1
|
Huang Y, Cao L, Chen T, Chang X, Fang Y, Wu L. Genome-wide identification of the ATP-dependent zinc metalloprotease (FtsH) in Triticeae species reveals that TaFtsH-1 regulates cadmium tolerance in Triticum aestivum. PLoS One 2024; 19:e0316486. [PMID: 39739686 DOI: 10.1371/journal.pone.0316486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
The ATP-dependent zinc metalloprotease (FtsH) protein gene family is essential for plant growth, development, and stress responses. Although FtsH genes have been identified in various plant species, the FtsH gene family in wheat (Triticum aestivum) remains unstudied. In this study, we identified 11 TaFtsH genes with uneven chromosomal distribution, significant variations in gene sequence length, and differing intron numbers among individual members. Additionally, these proteins exhibit similar physicochemical characteristics as well as secondary and tertiary structures. The FtsH genes can be classified into eight groups, each characterized by similar structures and conserved motifs. Intraspecific and interspecific comparisons further revealed extensive gene duplications within the TaFtsH gene family, indicating a closer relationship to maize. Analysis of cis-acting elements in the promoter regions of TaFtsH genes revealed developmental and stress-responsive elements in most of the genes. Expression pattern analysis showed that TaFtsH genes are expressed in all wheat tissues, though with varying patterns. TaFtsH genes displayed differential responses to CdCl2, ZnSO4, and MnSO4 stress treatments. Gene Ontology (GO) enrichment analysis indicated that TaFtsH genes are involved in protein hydrolysis. Barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) technology confirmed the function of TaFtsH-1, indicating that silencing TaFtsH-1 enhances common wheat's resistance to cadmium (Cd) toxicity. In summary, this study offers an in-depth understanding of the FtsH gene family in wheat, establishing a solid basis for comprehending its functions, genetic mechanisms, and improving wheat's tolerance to heavy metal contamination.
Collapse
Affiliation(s)
- Yuxi Huang
- Henan Academy of Sciences, Zhengzhou, China
| | - Lifan Cao
- Henan Academy of Sciences, Zhengzhou, China
| | | | | | - Yumei Fang
- Henan Academy of Sciences, Zhengzhou, China
| | - Liuliu Wu
- College of Agriculture, Xinyang Agriculture and Forestry University, Xinyang, China
| |
Collapse
|
2
|
Cai Y, Liu Z, Wang H, Meng H, Cao Y. Mesoporous Silica Nanoparticles Mediate SiRNA Delivery for Long-Term Multi-Gene Silencing in Intact Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2301358. [PMID: 38145358 PMCID: PMC10916655 DOI: 10.1002/advs.202301358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/03/2023] [Indexed: 12/26/2023]
Abstract
RNA interference (RNAi) is a powerful tool for understanding and manipulating signaling pathways in plant science, potentially facilitating the accelerated development of novel plant traits and crop yield improvement. The common strategy for delivering siRNA into intact plants using agrobacterium or viruses is complicated and time-consuming, limiting the application of RNAi in plant research. Here, a novel delivery method based on mesoporous silica nanoparticles (MSNs) is reported, which allows for the efficient delivery of siRNA into mature plant leaves via topical application without the aid of mechanical forces, achieving transient gene knockdown with up to 98% silencing efficiency at the molecular level. In addition, this method is nontoxic to plant leaves, enabling the repeated delivery of siRNA for long-term silencing. White spots and yellowing phenotypes are observed after spraying the MSN-siRNA complex targeted at phytoene desaturase and magnesium chelatase genes. After high light treatment, photobleaching phenotypes are also observed by spraying MSNs-siRNA targeted at genes into the Photosystem II repair cycle. Furthermore, the study demonstrated that MSNs can simultaneously silence multiple genes. The results suggest that MSN-mediated siRNA delivery is an effective tool for long-term multi-gene silencing, with great potential for application in plant functional genomic analyses and crop improvement.
Collapse
Affiliation(s)
- Yao Cai
- Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyChinese Academy of SciencesBeijing100190China
| | - Zhujiang Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyChinese Academy of SciencesBeijing100190China
| | - Hang Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyChinese Academy of SciencesBeijing100190China
| | - Huan Meng
- Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyChinese Academy of SciencesBeijing100190China
| | - Yuhong Cao
- Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyChinese Academy of SciencesBeijing100190China
- School of Nano Science and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
3
|
Li C, Zhang X, Ye T, Li X, Wang G. Protection and Damage Repair Mechanisms Contributed To the Survival of Chroococcidiopsis sp. Exposed To a Mars-Like Near Space Environment. Microbiol Spectr 2022; 10:e0344022. [PMID: 36453906 PMCID: PMC9769825 DOI: 10.1128/spectrum.03440-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Chroococcidiopsis spp. can withstand extremely harsh environments, including a Mars-like environment. However, studies are lacking on the molecular mechanisms of Chroococcidiopsis sp. surviving in Mars-like environments. In the HH-21-5 mission, the desert cyanobacterium Chroococcidiopsis sp. was exposed to a Mars-like environment (near space; 35 km altitude) for 4 h, and a single-factor environment of near space was simulated on the ground. We investigated the survival and endurance mechanisms of Chroococcidiopsis sp. ASB-02 after exposing it to near space by studying its physiological and transcriptional properties. After the exposure, Chroococcidiopsis sp. ASB-02 exhibited high cell viability, although photosystem II activity decreased and the levels of reactive oxygen species increased. The single-factor simulation experiments revealed that for the survival of Chroococcidiopsis sp. ASB-02 in near space, UV radiation was the most important limiting factor, and it was followed by temperature. The near space environment triggered multiple metabolic pathway responses in Chroococcidiopsis sp. ASB-02. The upregulation of extracellular polysaccharides as well as carotenoid and scytonemin biosynthesis genes in response to UV radiation attenuated the extent of radiation reaching the cells. At the same time, genes related to protein synthesis were upregulated in response to the low temperature, overcoming the decrease in metabolic activity that was caused by the low temperature. In near space and after rehydration, the genes involved in various DNA and photosystem II repair pathways were upregulated. This reflected the damage to the DNA and photosystem II protein subunits in cells during the flight and suggested that repair mechanisms play an important role in the recovery of Chroococcidiopsis sp. ASB-02. IMPORTANCE This study reported that the protective and repair mechanisms of Chroococcidiopsis sp. ASB-02 contributed to its endurance ability in a Mars-like near space environment. In Chroococcidiopsis sp. ASB-02, a Mars-like near space environment activated the expression of genes involved in extracellular polysaccharides (EPS), carotenoid, scytonemin, and protein syntheses, which provided additional protection. Additionally, the cell damage repair process enhanced the recovery rate of Chroococcidiopsis sp. ASB-02 after the flight. This study will help to enhance the understanding of the tolerance mechanism of Chroococcidiopsis sp. and to provide important guidance as to the survival requirements for microbial life in a Mars-like environment.
