Avenue Suite 520, Washington, DC, 20006, USA
| | - Julia Zaks
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Graduate Program in Applied Science and Technology, University of California Berkeley, Berkeley, CA, 94720, USA
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA, 95051, USA
| | - Kapil Amarnath
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- FAS Center for Systems Biology, Harvard University, 52 Oxford Street, Rm. 440, Cambridge, MA, 02138, USA
| | - Michelle Leuenberger
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Graham R Fleming
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Graduate Program in Applied Science and Technology, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
10
|
Nozue S, Mukuno A, Tsuda Y, Shiina T, Terazima M, Kumazaki S. Characterization of thylakoid membrane in a heterocystous cyanobacterium and green alga with dual-detector fluorescence lifetime imaging microscopy with a systematic change of incident laser power. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:46-59. [PMID: 26474523 DOI: 10.1016/j.bbabio.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/29/2015] [Accepted: 10/11/2015] [Indexed: 12/01/2022]
Abstract
Fluorescence Lifetime Imaging Microscopy (FLIM) has been applied to plants, algae and cyanobacteria, in which excitation laser conditions affect the chlorophyll fluorescence lifetime due to several mechanisms. However, the dependence of FLIM data on input laser power has not been quantitatively explained by absolute excitation probabilities under actual imaging conditions. In an effort to distinguish between photosystem I and photosystem II (PSI and PSII) in microscopic images, we have obtained dependence of FLIM data on input laser power from a filamentous cyanobacterium Anabaena variabilis and single cellular green alga Parachlorella kessleri. Nitrogen-fixing cells in A. variabilis, heterocysts, are mostly visualized as cells in which short-lived fluorescence (≤0.1 ns) characteristic of PSI is predominant. The other cells in A. variabilis (vegetative cells) and P. kessleri cells show a transition in the status of PSII from an open state with the maximal charge separation rate at a weak excitation limit to a closed state in which charge separation is temporarily prohibited by previous excitation(s) at a relatively high laser power. This transition is successfully reproduced by a computer simulation with a high fidelity to the actual imaging conditions. More details in the fluorescence from heterocysts were examined to assess possible functions of PSII in the anaerobic environment inside the heterocysts for the nitrogen-fixing enzyme, nitrogenase. Photochemically active PSII:PSI ratio in heterocysts is tentatively estimated to be typically below our detection limit or at most about 5% in limited heterocysts in comparison with that in vegetative cells.
Collapse
Affiliation(s)
- Shuho Nozue
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Akira Mukuno
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yumi Tsuda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigeichi Kumazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
11
|
Ranjan S, Singh R, Singh M, Pathre UV, Shirke PA. Characterizing photoinhibition and photosynthesis in juvenile-red versus mature-green leaves of Jatropha curcas L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 79:48-59. [PMID: 24681755 DOI: 10.1016/j.plaphy.2014.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/05/2014] [Indexed: 05/12/2023]
Abstract
The new leaves of Jatropha curcas (L.) appear dark red in colour due to the presence of anthocyanin pigments, these leaves subsequently turn green on maturity. The aim of the study was to characterize the photosynthetic efficiency of the juvenile red and mature green leaves and to understand the possible role of anthocyanin pigment in the juvenile leaves of J. curcas. We studied the localization of anthocyanin pigment, reflectance properties, diurnal gas-exchange performance, carboxylation efficiency and photosynthetic efficiency under different light intensities by investigation of the photochemical and non-photochemical energy dissipation processes related to Photosystem II (PSII) and Photosystem I (PSI), of the juvenile and the mature leaves of J. curcas. The JIP test analysis of chlorophyll a fluorescence transients and the gas-exchange studies revels the low photosynthetic efficiency of red leaves is due to the immaturity of the leaf. The low value of quantum yield of non-photochemical energy dissipation due to acceptor side limitation, Y (NA) under high light in the red leaf, suggests that over-reduction of PSI acceptor side was prevented and it results in the accumulation of oxidized P700, which dissipates excess light energy harmlessly as heat and thereby alleviate photoinhibition of PSI in case of the juvenile red leaves. Further our results of photoinhibition and relaxation on exposure of red and green leaves to monochromatic blue light showed that effective quantum yield of PSII recovers faster and completely under darkness in juvenile red leaves as compared to mature green leaves, supporting the role of anthocyanin pigments in protecting both PSII and PSI in the red leaves.
