1
|
García-Cruz G, Esparza-Perusquía M, Cruz-Cárdenas A, Cruz-Vilchis D, Flores-Herrera O. Kinetic characterization of respirasomes and free complex I from Yarrowia lipolytica. Mitochondrion 2025; 83:102035. [PMID: 40180170 DOI: 10.1016/j.mito.2025.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
The mitochondrion is a highly dynamic organelle capable of adapting to external stimuli and the energetic demands of the cell. As the primary source of cellular ATP, generating approximately 90 % of the total, mitochondrion facilitates the association of respiratory complexes I, III2, and IV into supramolecular structures called respirasomes. This supramolecular organization enhances protein density within the mitochondrial inner membrane, enabling homogenous energy production. In this study, we investigate the subunits composition and the kinetic characterization of digitonin-solubilized respirasomes and the free complex I from Yarrowia lipolytica as well as their role in reactive oxygen species (ROS) production. The NADH:DBQ oxido reductase activity of respirasome and free complex I was similar. Respiration by respirasome was inhibited with rotenone, antimycin A, or cyanide, simultaneously to an increase in the ROS production. A value of 1.6 ± 0.2 for the NADH oxidized/oxygen reduced ratio was determined for the respirasome activity. The role of interaction between complexes in the function of the respirasome is discussed.
Collapse
Affiliation(s)
- Giovanni García-Cruz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Mercedes Esparza-Perusquía
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Alejandro Cruz-Cárdenas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Diana Cruz-Vilchis
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
2
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
3
|
Reyes-Rosario D, Pardo JP, Guerra-Sánchez G, Vázquez-Meza H, López-Hernández G, Matus-Ortega G, González J, Baeza M, Romero-Aguilar L. Analysis of the Respiratory Activity in the Antarctic Yeast Rhodotorula mucilaginosa M94C9 Reveals the Presence of Respiratory Supercomplexes and Alternative Elements. Microorganisms 2024; 12:1931. [PMID: 39458241 PMCID: PMC11509550 DOI: 10.3390/microorganisms12101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The respiratory activities of mitochondrial complexes I, II, and IV were analyzed in permeabilized Rhodotorula mucilaginosa cells and isolated mitochondria, and the kinetic parameters K0.5 and Vmax were obtained. No difference in substrate affinities were found between mitochondria and permeabilized cells. The activities of the components of the mitochondrial respiratory chain of the Antarctic yeast R. mucilaginosa M94C9 were identified by in-gel activity and SDS-PAGE. The mitochondria exhibited activity for the classical components of the electron transport chain (Complexes I, II, III, and IV), and supercomplexes were formed by a combination of the respiratory complexes I, III, and IV. Unfortunately, the activities of the monomeric and dimeric forms of the F1F0-ATP synthase were not revealed by the in-gel assay, but the two forms of the ATP synthase were visualized in the SDS-PAGE. Furthermore, two alternative pathways for the oxidation of cytosolic NADH were identified: the alternative NADH dehydrogenase and the glycerol-3-phosphate dehydrogenase. In addition, an NADPH dehydrogenase and a lactate cytochrome b2 dehydrogenase were found. The residual respiratory activity following cyanide addition suggests the presence of an alternative oxidase in cells.
Collapse
Affiliation(s)
- Daniel Reyes-Rosario
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Georgina López-Hernández
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Genaro Matus-Ortega
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico;
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| |
Collapse
|
4
|
Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S, Cabrera-Orefice A. The mitochondrial respiratory chain from Rhodotorula mucilaginosa, an extremophile yeast. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149035. [PMID: 38360260 DOI: 10.1016/j.bbabio.2024.149035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Rhodotorula mucilaginosa survives extreme conditions through several mechanisms, among them its carotenoid production and its branched mitochondrial respiratory chain (RC). Here, the branched RC composition was analyzed by biochemical and complexome profiling approaches. Expression of the different RC components varied depending on the growth phase and the carbon source present in the medium. R. mucilaginosa RC is constituted by all four orthodox respiratory complexes (CI to CIV) plus several alternative oxidoreductases, in particular two type-II NADH dehydrogenases (NDH2) and one alternative oxidase (AOX). Unlike others, in this yeast the activities of the orthodox and alternative respiratory complexes decreased in the stationary phase. We propose that the branched RC adaptability is an important factor for survival in extreme environmental conditions; thus, contributing to the exceptional resilience of R. mucilaginosa.