Collapse
Affiliation(s)
- Caiyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xianyuan Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tong Ye
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gaohong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Pu T, Mo Z, Su L, Yang J, Wan K, Wang L, Liu R, Liu Y. Genome-wide identification and expression analysis of the ftsH protein family and its response to abiotic stress in Nicotiana tabacum L. BMC Genomics 2022; 23:503. [PMID: 35831784 PMCID: PMC9281163 DOI: 10.1186/s12864-022-08719-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The filamentous temperature-sensitive H protease (ftsH) gene family plays an important role in plant growth and development. FtsH proteins belong to the AAA protease family. Studies have shown that it is a key gene for plant chloroplast development and photosynthesis regulation. In addition, the ftsH gene is also involved in plant response to stress. At present, the research and analysis of the ftsH gene family are conducted in microorganisms such as Escherichia coli and Oenococcus and various plants such as Arabidopsis, pear, rice, and corn. However, analysis reports on ftsH genes from tobacco (Nicotiana tabacum L.), an important model plant, are still lacking. Since ftsH genes regulate plant growth and development, it has become necessary to systematically study this gene in an economically important plant like tobacco. RESULTS This is the first study to analyze the ftsH gene from Nicotiana tabacum L. K326 (NtftsH). We identified 20 ftsH genes from the whole genome sequence, renamed them according to their chromosomal locations, and divided them into eight subfamilies. These 20 NtftsH genes were unevenly distributed across the 24 chromosomes. We found four pairs of fragment duplications. We further investigated the collinearity between these genes and related genes in five other species. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis identified differential expression patterns of NtftsH in different tissues and under various abiotic stress conditions. CONCLUSIONS This study provides a comprehensive analysis of the NtftsH gene family. The exon-intron structure and motif composition are highly similar in NtftsH genes that belong to the same evolutionary tree branch. Homology analysis and phylogenetic comparison of ftsH genes from several different plants provide valuable clues for studying the evolutionary characteristics of NtftsH genes. The NtftsH genes play important roles in plant growth and development, revealed by their expression levels in different tissues as well as under different stress conditions. Gene expression and phylogenetic analyses will provide the basis for the functional analysis of NtftsH genes. These results provide a valuable resource for a better understanding of the biological role of the ftsH genes in the tobacco plant.
Collapse
Affiliation(s)
- Tianxiunan Pu
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Zejun Mo
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Long Su
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Jing Yang
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Ke Wan
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Linqi Wang
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Renxiang Liu
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China
| | - Yang Liu
- Guizhou Province, College of Tobacco Science of Guizhou University/ Guizhou Key Laboratory for Tobacco Quality, Huaxi District, Guiyang City, 550025, People's Republic of China.
| |
Collapse
|
5
|
Wen X, Yang Z, Ding S, Yang H, Zhang L, Lu C, Lu Q. Analysis of the changes of electron transfer and heterogeneity of photosystem II in Deg1-reduced Arabidopsis plants. PHOTOSYNTHESIS RESEARCH 2021; 150:159-177. [PMID: 33993381 DOI: 10.1007/s11120-021-00842-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/04/2021] [Indexed: 05/07/2023]
Abstract
Deg1 protease functions in protease and chaperone of PSII complex components, but few works were performed to study the effects of Deg1 on electron transport activities on the donor and acceptor side of PSII and its correlation with the photoprotection of PSII during photoinhibition. Therefore, we performed systematic and comprehensive investigations of electron transfers on the donor and acceptor sides of photosystem II (PSII) in the Deg1-reduced transgenic lines deg1-2 and deg1-4. Both the maximal quantum efficiency of PSII photochemistry (Fv/Fm) and the actual PSII efficiency (ΦPSII) decreased significantly in the transgenic plants. Increases in nonphotochemical quenching (NPQ) and the dissipated energy flux per reaction center (DI0/RC) were also shown in the transgenic plants. Along with the decreased D1, CP47, and CP43 content, these results suggested photoinhibition under growth light conditions in transgenic plants. Decreased Deg1 caused inhibition of electron transfer on the PSII reducing side, leading to a decline in the number of QB-reducing centers and accumulation of QB-nonreducing centers. The Tm of the Q band shifted from 5.7 °C in the wild-type plant to 10.4 °C and 14.2 °C in the deg1-2 and deg1-4 plants, respectively, indicating an increase in the stability of S2QA¯ in transgenic plants. PSIIα in the transgenic plants largely reduced, while PSIIβ and PSIIγ increased with the decline in the Deg1 levels in transgenic plants suggesting PSIIα centers gradually converted into PSIIβ and PSIIγ centers in the transgenic plants. Besides, the connectivity of PSIIα and PSIIβ was downregulated in transgenic plants. Our results reveal that downregulation of Deg1 protein levels induced photoinhibition in transgenic plants, leading to loss of PSII activities on both the donor and acceptor sides in transgenic plants. These results give a new insight into the regulation role of Deg1 in PSII electron transport.
Collapse
Affiliation(s)
- Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhipan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shunhua Ding
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Huixia Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China.
| | - Qingtao Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
6
|
UV-A Irradiation Increases Scytonemin Biosynthesis in Cyanobacteria Inhabiting Halites at Salar Grande, Atacama Desert. Microorganisms 2020; 8:microorganisms8111690. [PMID: 33142998 PMCID: PMC7692114 DOI: 10.3390/microorganisms8111690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/05/2020] [Accepted: 09/12/2020] [Indexed: 02/04/2023] Open
Abstract
Microbial consortia inhabiting evaporitic salt nodules at the Atacama Desert are dominated by unculturable cyanobacteria from the genus Halothece. Halite nodules provide transparency to photosynthetically active radiation and diminish photochemically damaging UV light. Atacama cyanobacteria synthesize scytonemin, a heterocyclic dimer, lipid soluble, UV-filtering pigment (in vivo absorption maximum at 370 nm) that accumulates at the extracellular sheath. Our goal was to demonstrate if UV-A irradiations modulate scytonemin biosynthesis in ground halites containing uncultured Halothece sp. cyanobacteria. Pulverized halite nodules with endolithic colonization were incubated under continuous UV-A radiation (3.6 W/m2) for 96 h, at 67% relative humidity, mimicking their natural habitat. Scytonemin content and relative transcription levels of scyB gene (a key gene in the biosynthesis of scytonemin) were evaluated by spectrophotometry and quantitative RT-PCR, respectively. After 48 h under these experimental conditions, the ratio scytonemin/chlorophyll a and the transcription of scyB gene increased to a maximal 1.7-fold value. Therefore, endolithic Halothece cyanobacteria in halites are metabolically active and UV radiation is an environmental stressor with a positive influence on scyB gene transcription and scytonemin biosynthesis. Endolithobiontic cyanobacteria in Atacama show a resilient evolutive and adaptive strategy to survive in one of the most extreme environments on Earth.