Collapse
Affiliation(s)
- Sanjay Ranjan
- Plant Physiology Division, Council of Scientific and Industrial Research (CSIR) - National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001, India
| | - Ruchi Singh
- Plant Physiology Division, Council of Scientific and Industrial Research (CSIR) - National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001, India
| | - Munna Singh
- Chandra Shekhar Azad University of Agriculture & Technology, Kanpur 208 002, India
| | - Uday V Pathre
- Plant Physiology Division, Council of Scientific and Industrial Research (CSIR) - National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001, India
| | - Pramod A Shirke
- Plant Physiology Division, Council of Scientific and Industrial Research (CSIR) - National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001, India.
| |
Collapse
|
12
|
Schansker G, Tóth SZ, Holzwarth AR, Garab G. Chlorophyll a fluorescence: beyond the limits of the Q(A) model. PHOTOSYNTHESIS RESEARCH 2014; 120:43-58. [PMID: 23456268 DOI: 10.1007/s11120-013-9806-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/18/2013] [Indexed: 05/03/2023]
Abstract
Chlorophyll a fluorescence is a non-invasive tool widely used in photosynthesis research. According to the dominant interpretation, based on the model proposed by Duysens and Sweers (1963, Special Issue of Plant and Cell Physiology, pp 353-372), the fluorescence changes reflect primarily changes in the redox state of Q(A), the primary quinone electron acceptor of photosystem II (PSII). While it is clearly successful in monitoring the photochemical activity of PSII, a number of important observations cannot be explained within the framework of this simple model. Alternative interpretations have been proposed but were not supported satisfactorily by experimental data. In this review we concentrate on the processes determining the fluorescence rise on a dark-to-light transition and critically analyze the experimental data and the existing models. Recent experiments have provided additional evidence for the involvement of a second process influencing the fluorescence rise once Q(A) is reduced. These observations are best explained by a light-induced conformational change, the focal point of our review. We also want to emphasize that-based on the presently available experimental findings-conclusions on α/ß-centers, PSII connectivity, and the assignment of FV/FM to the maximum PSII quantum yield may require critical re-evaluations. At the same time, it has to be emphasized that for a deeper understanding of the underlying physical mechanism(s) systematic studies on light-induced changes in the structure and reaction kinetics of the PSII reaction center are required.
Collapse
Affiliation(s)
- Gert Schansker
- Institute of Plant Biology, Biological Research Center Szeged, Hungarian Academy of Sciences, Szeged, 6701, Hungary,
| | | | | | | |
Collapse
|
13
|
de Marchin T, Ghysels B, Nicolay S, Franck F. Analysis of PSII antenna size heterogeneity of Chlamydomonas reinhardtii during state transitions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:121-30. [PMID: 23891659 DOI: 10.1016/j.bbabio.2013.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 11/17/2022]
Abstract
PSII antenna size heterogeneity has been intensively studied in the past. Based on DCMU fluorescence rise kinetics, multiple types of photosystems with different properties were described. However, due to the complexity of fluorescence signal analysis, multiple questions remain unanswered. The number of different types of PSII is still debated as well as their degree of connectivity. In Chlamydomonas reinhardtii we found that PSIIα possesses a high degree of connectivity and an antenna 2-3 times larger than PSIIβ, as described previously. We also found some connectivity for PSIIβ in contrast with the majority of previous studies. This is in agreement with biochemical studies which describe PSII mega-, super- and core-complexes in Chlamydomonas. In these studies, the smallest unit of PSII in vivo would be a dimer of two core complexes hence allowing connectivity. We discuss the possible relationships between PSIIα and PSIIβ and the PSII mega-, super- and core-complexes. We also showed that strain and medium dependent variations in the half-time of the fluorescence rise can be explained by variations in the proportions of PSIIα and PSIIβ. When analyzing the state transition process in vivo, we found that this process induces an inter-conversion of PSIIα and PSIIβ. During a transition from state 2 to state 1, DCMU fluorescence rise kinetics are satisfactorily fitted by considering two PSII populations with constant kinetic parameters. We discuss our findings about PSII heterogeneity during state transitions in relation with recent results on the remodeling of the pigment-protein PSII architecture during this process.
Collapse
Affiliation(s)
- Thomas de Marchin
- Laboratory of Bioenergetics, B22, University of Liège, B-4000 Liège/Sart-Tilman, Belgium
| | | | | | | |
Collapse
|
14
|
Stirbet A. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. PHOTOSYNTHESIS RESEARCH 2012; 113:15-61. [PMID: 22810945 DOI: 10.1007/s11120-012-9754-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/29/2012] [Indexed: 05/03/2023]
Abstract
The fast (up to 1 s) chlorophyll (Chl) a fluorescence induction (FI) curve, measured under saturating continuous light, has a photochemical phase, the O-J rise, related mainly to the reduction of Q(A), the primary electron acceptor plastoquinone of Photosystem II (PSII); here, the fluorescence rise depends strongly on the number of photons absorbed. This is followed by a thermal phase, the J-I-P rise, which disappears at subfreezing temperatures. According to the mainstream interpretation of the fast FI, the variable fluorescence originates from PSII antenna, and the oxidized Q(A) is the most important quencher influencing the O-J-I-P curve. As the reaction centers of PSII are gradually closed by the photochemical reduction of Q(A), Chl fluorescence, F, rises from the O level (the minimal level) to the P level (the peak); yet, the relationship between F and [Q(A) (-)] is not linear, due to the presence of other quenchers and modifiers. Several alternative theories have been proposed, which give different interpretations of the O-J-I-P transient. The main idea in these alternative theories is that in saturating light, Q(A) is almost completely reduced already at the end of the photochemical phase O-J, but the fluorescence yield is lower than its maximum value due to the presence of either a second quencher besides Q(A), or there is an another process quenching the fluorescence; in the second quencher hypothesis, this quencher is consumed (or the process of quenching the fluorescence is reversed) during the thermal phase J-I-P. In this review, we discuss these theories. Based on our critical examination, that includes pros and cons of each theory, as well mathematical modeling, we conclude that the mainstream interpretation of the O-J-I-P transient is the most credible one, as none of the alternative ideas provide adequate explanation or experimental proof for the almost complete reduction of Q(A) at the end of the O-J phase, and for the origin of the fluorescence rise during the thermal phase. However, we suggest that some of the factors influencing the fluorescence yield that have been proposed in these newer theories, as e.g., the membrane potential ΔΨ, as suggested by Vredenberg and his associates, can potentially contribute to modulate the O-J-I-P transient in parallel with the reduction of Q(A), through changes at the PSII antenna and/or at the reaction center, or, possibly, through the control of the oxidation-reduction of the PQ-pool, including proton transfer into the lumen, as suggested by Rubin and his associates. We present in this review our personal perspective mainly on our understanding of the thermal phase, the J-I-P rise during Chl a FI in plants and algae.
Collapse
|
15
|
Dinç E, Ceppi MG, Tóth SZ, Bottka S, Schansker G. The chl a fluorescence intensity is remarkably insensitive to changes in the chlorophyll content of the leaf as long as the chl a/b ratio remains unaffected. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:770-9. [PMID: 22342617 DOI: 10.1016/j.bbabio.2012.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/23/2011] [Accepted: 02/02/2012] [Indexed: 10/14/2022]
Abstract
The effects of changes in the chlorophyll (chl) content on the kinetics of the OJIP fluorescence transient were studied using two different approaches. An extensive chl loss (up to 5-fold decrease) occurs in leaves suffering from either an Mg(2+) or SO(4)(2-) deficiency. The effects of these treatments on the chl a/b ratio, which is related to antenna size, were very limited. This observation was confirmed by the identical light intensity dependencies of the K, J and I-steps of the fluorescence rise for three of the four treatments and by the absence of changes in the F(685 nm)/F(695 nm)-ratio of fluorescence emission spectra measured at 77K. Under these conditions, the F(0) and F(M)-values were essentially insensitive to the chl content. A second experimental approach consisted of the treatment of wheat leaves with specifically designed antisense oligodeoxynucleotides that interfered with the translation of mRNA of the genes coding for chl a/b binding proteins. This way, leaves with a wide range of chl a/b ratios were created. Under these conditions, an inverse proportional relationship between the F(M) values and the chl a/b ratio was observed. A strong effect of the chl a/b ratio on the fluorescence intensity was also observed for barley Chlorina f2 plants that lack chl b. The data suggest that the chl a/b ratio (antenna size) is a more important determinant of the maximum fluorescence intensity than the chl content of the leaf.