Collapse
|
7
|
Luimstra VM, Schuurmans JM, Hellingwerf KJ, Matthijs HCP, Huisman J. Blue light induces major changes in the gene expression profile of the cyanobacterium Synechocystis sp. PCC 6803. PHYSIOLOGIA PLANTARUM 2020; 170:10-26. [PMID: 32141606 PMCID: PMC7496141 DOI: 10.1111/ppl.13086] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 05/18/2023]
Abstract
Although cyanobacteria absorb blue light, they use it less efficiently for photosynthesis than other colors absorbed by their photosynthetic pigments. A plausible explanation for this enigmatic phenomenon is that blue light is not absorbed by phycobilisomes and, hence, causes an excitation shortage at photosystem II (PSII). This hypothesis is supported by recent physiological studies, but a comprehensive understanding of the underlying changes in gene expression is still lacking. In this study, we investigate how a switch from artificial white light to blue, orange or red light affects the transcriptome of the cyanobacterium Synechocystis sp. PCC 6803. In total, 145 genes were significantly regulated in response to blue light, whereas only a few genes responded to orange and red light. In particular, genes encoding the D1 and D2 proteins of PSII, the PSII chlorophyll-binding protein CP47 and genes involved in PSII repair were upregulated in blue light, whereas none of the photosystem I (PSI) genes responded to blue light. These changes were accompanied by a decreasing PSI:PSII ratio. Furthermore, many genes involved in gene transcription and translation and several ATP synthase genes were transiently downregulated, concurrent with a temporarily decreased growth rate in blue light. After 6-7 days, when cell densities had strongly declined, the growth rate recovered and the expression of these growth-related genes returned to initial levels. Hence, blue light induces major changes in the transcriptome of cyanobacteria, in an attempt to increase the photosynthetic activity of PSII and cope with the adverse growth conditions imposed by blue light.
Collapse
Affiliation(s)
- Veerle M. Luimstra
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Wetsus – Center of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
| | - J. Merijn Schuurmans
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Klaas J. Hellingwerf
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Hans C. P. Matthijs
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
8
|
Schultze M, Bilger W. Acclimation of Arabidopsis thaliana to low temperature protects against damage of photosystem II caused by exposure to UV-B radiation at 9 °C. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 134:73-80. [PMID: 30366738 DOI: 10.1016/j.plaphy.2018.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Various environmental variables interact with UV-B radiation (280-315 nm), among them temperature. In many plants epidermal UV screening is induced by low temperature even in the absence of UV irradiation. On the other hand, low temperature can aggravate damage caused by UV-B radiation. We investigated the interaction of UV-B radiation and low temperature in Arabidopsis thaliana (L.) Heynh. Exposure of plants grown at moderate temperature (21 °C) to UV-B radiation at 9 °C resulted in significantly higher damage of photosystem II (PS II) as compared to exposure at 21 °C. The higher damage at low temperature was related to slower recovery of maximal PS II quantum efficiency at this temperature. Epidermal UV-B transmittance was measured using a method based on chlorophyll fluorescence measurements. Acclimation to low temperature enhanced epidermal UV-B screening and improved the UV-B resistance considerably. Differences in the apparent UV-B sensitivity of PS II between plants grown in moderate or acclimated to cool temperatures were strongly diminished when damage was related to the UV-B radiation reaching the mesophyll (UV-Bint) as calculated from incident UV-B irradiance and epidermal UV-B transmittance. Evidence is presented that the remaining differences in sensitivity are caused by an increased rate of repair in plants acclimated to 9 °C. The data suggest that enhanced epidermal UV-B screening at low temperature functions to compensate for slower repair of UV-B damage at these temperatures. It is proposed that the UV-B irradiance reaching the mesophyll should be considered as an important parameter in experiments on UV-B resistance of plants.
Collapse
Affiliation(s)
- Matthias Schultze
- Botanical Institute, Christian-Albrechts Universität zu Kiel, Am Botanischen Garten 1-9, D-24118, Kiel, Germany; BioConsult SH GmbH & Co KG, Schobüller Straße 36, D-25813, Husum, Germany
| | - Wolfgang Bilger
- Botanical Institute, Christian-Albrechts Universität zu Kiel, Am Botanischen Garten 1-9, D-24118, Kiel, Germany.
| |
Collapse
|
9
|
An JY, Sharif H, Kang GB, Park KJ, Lee JG, Lee S, Jin MS, Song JJ, Wang J, Eom SH. Structural insights into the oligomerization of FtsH periplasmic domain from Thermotoga maritima. Biochem Biophys Res Commun 2018; 495:1201-1207. [PMID: 29180014 DOI: 10.1016/j.bbrc.2017.11.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/23/2017] [Indexed: 11/25/2022]
Abstract
Prompt removal of misfolded membrane proteins and misassembled membrane protein complexes is essential for membrane homeostasis. However, the elimination of these toxic proteins from the hydrophobic membrane environment has high energetic barriers. The transmembrane protein, FtsH, is the only known ATP-dependent protease responsible for this task. The mechanisms by which FtsH recognizes, unfolds, translocates, and proteolyzes its substrates remain unclear. The structure and function of the ATPase and protease domains of FtsH have been previously characterized while the role of the FtsH periplasmic domain has not clearly identified. Here, we report the 1.5-1.95 Å resolution crystal structures of the Thermotoga maritima FtsH periplasmic domain (tmPD) and describe the dynamic features of tmPD oligomerization.
Collapse
Affiliation(s)
- Jun Yop An
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Humayun Sharif
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Gil Bu Kang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kyung Jin Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jung-Gyu Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, KI for the BioCentury, Cancer Metastasis Control Center, KAIST, Daejeon 34141, Republic of Korea
| | - Jimin Wang
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
10
|
Dong W, Wang J, Niu G, Zhao S, Liu L. Crystal structure of the zinc-bound HhoA protease from Synechocystis sp. PCC 6803. FEBS Lett 2016; 590:3435-3442. [PMID: 27616292 DOI: 10.1002/1873-3468.12416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/04/2016] [Accepted: 09/05/2016] [Indexed: 11/05/2022]
Abstract
The high temperature requirement A (HtrA) proteases are oligomeric serine proteases essential for protein quality control. HtrA homolog A (HhoA) from the photosynthetic cyanobacterium Synechocystis sp. PCC 6803 assembles into a proteolytically active hexamer. Herein, we present the crystal structure of the hexameric HhoA in complex with the copurified peptide. Our data indicate the presence of three methionines in close proximity to the peptide-binding site of the PDZ domain. Unexpectedly, we observed that a zinc ion is accommodated within the central channel formed by a HhoA trimer. However, neither calcium nor magnesium showed affinity for HhoA. The role of the zinc ion in HhoA was tested in an in vitro proteolytic assay against the nonspecific substrate β-casein and was found to be inhibitory. Our findings provide insights into the regulation of HhoA by a redox-related mechanism involving methionine residues and by zinc ion-binding within the central channel.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jia Wang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guoqi Niu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Shun Zhao
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lin Liu
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Gao L, Ge H, Huang X, Liu K, Zhang Y, Xu W, Wang Y. Systematically ranking the tightness of membrane association for peripheral membrane proteins (PMPs). Mol Cell Proteomics 2014; 14:340-53. [PMID: 25505158 DOI: 10.1074/mcp.m114.044800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Large-scale quantitative evaluation of the tightness of membrane association for nontransmembrane proteins is important for identifying true peripheral membrane proteins with functional significance. Herein, we simultaneously ranked more than 1000 proteins of the photosynthetic model organism Synechocystis sp. PCC 6803 for their relative tightness of membrane association using a proteomic approach. Using multiple precisely ranked and experimentally verified peripheral subunits of photosynthetic protein complexes as the landmarks, we found that proteins involved in two-component signal transduction systems and transporters are overall tightly associated with the membranes, whereas the associations of ribosomal proteins are much weaker. Moreover, we found that hypothetical proteins containing the same domains generally have similar tightness. This work provided a global view of the structural organization of the membrane proteome with respect to divergent functions, and built the foundation for future investigation of the dynamic membrane proteome reorganization in response to different environmental or internal stimuli.