Collapse
Affiliation(s)
- Emine Dinç
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | | | | | | | | |
Collapse
|
16
|
Palombi L, Cecchi G, Lognoli D, Raimondi V, Toci G, Agati G. A retrieval algorithm to evaluate the Photosystem I and Photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures. PHOTOSYNTHESIS RESEARCH 2011; 108:225-39. [PMID: 21866392 DOI: 10.1007/s11120-011-9678-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/03/2011] [Indexed: 05/12/2023]
Abstract
A new computational procedure to resolve the contribution of Photosystem I (PSI) and Photosystem II (PSII) to the leaf chlorophyll fluorescence emission spectra at room temperature has been developed. It is based on the Principal Component Analysis (PCA) of the leaf fluorescence emission spectra measured during the OI photochemical phase of fluorescence induction kinetics. During this phase, we can assume that only two spectral components are present, one of which is constant (PSI) and the other variable in intensity (PSII). Application of the PCA method to the measured fluorescence emission spectra of Ficus benjamina L. evidences that the temporal variation in the spectra can be ascribed to a single spectral component (the first principal component extracted by PCA), which can be considered to be a good approximation of the PSII fluorescence emission spectrum. The PSI fluorescence emission spectrum was deduced by difference between measured spectra and the first principal component. A single-band spectrum for the PSI fluorescence emission, peaked at about 735 nm, and a 2-band spectrum with maxima at 685 and 740 nm for the PSII were obtained. A linear combination of only these two spectral shapes produced a good fit for any measured emission spectrum of the leaf under investigation and can be used to obtain the fluorescence emission contributions of photosystems under different conditions. With the use of our approach, the dynamics of energy distribution between the two photosystems, such as state transition, can be monitored in vivo, directly at physiological temperatures. Separation of the PSI and PSII emission components can improve the understanding of the fluorescence signal changes induced by environmental factors or stress conditions on plants.
Collapse
Affiliation(s)
- Lorenzo Palombi
- Istituto di Fisica Applicata Nello Carrara, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Schansker G, Tóth SZ, Kovács L, Holzwarth AR, Garab G. Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1032-43. [PMID: 21669182 DOI: 10.1016/j.bbabio.2011.05.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 12/16/2022]
Abstract
Experiments were carried out to identify a process co-determining with Q(A) the fluorescence rise between F(0) and F(M). With 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU), the fluorescence rise is sigmoidal, in its absence it is not. Lowering the temperature to -10°C the sigmoidicity is lost. It is shown that the sigmoidicity is due to the kinetic overlap between the reduction kinetics of Q(A) and a second process; an overlap that disappears at low temperature because the temperature dependences of the two processes differ. This second process can still relax at -60°C where recombination between Q(A)(-) and the donor side of photosystem (PS) II is blocked. This suggests that it is not a redox reaction but a conformational change can explain the data. Without DCMU, a reduced photosynthetic electron transport chain (ETC) is a pre-condition for reaching the F(M). About 40% of the variable fluorescence relaxes in 100ms. Re-induction while the ETC is still reduced takes a few ms and this is a photochemical process. The fact that the process can relax and be re-induced in the absence of changes in the redox state of the plastoquinone (PQ) pool implies that it is unrelated to the Q(B)-occupancy state and PQ-pool quenching. In both +/-DCMU the process studied represents ~30% of the fluorescence rise. The presented observations are best described within a conformational protein relaxation concept. In untreated leaves we assume that conformational changes are only induced when Q(A) is reduced and relax rapidly on re-oxidation. This would explain the relationship between the fluorescence rise and the ETC-reduction.