Collapse
Affiliation(s)
- Liyan Gao
- From the ‡State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China
| | - Haitao Ge
- §State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xiahe Huang
- From the ‡State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China
| | - Kehui Liu
- From the ‡State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China
| | - Yuanya Zhang
- From the ‡State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China
| | - Wu Xu
- ¶Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70504
| | - Yingchun Wang
- From the ‡State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China;
| |
Collapse
|
12
|
Wase N, Pham TK, Ow SY, Wright PC. Quantitative analysis of UV-A shock and short term stress using iTRAQ, pseudo selective reaction monitoring (pSRM) and GC-MS based metabolite analysis of the cyanobacterium Nostoc punctiforme ATCC 29133. J Proteomics 2014; 109:332-55. [DOI: 10.1016/j.jprot.2014.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/11/2014] [Accepted: 06/22/2014] [Indexed: 11/29/2022]
|
13
|
Cimdins A, Klinkert B, Aschke-Sonnenborn U, Kaiser FM, Kortmann J, Narberhaus F. Translational control of small heat shock genes in mesophilic and thermophilic cyanobacteria by RNA thermometers. RNA Biol 2014; 11:594-608. [PMID: 24755616 PMCID: PMC4152365 DOI: 10.4161/rna.28648] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyanobacteria constitute a heterogeneous phylum of oxygen-producing, photosynthetic prokaryotes. They are susceptible to various stress conditions like heat, salt, or light stress, all inducing the cyanobacterial heat shock response (HSR). Cyanobacterial small heat shock proteins (sHsps) are known to preserve thylakoid membrane integrity under stress conditions, thereby protecting the photosynthesis machinery. In Synechocystis sp PCC 6803, synthesis of the sHsp Hsp17 is regulated by an RNA thermometer (RNAT) in the 5′-untranslated region (5′-UTR) of the hsp17 mRNA. RNATs are direct temperature sensors that control expression of many bacterial heat shock and virulence genes. They hinder translation at low temperatures by base pairing, thus blocking ribosome access to the mRNA.
To explore the temperature range in which RNATs act, we studied various RNAT candidates upstream of sHsp genes from mesophilic and thermophilic cyanobacteria. The mesophilic cyanobacteria Anabaena variabilis and Nostoc sp chromosomally encode two sHsps each. Reporter gene studies suggested RNAT-mediated post-transcriptional regulation of shsp expression in both organisms. Detailed structural analysis of the two A. variabilis candidates revealed two novel RNAT types. The first, avashort, regulates translation primarily by masking of the AUG translational start codon. The second, featuring an extended initial hairpin, thus named avalong, presumably makes use of complex tertiary interaction. The 5′-UTR of the small heat shock gene hspA in the thermophile Thermosynechococcus elongatus is predicted to adopt an extended secondary structure. Structure probing revealed that the ribosome binding site was blocked at temperatures below 55 °C. The results of this study demonstrate that cyanobacteria commonly use RNATs to control expression of their small heat shock genes.
Collapse
Affiliation(s)
- Annika Cimdins
- Microbial Biology; Ruhr University Bochum; Bochum, Germany
| | | | | | | | - Jens Kortmann
- Microbial Biology; Ruhr University Bochum; Bochum, Germany
| | | |
Collapse
|
14
|
Yoshioka-Nishimura M, Yamamoto Y. Quality control of Photosystem II: the molecular basis for the action of FtsH protease and the dynamics of the thylakoid membranes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:100-6. [PMID: 24725639 DOI: 10.1016/j.jphotobiol.2014.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 01/20/2023]
Abstract
The reaction center-binding D1 protein of Photosystem II is damaged by excessive light, which leads to photoinhibition of Photosystem II. The damaged D1 protein is removed immediately by specific proteases, and a metalloprotease FtsH located in the thylakoid membranes is involved in the proteolytic process. According to recent studies on the distribution and organization of the protein complexes/supercomplexes in the thylakoid membranes, the grana of higher plant chloroplasts are crowded with Photosystem II complexes and light-harvesting complexes. For the repair of the photodamaged D1 protein, the majority of the active hexameric FtsH proteases should be localized in close proximity to the Photosystem II complexes. The unstacking of the grana may increase the area of the grana margin and facilitate easier access of the FtsH proteases to the damaged D1 protein. These results suggest that the structural changes of the thylakoid membranes by light stress increase the mobility of the membrane proteins and support the quality control of Photosystem II.
Collapse
Affiliation(s)
- Miho Yoshioka-Nishimura
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Yasusi Yamamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
15
|
Qin H, Li D. Enhanced Resistance to UV-B Radiation in Anabaena sp. PCC 7120 (Cyanophyceae) by Repeated Exposure. Curr Microbiol 2014; 69:1-9. [DOI: 10.1007/s00284-014-0543-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 12/10/2013] [Indexed: 12/24/2022]
|
16
|
Vass IZ, Kós PB, Knoppová J, Komenda J, Vass I. The cry-DASH cryptochrome encoded by the sll1629 gene in the cyanobacterium Synechocystis PCC 6803 is required for Photosystem II repair. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:318-26. [DOI: 10.1016/j.jphotobiol.2013.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 12/16/2022]
|
17
|
Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Lett 2013; 587:3372-81. [DOI: 10.1016/j.febslet.2013.09.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 02/08/2023]
|
18
|
Vass IZ, Kós PB, Sass L, Nagy CI, Vass I. The ability of cyanobacterial cells to restore UV-B radiation induced damage to Photosystem II is influenced by photolyase dependent DNA repair. Photochem Photobiol 2012; 89:384-90. [PMID: 23094999 DOI: 10.1111/php.12012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/15/2012] [Indexed: 11/27/2022]
Abstract
Damage of DNA and Photosystem-II are among the most significant effects of UV-B irradiation in photosynthetic organisms. Both damaged DNA and Photosystem-II can be repaired, which represent important defense mechanisms against detrimental UV-B effects. Correlation of Photosystem-II damage and repair with the concurrent DNA damage and repair was investigated in the cyanobacterium Synechocystis PCC6803 using its wild type and a photolyase deficient mutant, which is unable to repair UV-B induced DNA damages. A significant amount of damaged DNA accumulated during UV-B exposure in the photolyase mutant concomitant with decreased Photosystem-II activity and D1 protein amount. The transcript level of psbA3, which is a UV-responsive copy of the psbA gene family encoding the D1 subunit of the Photosystem-II reaction center, is also decreased in the photolyase mutant. The wild-type cells, however, did not accumulate damaged DNA during UV-B exposure, suffered smaller losses of Photosystem-II activity and D1 protein, and maintained higher level of psbA3 transcripts than the photolyase mutant. It is concluded that the repair capacity of Photosystem-II depends on the ability of cells to repair UV-B-damaged DNA through maintaining the transcription of genes, which are essential for protein synthesis-dependent repair of the Photosystem-II reaction center.
Collapse
Affiliation(s)
- István-Zoltán Vass
- Biological Research Center of the Hungarian Academy of Sciences, Institute of Plant Biology, Szeged, Hungary
| | | | | | | | | |
Collapse
|
19
|
Boehm M, Yu J, Krynicka V, Barker M, Tichy M, Komenda J, Nixon PJ, Nield J. Subunit organization of a synechocystis hetero-oligomeric thylakoid FtsH complex involved in photosystem II repair. THE PLANT CELL 2012; 24:3669-83. [PMID: 22991268 PMCID: PMC3480294 DOI: 10.1105/tpc.112.100891] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
FtsH metalloproteases are key components of the photosystem II (PSII) repair cycle, which operates to maintain photosynthetic activity in the light. Despite their physiological importance, the structure and subunit composition of thylakoid FtsH complexes remain uncertain. Mutagenesis has previously revealed that the four FtsH homologs encoded by the cyanobacterium Synechocystis sp PCC 6803 are functionally different: FtsH1 and FtsH3 are required for cell viability, whereas FtsH2 and FtsH4 are dispensable. To gain insights into FtsH2, which is involved in selective D1 protein degradation during PSII repair, we used a strain of Synechocystis 6803 expressing a glutathione S-transferase (GST)-tagged derivative (FtsH2-GST) to isolate FtsH2-containing complexes. Biochemical analysis revealed that FtsH2-GST forms a hetero-oligomeric complex with FtsH3. FtsH2 also interacts with FtsH3 in the wild-type strain, and a mutant depleted in FtsH3, like ftsH2(-) mutants, displays impaired D1 degradation. FtsH3 also forms a separate heterocomplex with FtsH1, thus explaining why FtsH3 is more important than FtsH2 for cell viability. We investigated the structure of the isolated FtsH2-GST/FtsH3 complex using transmission electron microscopy and single-particle analysis. The three-dimensional structural model obtained at a resolution of 26 Å revealed that the complex is hexameric and consists of alternating FtsH2/FtsH3 subunits.
Collapse
Affiliation(s)
- Marko Boehm
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jianfeng Yu
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Vendula Krynicka
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
| | - Myles Barker
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Martin Tichy
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
| | - Peter J. Nixon
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
- Address correspondence to
| | - Jon Nield
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
20
|
Qin H, Peng C, Liu Y, Li D. DIFFERENTIAL RESPONSES OF ANABAENA SP. PCC 7120 (CYANOPHYCEAE) CULTURED IN NITROGEN-DEFICIENT AND NITROGEN-ENRICHED MEDIA TO ULTRAVIOLET-B RADIATION(1). JOURNAL OF PHYCOLOGY 2012; 48:615-625. [PMID: 27011077 DOI: 10.1111/j.1529-8817.2012.01162.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stratospheric ozone depletion increases the amount of ultraviolet-B radiation (UVBR) (280-320 nm) reaching the surface of the earth, potentially affecting phytoplankton. In this work, Anabaena sp. PCC 7120, a typically nitrogen (N)-fixing filamentous bloom-forming cyanobacterium in freshwater, was individually cultured in N-deficient and N-enriched media for long-term acclimation before being subjected to ultraviolet-B (UVB) exposure experiments. Results suggested that the extent of breakage in the filaments induced by UVBR increases with increasing intensity of UVB stress. In general, except for the 0.1 W · m(-2) treatment, which showed a mild increase, UVB exposure inhibits photosynthesis as evidenced by the decrease in the chl fluorescence parameters maximum photochemical efficiency of PSII (Fv /Fm ) and maximum relative electron transport rate. Complementary chromatic acclimation was also observed in Anabaena under different intensities of UVB stress. Increased total carbohydrate and soluble protein may provide some protection for the culture against damaging UVB exposure. In addition, N-deficient cultures with higher recovery capacity showed overcompensatory growth under low UVB (0.1 W · m(-2) ) exposure during the recovery period. Significantly increased (∼830%) ATPase activity may provide enough energy to repair the damage caused by exposure to UVB.
Collapse
Affiliation(s)
- Hongjie Qin
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chengrong Peng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongding Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dunhai Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
21
|
Recombinant Deg/HtrA proteases from Synechocystis sp. PCC 6803 differ in substrate specificity, biochemical characteristics and mechanism. Biochem J 2011; 435:733-42. [PMID: 21332448 PMCID: PMC3195437 DOI: 10.1042/bj20102131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cyanobacteria require efficient protein-quality-control mechanisms to survive under dynamic, often stressful, environmental conditions. It was reported that three serine proteases, HtrA (high temperature requirement A), HhoA (HtrA homologue A) and HhoB (HtrA homologue B), are important for survival of Synechocystis sp. PCC 6803 under high light and temperature stresses and might have redundant physiological functions. In the present paper, we show that all three proteases can degrade unfolded model substrates, but differ with respect to cleavage sites, temperature and pH optima. For recombinant HhoA, and to a lesser extent for HtrA, we observed an interesting shift in the pH optimum from slightly acidic to alkaline in the presence of Mg2+ and Ca2+ ions. All three proteases formed different homo-oligomeric complexes with and without substrate, implying mechanistic differences in comparison with each other and with the well-studied Escherichia coli orthologues DegP (degradation of periplasmic proteins P) and DegS. Deletion of the PDZ domain decreased, but did not abolish, the proteolytic activity of all three proteases, and prevented substrate-induced formation of complexes higher than trimers by HtrA and HhoA. In summary, biochemical characterization of HtrA, HhoA and HhoB lays the foundation for a better understanding of their overlapping, but not completely redundant, stress-resistance functions in Synechocystis sp. PCC 6803.
Collapse
|
22
|
Wu H, Abasova L, Cheregi O, Deák Z, Gao K, Vass I. D1 protein turnover is involved in protection of Photosystem II against UV-B induced damage in the cyanobacterium Arthrospira (Spirulina) platensis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:320-5. [DOI: 10.1016/j.jphotobiol.2011.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 11/16/2022]
|
23
|
Häder DP, Helbling EW, Williamson CE, Worrest RC. Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 2011; 10:242-60. [PMID: 21253662 DOI: 10.1039/c0pp90036b] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The health of freshwater and marine ecosystems is critical to life on Earth. The impact of solar UV-B radiation is one potential stress factor that can have a negative impact on the health of certain species within these ecosystems. Although there is a paucity of data and information regarding the effect of UV-B radiation on total ecosystem structure and function, several recent studies have addressed the effects on various species within each trophic level. Climate change, acid deposition, and changes in other anthropogenic stressors such as pollutants alter UV exposure levels in inland and coastal marine waters. These factors potentially have important consequences for a variety of aquatic organisms including waterborne human pathogens. Recent results have demonstrated the negative impacts of exposure to UV-B radiation on primary producers, including effects on cyanobacteria, phytoplankton, macroalgae and aquatic plants. UV-B radiation is an environmental stressor for many aquatic consumers, including zooplankton, crustaceans, amphibians, fish, and corals. Many aquatic producers and consumers rely on avoidance strategies, repair mechanisms and the synthesis of UV-absorbing substances for protection. However, there has been relatively little information generated regarding the impact of solar UV-B radiation on species composition within natural ecosystems or on the interaction of organisms between trophic levels within those ecosystems. There remains the question as to whether a decrease in population size of the more sensitive primary producers would be compensated for by an increase in the population size of more tolerant species, and therefore whether there would be a net negative impact on the absorption of atmospheric carbon dioxide by these ecosystems. Another question is whether there would be a significant impact on the quantity and quality of nutrients cycling through the food web, including the generation of food proteins for humans. Interactive effects of UV radiation with changes in other stressors, including climate change and pollutants, are likely to be particularly important.