Collapse
Affiliation(s)
- Gert Schansker
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6701 Szeged, Hungary.
| | | | | | | | | |
Collapse
|
18
|
Papageorgiou GC, Govindjee. Photosystem II fluorescence: slow changes--scaling from the past. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:258-70. [PMID: 21530301 DOI: 10.1016/j.jphotobiol.2011.03.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 11/25/2022]
Abstract
With the advent of photoelectric devices (photocells, photomultipliers) in the 1930s, fluorometry of chlorophyll (Chl) a in vivo emerged as a major method in the science of photosynthesis. Early researchers employed fluorometry primarily for two tasks: to elucidate the role in photosynthesis, if any, of other plant pigments, such as Chl b, Chl c, carotenoids and phycobilins; and to use it as a convenient inverse measure of photosynthetic activity. In pursuing the latter task, it became apparent that Chl a fluorescence emission is influenced (i) by redox active Chl a molecules in the reaction center of photosystem (PS) II (photochemical quenching); (ii) by an electrochemical imbalance across the thylakoid membrane (high energy quenching); and (iii) by the size of the peripheral antennae of weakly fluorescent PSI and strongly fluorescent PSII in response to changes in the ambient light (state transitions). In this perspective we trace the historical evolution of our awareness of these concepts, particularly of the so-called 'State Transitions'.
Collapse
Affiliation(s)
- George C Papageorgiou
- National Center of Scientific Research Demokritos, Institute of Biology, Athens 15310, Greece.
| | | |
Collapse
|
19
|
Photosystem II fluorescence lifetime imaging in avocado leaves: contributions of the lutein-epoxide and violaxanthin cycles to fluorescence quenching. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:271-84. [PMID: 21356597 DOI: 10.1016/j.jphotobiol.2011.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/03/2011] [Accepted: 01/05/2011] [Indexed: 11/23/2022]
Abstract
Lifetime-resolved imaging measurements of chlorophyll a fluorescence were made on leaves of avocado plants to study whether rapidly reversible ΔpH-dependent (transthylakoid H(+) concentration gradient) thermal energy dissipation (qE) and slowly reversible ΔpH-independent fluorescence quenching (qI) are modulated by lutein-epoxide and violaxanthin cycles operating in parallel. Under normal conditions (without inhibitors), analysis of the chlorophyll a fluorescence lifetime data revealed two major lifetime pools (1.5 and 0.5 ns) for photosystem II during the ΔpH build-up under illumination. Formation of the 0.5-ns pool upon illumination was correlated with dark-retention of antheraxanthin and photo-converted lutein in leaves. Interconversion between the 1.5- and 0.5-ns lifetime pools took place during the slow part of the chlorophyll a fluorescence transient: first from 1.5 ns to 0.5 ns in the P-to-S phase, then back from 0.5 ns to 1.5 ns in the S-to-M phase. When linear electron transport and the resulting ΔpH build-up were inhibited by treatment with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), the major fluorescence intensity was due to a 2.2-ns lifetime pool with a minor faster contribution of approximately 0.7 ns. In the presence of DCMU, neither the intensity nor the lifetimes of fluorescence were affected by antheraxanthin and photo-converted lutein. Thus, we conclude that both antheraxanthin and photo-converted lutein are able to enhance ΔpH-dependent qE processes that are associated with the 0.5-ns lifetime pool. However, unlike zeaxanthin, retention of antheraxanthin and photo-converted lutein may not by itself stabilize quenching or cause qI.
Collapse
|
20
|
Pedrós R, Moya I, Goulas Y, Jacquemoud S. Chlorophyll fluorescence emission spectrum inside a leaf. Photochem Photobiol Sci 2008; 7:498-502. [PMID: 18385895 DOI: 10.1039/b719506k] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorophyll a fluorescence can be used as an early stress indicator. Fluorescence is also connected to photosynthesis so it can be proposed for global monitoring of vegetation status from a satellite platform. Nevertheless, the correct interpretation of fluorescence requires accurate physical models. The spectral shape of the leaf fluorescence free of any re-absorption effect plays a key role in the models and is difficult to measure. We present a vegetation fluorescence emission spectrum free of re-absorption based on a combination of measurements and modelling. The suggested spectrum takes into account the photosystem I and II spectra and their relative contribution to fluorescence. This emission spectrum is applicable to describe vegetation fluorescence in biospectroscopy and remote sensing.