Collapse
|
24
|
Liu X, Rodermel SR, Yu F. A var2 leaf variegation suppressor locus, SUPPRESSOR OF VARIEGATION3, encodes a putative chloroplast translation elongation factor that is important for chloroplast development in the cold. BMC PLANT BIOLOGY 2010; 10:287. [PMID: 21187014 PMCID: PMC3022910 DOI: 10.1186/1471-2229-10-287] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 12/28/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND The Arabidopsis var2 mutant displays a unique green and white/yellow leaf variegation phenotype and lacks VAR2, a chloroplast FtsH metalloprotease. We are characterizing second-site var2 genetic suppressors as means to better understand VAR2 function and to study the regulation of chloroplast biogenesis. RESULTS In this report, we show that the suppression of var2 variegation in suppressor line TAG-11 is due to the disruption of the SUPPRESSOR OF VARIEGATION3 (SVR3) gene, encoding a putative TypA-like translation elongation factor. SVR3 is targeted to the chloroplast and svr3 single mutants have uniformly pale green leaves at 22°C. Consistent with this phenotype, most chloroplast proteins and rRNA species in svr3 have close to normal accumulation profiles, with the notable exception of the Photosystem II reaction center D1 protein, which is present at greatly reduced levels. When svr3 is challenged with chilling temperature (8°C), it develops a pronounced chlorosis that is accompanied by abnormal chloroplast rRNA processing and chloroplast protein accumulation. Double mutant analysis indicates a possible synergistic interaction between svr3 and svr7, which is defective in a chloroplast pentatricopeptide repeat (PPR) protein. CONCLUSIONS Our findings, on one hand, reinforce the strong genetic link between VAR2 and chloroplast translation, and on the other hand, point to a critical role of SVR3, and possibly some aspects of chloroplast translation, in the response of plants to chilling stress.
Collapse
Affiliation(s)
- Xiayan Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Steve R Rodermel
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Fei Yu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
25
|
Liu X, Yu F, Rodermel S. An Arabidopsis pentatricopeptide repeat protein, SUPPRESSOR OF VARIEGATION7, is required for FtsH-mediated chloroplast biogenesis. PLANT PHYSIOLOGY 2010; 154:1588-601. [PMID: 20935174 PMCID: PMC2996016 DOI: 10.1104/pp.110.164111] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 10/04/2010] [Indexed: 05/18/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) yellow variegated2 (var2) mutant has green- and white-sectored leaves due to loss of VAR2, a subunit of the chloroplast FtsH protease/chaperone complex. Suppressor screens are a valuable tool to gain insight into VAR2 function and the mechanism of var2 variegation. Here, we report the molecular characterization of 004-003, a line in which var2 variegation is suppressed. We found that the suppression phenotype in this line is caused by lack of a chloroplast pentatricopeptide repeat (PPR) protein that we named SUPPRESSOR OF VARIEGATION7 (SVR7). PPR proteins contain tandemly repeated PPR motifs that bind specific RNAs, and they are thought to be central regulators of chloroplast and mitochondrial nucleic acid metabolism in plants. The svr7 mutant has defects in chloroplast ribosomal RNA (rRNA) processing that are different from those in other svr mutants, and these defects are correlated with reductions in the accumulation of some chloroplast proteins, directly or indirectly. We also found that whereas var2 displays a leaf variegation phenotype at 22°C, it has a pronounced chlorosis phenotype at 8°C that is correlated with defects in chloroplast rRNA processing and a drastic reduction in chloroplast protein accumulation. Surprisingly, the cold-induced phenotype of var2 cannot be suppressed by svr7. Our results strengthen the previously established linkage between var2 variegation and chloroplast rRNA processing/chloroplast translation, and they also point toward the possibility that VAR2 mediates different activities in chloroplast biogenesis at normal and chilling temperatures.
Collapse
Affiliation(s)
| | | | - Steve Rodermel
- Department of Genetics, Development, and Cell Biology (X.L., S.R.) and Interdepartmental Genetics Graduate Program (X.L.), Iowa State University, Ames, Iowa 50011; and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China (F.Y.)
| |
Collapse
|
26
|
Liu X, Yu F, Rodermel S. Arabidopsis chloroplast FtsH, var2 and suppressors of var2 leaf variegation: a review. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:750-61. [PMID: 20666930 DOI: 10.1111/j.1744-7909.2010.00980.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Variegation mutants are ideal model systems to study chloroplast biogenesis. We are interested in variegations whose green and white-sectored leaves arise as a consequence of the action of nuclear recessive genes. In this review, we focus on the Arabidopsis var2 variegation mutant, and discuss recent progress toward understanding the function of VAR2 and the mechanism of var2-mediated variegation. VAR2 is a subunit of the chloroplast FtsH complex, which is involved in turnover of the Photosystem II reaction center D1 protein, as well as in other processes required for the development and maintenance of the photosynthetic apparatus. The cells in green sectors of var2 have normal-appearing chloroplasts whereas cells in the white sectors have abnormal plastids that lack pigments and organized lamellae. To explain the mechanism of var2 variegation, we have proposed a threshold model in which the formation of chloroplasts is due to the presence of activities/processes that are able to compensate for a lack of VAR2. To gain insight into these activities, second-site suppressor screens have been carried out to obtain mutants with non-variegation phenotypes. Cloning and characterization of several var2 suppressor lines have uncovered several mechanisms of variegation suppression, including an unexpected link between var2 variegation and chloroplast translation.
Collapse
Affiliation(s)
- Xiayan Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| | | | | |
Collapse
|
27
|
Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J. Recent advances in understanding the assembly and repair of photosystem II. ANNALS OF BOTANY 2010; 106:1-16. [PMID: 20338950 PMCID: PMC2889791 DOI: 10.1093/aob/mcq059] [Citation(s) in RCA: 398] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/01/2010] [Accepted: 02/09/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Photosystem II (PSII) is the light-driven water:plastoquinone oxidoreductase of oxygenic photosynthesis and is found in the thylakoid membrane of chloroplasts and cyanobacteria. Considerable attention is focused on how PSII is assembled in vivo and how it is repaired following irreversible damage by visible light (so-called photoinhibition). Understanding these processes might lead to the development of plants with improved growth characteristics especially under conditions of abiotic stress. SCOPE Here we summarize recent results on the assembly and repair of PSII in cyanobacteria, which are excellent model organisms to study higher plant photosynthesis. CONCLUSIONS Assembly of PSII is highly co-ordinated and proceeds through a number of distinct assembly intermediates. Associated with these assembly complexes are proteins that are not found in the final functional PSII complex. Structural information and possible functions are beginning to emerge for several of these 'assembly' factors, notably Ycf48/Hcf136, Psb27 and Psb28. A number of other auxiliary proteins have been identified that appear to have evolved since the divergence of chloroplasts and cyanobacteria. The repair of PSII involves partial disassembly of the damaged complex, the selective replacement of the damaged sub-unit (predominantly the D1 sub-unit) by a newly synthesized copy, and reassembly. It is likely that chlorophyll released during the repair process is temporarily stored by small CAB-like proteins (SCPs). A model is proposed in which damaged D1 is removed in Synechocystis sp. PCC 6803 by a hetero-oligomeric complex composed of two different types of FtsH sub-unit (FtsH2 and FtsH3), with degradation proceeding from the N-terminus of D1 in a highly processive reaction. It is postulated that a similar mechanism of D1 degradation also operates in chloroplasts. Deg proteases are not required for D1 degradation in Synechocystis 6803 but members of this protease family might play a supplementary role in D1 degradation in chloroplasts under extreme conditions.
Collapse
Affiliation(s)
- Peter J Nixon
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
28
|
Komenda J, Knoppová J, Krynická V, Nixon PJ, Tichý M. Role of FtsH2 in the repair of Photosystem II in mutants of the cyanobacterium Synechocystis PCC 6803 with impaired assembly or stability of the CaMn(4) cluster. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:566-75. [PMID: 20153291 DOI: 10.1016/j.bbabio.2010.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/25/2010] [Accepted: 02/04/2010] [Indexed: 11/26/2022]
Abstract
The FtsH2 protease, encoded by the slr0228 gene, plays a key role in the selective degradation of photodamaged D1 protein during the repair of Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. To test whether additional proteases might be involved in D1 degradation during high rates of photodamage, we have studied the synthesis and degradation of the D1 protein in DeltaPsbO and DeltaPsbV mutants, in which the CaMn(4) cluster catalyzing oxygen evolution is less stable, and in the D1 processing mutants, D1-S345P and DeltaCtpA, which are unable to assemble a functional cluster. All four mutants exhibited a dramatically increased rate of D1 degradation in high light compared to the wild-type. Additional inactivation of the ftsH2 gene slowed the rate of D1 degradation dramatically and increased the level of PSII complexes. We conclude that FtsH2 plays a major role in the degradation of both precursor and mature forms of D1 following donor-side photoinhibition. However, this conclusion concerned only D1 assembled into larger complexes containing at least D2 and CP47. In the DeltapsbEFLJ deletion mutant blocked at an early stage in PSII assembly, unassembled D1 protein was efficiently degraded in the absence of FtsH2 pointing to the involvement of other protease(s). Significantly, the DeltaPsbO mutant displayed unusually low levels of cellular chlorophyll at extremely low-light intensities. The possibilities that PSII repair may limit the availability of chlorophyll for the biogenesis of other chlorophyll-binding proteins and that PsbO might have a regulatory role in PSII repair are discussed.
Collapse
Affiliation(s)
- Josef Komenda
- Institute of Microbiology, Academy of Sciences, Opatovický mlýn, Trebon, Czech Republic.
| | | | | | | | | |
Collapse
|
29
|
Yue G, Hu X, He Y, Yang A, Zhang J. Identification and characterization of two members of the FtsH gene family in maize (Zea mays L.). Mol Biol Rep 2010; 37:855-63. [PMID: 19669593 DOI: 10.1007/s11033-009-9691-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 07/28/2009] [Indexed: 01/26/2023]
Abstract
Two full-length cDNAs, designated as ZmFtsH2A and ZmFtsH2B, were isolated from maize (Zea mays L.) by suppression subtractive hybridization coupled with in silico cloning approach. The predicted proteins of ZmFtsH2A and ZmFtsH2B both consisted of 677 amino acid residues and displayed high similarity to FtsH2 protease of Arabidopsis thaliana. DNA gel blotting analysis indicated that AtFtsH2-like genes exist as two copies in maize genome. The genomic sequences of ZmFtsH2A and ZmFtsH2B were cloned and the main difference was that the first intron of ZmFtsH2B was much longer than that of ZmFtsH2A. RT-PCR analysis revealed that both genes were constitutively expressed in all examined tissues and the expression level of ZmFtsH2B transcripts was higher than that of ZmFtsH2A. The responses of the two genes in maize seedlings to PEG, cold, high salt, and ABA treatments were compared, and the results showed that ZmFtsH2B transcription in leaves was markedly up-regulated by water deficit stress and ABA treatments while ZmFtsH2A constitutively expressed both in leaves and roots under all tested stressful conditions. Drought tolerance of transgenic tobaccos overexpressing ZmFtsH2A and ZmFtsH2B weren't improved compared to wild-type controls, which indicated that two genes might not be directly involved in plant drought tolerance or the number of functional FtsH heterocomplex might not be increased in this condition. Our current study provides fundamental information for the further investigation of the maize FtsH proteins.
Collapse
Affiliation(s)
- Guidong Yue
- School of Life Sciences, Shandong University, 27 Shanda South Road, 250100, Jinan, Shandong, China
| | | | | | | | | |
Collapse
|
30
|
Gene expression patterns associated with the biosynthesis of the sunscreen scytonemin in Nostoc punctiforme ATCC 29133 in response to UVA radiation. J Bacteriol 2009; 191:4639-46. [PMID: 19429608 DOI: 10.1128/jb.00134-09] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under exposure to UV radiation, some cyanobacteria synthesize sunscreen compounds. Scytonemin is a heterocyclic indole-alkaloid sunscreen, the synthesis of which is induced upon exposure to UVA (long-wavelength UV) radiation. We previously identified and characterized an 18-gene cluster associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133; we now report on the expression response of these genes to a step-up shift in UVA exposure. Using quantitative PCR on cDNAs from the N. punctiforme transcriptome and primers targeting each of the 18 genes in the cluster, we followed their differential expression in parallel subcultures incubated with and without UVA. All 18 genes are induced by UVA irradiation, with relative transcription levels that generally peak after 48 h of continuous UVA exposure. A five-gene cluster implicated in the process of scytonemin biosynthesis solely on the basis of comparative genomics was also upregulated. Furthermore, we demonstrate that all of the genes in the 18-gene region are cotranscribed as part of a single transcriptional unit.
Collapse
|
31
|
Balogi Z, Cheregi O, Giese KC, Juhász K, Vierling E, Vass I, Vígh L, Horváth I. A mutant small heat shock protein with increased thylakoid association provides an elevated resistance against UV-B damage in synechocystis 6803. J Biol Chem 2008; 283:22983-91. [PMID: 18574246 DOI: 10.1074/jbc.m710400200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Besides acting as molecular chaperones, the amphitropic small heat shock proteins (sHsps) are suggested to play an additional role in membrane quality control. We investigated sHsp membrane function in the model cyanobacterium Synechocystis sp. PPC 6803 using mutants of the single sHsp from this organism, Hsp17. We examined mutants in the N-terminal arm, L9P and Q16R, for altered interaction with thylakoid and lipid membranes and examined the effects of these mutations on thylakoid functions. These mutants are unusual in that they retain their oligomeric state and chaperone activity in vitro but fail to confer thermotolerance in vivo. We found that both mutant proteins had dramatically altered membrane/lipid interaction properties. Whereas L9P showed strongly reduced binding to thylakoid and model membranes, Q16R was almost exclusively membrane-associated, properties that may be the cause of reduced heat tolerance of cells carrying these mutations. Among the lipid classes tested, Q16R displayed the highest interaction with negatively charged SQDG. In Q16R cells a specific alteration of the thylakoid-embedded Photosystem II (PSII) complex was observed. Namely, the binding of plastoquinone and quinone analogue acceptors to the Q(B) site was modified. In addition, the presence of Q16R dramatically reduced UV-B damage of PSII activity because of enhanced PSII repair. We suggest these effects occur at least partly because of increased interaction of Q16R with SQDG in the PSII complex. Our findings further support the model that membrane association is a functional property of sHsps and suggest sHsps as a possible biotechnological tool to enhance UV protection of photosynthetic organisms.