Collapse
Affiliation(s)
- Roberto Pedrós
- Solar Radiation Group, Department of Earth Physics and Thermodynamics, University of Valencia, Spain
| | | | | | | |
Collapse
|
21
|
Thach LB, Shapcott A, Schmidt S, Critchley C. The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress responses. PHOTOSYNTHESIS RESEARCH 2007; 94:423-36. [PMID: 17680343 DOI: 10.1007/s11120-007-9207-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 05/28/2007] [Indexed: 05/16/2023]
Abstract
Causes for rarity in plants are poorly understood. Graptophyllum reticulatum is an endangered endemic species, and it has three close relatives with different conservation status: the vulnerable G. ilicifolium, the rare G. excelsum, and the common G. spinigerum. Applied to the chlorophyll a fluorescence transient of leaves, the JIP test provides a Performance Index (PI) which quantifies the main steps in photosystem II (PSII) photochemistry including light energy absorption, excitation energy trapping, and conversion of excitation energy into electron flow. The PI is calculated from three components which depend on the reaction center density, the trapping efficiency, and the electron transport efficiency. PI was measured in the natural habitats of the four species and under artificially imposed environmental stresses in the glasshouse to determine whether conservation status was related to stress resilience. The results showed that soil type is unlikely to restrict the endangered G. reticulatum, vulnerable G. ilicifolium, or rare G. excelsum because PI was similar in plants grown in diverse soils in the glasshouse. Photoinhibition is likely to restrict the endangered G. reticulatum to shade habitats because PI was significantly reduced when plants were exposed to more than 15% ambient light in controlled experiments. Water availability may determine the location and distribution of the vulnerable G. ilicifolium and common G. spinigerum because PI was reduced more than 60% when plants were exposed to water stress. While the characteristics of their natural habitats correspond to and explain the physiological responses, there was no obvious relationship between conservation status and environmental resilience. PI can be used to monitor vigor and health of populations of plants in the natural habitat. In cultivation experiments PI responds to key environmental variables that affect the distribution of species with conservation significance.
Collapse
Affiliation(s)
- Le Buu Thach
- School of Integrative Biology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | | | |
Collapse
|
22
|
Papageorgiou GC, Tsimilli-Michael M, Stamatakis K. The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. PHOTOSYNTHESIS RESEARCH 2007; 94:275-90. [PMID: 17665151 DOI: 10.1007/s11120-007-9193-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 05/03/2007] [Indexed: 05/16/2023]
Abstract
The light-induced/dark-reversible changes in the chlorophyll (Chl) a fluorescence of photosynthetic cells and membranes in the mus-to-several min time window (fluorescence induction, FI; or Kautsky transient) reflect quantum yield changes (quenching/de-quenching) as well as changes in the number of Chls a in photosystem II (PS II; state transitions). Both relate to excitation trapping in PS II and the ensuing photosynthetic electron transport (PSET), and to secondary PSET effects, such as ion translocation across thylakoid membranes and filling or depletion of post-PS II and post-PS I pools of metabolites. In addition, high actinic light doses may depress Chl a fluorescence irreversibly (photoinhibitory lowering; q(I)). FI has been studied quite extensively in plants an algae (less so in cyanobacteria) as it affords a low resolution panoramic view of the photosynthesis process. Total FI comprises two transients, a fast initial (OPS; for Origin, Peak, Steady state) and a second slower transient (SMT; for Steady state, Maximum, Terminal state), whose details are characteristically different in eukaryotic (plants and algae) and prokaryotic (cyanobacteria) oxygenic photosynthetic organisms. In the former, maximal fluorescence output occurs at peak P, with peak M lying much lower or being absent, in which case the PSMT phases are replaced by a monotonous PT fluorescence decay. In contrast, in phycobilisome (PBS)-containing cyanobacteria maximal fluorescence occurs at M which lies much higher than peak P. It will be argued that this difference is caused by a fluorescence lowering trend (state 1 --> 2 transition) that dominates the FI pattern of plants and algae, and correspondingly by a fluorescence increasing trend (state 2 --> 1 transition) that dominates the FI of PBS-containing cyanobacteria. Characteristically, however, the FI pattern of the PBS-minus cyanobacterium Acaryochloris marina resembles the FI patterns of algae and plants and not of the PBS-containing cyanobacteria.
Collapse
Affiliation(s)
- George C Papageorgiou
- National Center for Scientific Research Demokritos, Institute of Biology, Athens, 153 10, Greece.
| | | | | |
Collapse
|
23
|
Holub O, Seufferheld MJ, Gohlke C, Heiss GJ, Clegg RM. Fluorescence lifetime imaging microscopy of Chlamydomonas reinhardtii: non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transient. J Microsc 2007; 226:90-120. [PMID: 17444940 DOI: 10.1111/j.1365-2818.2007.01763.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence lifetime-resolved images of chlorophyll fluorescence were acquired at the maximum P-level and during the slower transient (up to 250 s, including P-S-M-T) in the green photosynthetic alga Chlamydomonas reinhardtii. At the P-level, wild type and the violaxanthin-accumulating mutant npq1 show similar fluorescence intensity and fluorescence lifetime-resolved images. The zeaxanthin-accumulating mutant npq2 displays reduced fluorescence intensity at the P-level (about 25-35% less) and corresponding lifetime-resolved frequency domain phase and modulation values compared to wild type/npq1. A two-component analysis of possible lifetime compositions shows that the reduction of the fluorescence intensity can be interpreted as an increase in the fraction of a short lifetime component. This supports the important photoprotection function of zeaxanthin in photosynthetic samples, and is consistent with the notion of a 'dimmer switch'. Similar, but quantitatively different, behaviour was observed in the intensity and fluorescence lifetime-resolved imaging measurements for cells that were treated with the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethyl urea, the efficient PSI electron acceptor methyl viologen and the protonophore nigericin and. Lower fluorescence intensities and lifetimes were observed for all npq2 mutant samples at the P-level and during the slow fluorescence transient, compared to wild type and the npq1 mutant. The fluorescence lifetime-resolved measurements during the slow fluorescence changes after the P level up to 250 s for the wild type and the two mutants, in the presence and absence of the above inhibitors, were analyzed with a graphical procedure (polar plots) to determine lifetime compositions. At higher illumination intensity, wild type and npq1 cells show a rise in fluorescence intensity and corresponding rise in the species concentration of the slow lifetime component after the initial decrease following the P level. This reversal is absent in the npq2 mutant, and for all samples in the presence of the inhibitors. Lifetime heterogeneities were observed in experiments averaged over multiple cells as well as within single cells, and these were followed over time. Cells in the resting state (induced by several hours of darkness), instead of the normal swimming state, show shortened lifetimes. The above results are discussed in terms of a superposition of effects on electron transfer and protonation rates, on the so-called 'State Transitions', and on non-photochemical quenching. Our data indicate two major populations of chlorophyll a molecules, defined by two 'lifetime pools' centred on slower and faster fluorescence lifetimes.
Collapse
Affiliation(s)
- O Holub
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green St., Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
24
|
Lazár D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:9-30. [PMID: 32689211 DOI: 10.1071/fp05095] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 08/18/2005] [Indexed: 05/24/2023]
Abstract
Chlorophyll a fluorescence rise caused by illumination of photosynthetic samples by high intensity of exciting light, the O-J-I-P (O-I1-I2-P) transient, is reviewed here. First, basic information about chlorophyll a fluorescence is given, followed by a description of instrumental set-ups, nomenclature of the transient, and samples used for the measurements. The review mainly focuses on the explanation of particular steps of the transient based on experimental and theoretical results, published since a last review on chlorophyll a fluorescence induction [Lazár D (1999) Biochimica et Biophysica Acta 1412, 1-28]. In addition to 'old' concepts (e.g. changes in redox states of electron acceptors of photosystem II (PSII), effect of the donor side of PSII, fluorescence quenching by oxidised plastoquinone pool), 'new' approaches (e.g. electric voltage across thylakoid membranes, electron transport through the inactive branch in PSII, recombinations between PSII electron acceptors and donors, electron transport reactions after PSII, light gradient within the sample) are reviewed. The K-step, usually detected after a high-temperature stress, and other steps appearing in the transient (the H and G steps) are also discussed. Finally, some applications of the transient are also mentioned.
Collapse
Affiliation(s)
- Dušan Lazár
- Palacký University, Faculty of Science, Department of Experimental Physics, Laboratory of Biophysics, tř. Svobody 26, 771 46 Olomouc, Czech Republic. Email
| |
Collapse
|