Collapse
Affiliation(s)
- Zsolt Balogi
- Department of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Šnyrychová I, Kós PB, Hideg É. Hydroxyl radicals are not the protagonists of UV-B-induced damage in isolated thylakoid membranes. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 34:1112-1121. [PMID: 32689441 DOI: 10.1071/fp07151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 10/17/2007] [Indexed: 06/11/2023]
Abstract
The production of reactive oxygen species (ROS) was studied in isolated thylakoid membranes exposed to 312 nm UV-B irradiation. Hydroxyl radicals (•OH) and hydrogen peroxide were measured directly, using a newly developed method based on hydroxylation of terephthalic acid and the homovanillic acid/peroxidase assay, respectively. At the early stage of UV-B stress (doses lower than 2.0 J cm-2), •OH were derived from superoxide radicals via hydrogen peroxide. Production of these ROS was dependent on photosynthetic electron transport and was not exclusive to UV-B. Both ROS were found in samples exposed to the same doses of PAR, suggesting that the observed ROS are by-products of the UV-B-driven electron transport rather than specific initiators of the UV-B-induced damage. After longer exposure of thylakoids to UV-B, leading to the inactivation of PSII centres, a small amount of •OH was still observed in thylakoids, even though no free hydrogen peroxide was detected. At this late stage of UV-B stress, •OH may also be formed by the direct cleavage of organic peroxides by UV-B. Immunodetection showed that the presence of the observed ROS alone was not sufficient to achieve the degradation of the D1 protein of PSII centres.
Collapse
Affiliation(s)
- Iva Šnyrychová
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Péter B Kós
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Éva Hideg
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
33
|
Differential regulation of psbA and psbD gene expression, and the role of the different D1 protein copies in the cyanobacterium Thermosynechococcus elongatus BP-1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:74-83. [PMID: 18053792 DOI: 10.1016/j.bbabio.2007.10.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/28/2007] [Accepted: 10/30/2007] [Indexed: 11/22/2022]
Abstract
In Thermosynechococcus elongatus BP-1, which is the preferred organism in recent structural studies of PSII, three psbA and two psbD genes code for three D1 and one D2 protein isoforms, respectively. The regulation and function of these genes and protein products is largely unknown. Therefore, we used quantitative RT-PCR to follow changes in the mRNA level of the respective genes, in combination with biophysical measurements to detect changes in the electron transport activity of Photosystem II under exposure to different visible and UV light, and temperature conditions. In cells which are acclimated to 40 micromol m(-2)s(-1) growth light conditions at 40 degrees C the main populations of the psbA and psbD transcripts arise from the psbA1 and psbD1 genes, respectively. When the temperature is raised to 60 degrees C psbA1 becomes the single dominating psbA mRNA species. Upon exposure of the cells to 500 micromol m(-2)s(-1) intensity visible light psbA3 replaces psbA1 as the dominating psbA mRNA species, and psbD2 increases at the expense of psbD1. UV-B radiation also increases the abundance of psbA3, and psbD2 at the expense of psbA1 and psbD1, respectively. From the different extent of total D1 protein loss in the absence and presence of lincomycin it was estimated that the PsbA3 protein isoform replaces PsbA1 in about 65% of PSII centers after 2 h of high light acclimation. Under the conditions of different psbA transcript distributions chlorophyll fluorescence and thermoluminescence measurements were applied to monitor charge recombination characteristics of the S2Q(A)(-) and S2Q(B)(-) states. We obtained faster decay of flash-induced chlorophyll fluorescence in the presence of DCMU, as well as lower peak temperature of the Q and B thermoluminescence bands when PsbA3 replaced PsbA1 as the main D1 protein isoform. The relevance of dynamic changes in the abundance of psbA and psbD transcript levels, as well as D1 protein isoforms in the acclimation of T. elongatus to changing environmental conditions is discussed.
Collapse
|
34
|
Komenda J, Tichy M, Prásil O, Knoppová J, Kuviková S, de Vries R, Nixon PJ. The exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during photosystem II repair in Synechocystis sp PCC 6803. THE PLANT CELL 2007; 19:2839-54. [PMID: 17905897 PMCID: PMC2048700 DOI: 10.1105/tpc.107.053868] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/04/2007] [Accepted: 09/13/2007] [Indexed: 05/17/2023]
Abstract
The selective replacement of photodamaged D1 protein within the multisubunit photosystem II (PSII) complex is an important photoprotective mechanism in chloroplasts and cyanobacteria. FtsH proteases are involved at an early stage of D1 degradation, but it remains unclear how the damaged D1 subunit is recognized, degraded, and replaced. To test the role of the N-terminal region of D1 in PSII biogenesis and repair, we have constructed mutants of the cyanobacterium Synechocystis sp PCC 6803 that are truncated at the exposed N terminus. Removal of 5 or 10 residues blocked D1 synthesis, as assessed in radiolabeling experiments, whereas removal of 20 residues restored the ability to assemble oxygen-evolving dimeric PSII complexes but inhibited PSII repair at the level of D1 degradation. Overall, our results identify an important physiological role for the exposed N-terminal tail of D1 at an early step in selective D1 degradation. This finding has important implications for the recognition of damaged D1 and its synchronized replacement by a newly synthesized subunit.
Collapse
Affiliation(s)
- Josef Komenda
- Institute of Microbiology, Academy of Sciences, Opatovický mlýn, 37981, Trebon, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Photosynthesis is the basic energy conversion process on Earth, which makes possible the utilization of the energy of sunlight for living organisms. However, light is not only the basic driving force of photosynthesis, but also an important stress factor at the same time. Light-induced decline of photosynthetic activity, generally denoted as photoinhibition, is a general phenomenon in all oxygenic photosynthetic organism under conditions when the metabolic processes cannot keep up with the electron flow produced by the primary photoreactions. Although light-induced damage occurs in all pigmented photosynthetic complexes the primary site of photoinhibition is the photosystem II (PSII) complex, which performs light-driven oxidation of water to protons and oxygen. The main factors, which are responsible for the light sensitivity of photosystem II, are excited pigment molecules, oxygen, manganese, as well as electron donors with high-oxidizing potential. Photosystem II can be efficiently protected from photodamage by the combination of harmless dissipation of absorbed light energy, nonradiative charge recombination, and repair of damaged reaction center complexes, making possible the safe utilization of light, the highly energetic substrate of photosynthesis.
Collapse
Affiliation(s)
- Imre Vass
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, 6726 Szeged, Temesvári krt. 62, Hungary.
| | | | | |
Collapse
|