Collapse
Affiliation(s)
- Paulina Castañeda-Tamez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Natalia Chiquete-Félix
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Salvador Uribe-Carvajal
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Alfredo Cabrera-Orefice
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Mendez-Romero O, Ricardez-García C, Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S. Thriving in Oxygen While Preventing ROS Overproduction: No Two Systems Are Created Equal. Front Physiol 2022; 13:874321. [PMID: 35444563 PMCID: PMC9013945 DOI: 10.3389/fphys.2022.874321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
From 2.5 to 2.0 billion years ago, atmospheric oxygen concentration [O2] rose thousands of times, leading to the first mass extinction. Reactive Oxygen Species (ROS) produced by the non-catalyzed partial reduction of O2 were highly toxic eliminating many species. Survivors developed different strategies to cope with ROS toxicity. At the same time, using O2 as the final acceptor in respiratory chains increased ATP production manifold. Thus, both O2 and ROS were strong drivers of evolution, as species optimized aerobic metabolism while developing ROS-neutralizing mechanisms. The first line of defense is preventing ROS overproduction and two mechanisms were developed in parallel: 1) Physiological uncoupling systems (PUS), which increase the rate of electron fluxes in respiratory systems. 2) Avoidance of excess [O2]. However, it seems that as avoidance efficiency improved, PUSs became less efficient. PUS includes branched respiratory chains and proton sinks, which may be proton specific, the mitochondrial uncoupling proteins (UCPs) or unspecific, the mitochondrial permeability transition pore (PTP). High [O2] avoidance also involved different strategies: 1) Cell association, as in biofilms or in multi-cellularity allowed gas-permeable organisms (oxyconformers) from bacterial to arthropods to exclude O2. 2) Motility, to migrate from hypoxic niches. 3) Oxyregulator organisms: as early as in fish, and O2-impermeable epithelium excluded all gases and only exact amounts entered through specialized respiratory systems. Here we follow the parallel evolution of PUS and O2-avoidance, PUS became less critical and lost efficiency. In regard, to proton sinks, there is fewer evidence on their evolution, although UCPs have indeed drifted in function while in some species it is not clear whether PTPs exist.
Collapse
|
6
|
da Veiga Moreira J, Jolicoeur M, Schwartz L, Peres S. Fine-tuning mitochondrial activity in Yarrowia lipolytica for citrate overproduction. Sci Rep 2021; 11:878. [PMID: 33441687 PMCID: PMC7807019 DOI: 10.1038/s41598-020-79577-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Yarrowia lipolytica is a non-conventional yeast with promising industrial potentials for lipids and citrate production. It is also widely used for studying mitochondrial respiration due to a respiratory chain like those of mammalian cells. In this study we used a genome-scale model (GEM) of Y. lipolytica metabolism and performed a dynamic Flux Balance Analysis (dFBA) algorithm to analyze and identify metabolic levers associated with citrate optimization. Analysis of fluxes at stationary growth phase showed that carbon flux derived from glucose is rewired to citric acid production and lipid accumulation, whereas the oxidative phosphorylation (OxPhos) shifted to the alternative respiration mode through alternative oxidase (AOX) protein. Simulations of optimized citrate secretion flux resulted in a pronounced lipid oxidation along with reactive oxygen species (ROS) generation and AOX flux inhibition. Then, we experimentally challenged AOX inhibition by adding n-Propyl Gallate (nPG), a specific AOX inhibitor, on Y. lipolytica batch cultures at stationary phase. Our results showed a twofold overproduction of citrate (20.5 g/L) when nPG is added compared to 10.9 g/L under control condition (no nPG addition). These results suggest that ROS management, especially through AOX activity, has a pivotal role on citrate/lipid flux balance in Y. lipolytica. All taken together, we thus provide for the first time, a key for the understanding of a predominant metabolic mechanism favoring citrate overproduction in Y. lipolytica at the expense of lipids accumulation.
Collapse
Affiliation(s)
- Jorgelindo da Veiga Moreira
- grid.183158.60000 0004 0435 3292Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Ecole Polytechnique de Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC Canada
| | - Mario Jolicoeur
- grid.183158.60000 0004 0435 3292Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Ecole Polytechnique de Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC Canada
| | - Laurent Schwartz
- grid.50550.350000 0001 2175 4109Assistance Publique des Hôpitaux de Paris, 149 avenue Victoria, 75004 Paris, France
| | - Sabine Peres
- grid.4444.00000 0001 2112 9282LRI, Université Paris-Saclay, CNRS, 91405 Orsay, France ,grid.503376.4MaIAGE, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
7
|
Matuz-Mares D, Flores-Herrera O, Guerra-Sánchez G, Romero-Aguilar L, Vázquez-Meza H, Matus-Ortega G, Martínez F, Pardo JP. Carbon and Nitrogen Sources Have No Impact on the Organization and Composition of Ustilago maydis Respiratory Supercomplexes. J Fungi (Basel) 2021; 7:jof7010042. [PMID: 33440829 PMCID: PMC7827470 DOI: 10.3390/jof7010042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 11/29/2022] Open
Abstract
Respiratory supercomplexes are found in mitochondria of eukaryotic cells and some bacteria. A hypothetical role of these supercomplexes is electron channeling, which in principle should increase the respiratory chain efficiency and ATP synthesis. In addition to the four classic respiratory complexes and the ATP synthase, U. maydis mitochondria contain three type II NADH dehydrogenases (NADH for reduced nicotinamide adenine dinucleotide) and the alternative oxidase. Changes in the composition of the respiratory supercomplexes due to energy requirements have been reported in certain organisms. In this study, we addressed the organization of the mitochondrial respiratory complexes in U. maydis under diverse energy conditions. Supercomplexes were obtained by solubilization of U. maydis mitochondria with digitonin and separated by blue native polyacrylamide gel electrophoresis (BN-PAGE). The molecular mass of supercomplexes and their probable stoichiometries were 1200 kDa (I1:IV1), 1400 kDa (I1:III2), 1600 kDa (I1:III2:IV1), and 1800 kDa (I1:III2:IV2). Concerning the ATP synthase, approximately half of the protein is present as a dimer and half as a monomer. The distribution of respiratory supercomplexes was the same in all growth conditions. We did not find evidence for the association of complex II and the alternative NADH dehydrogenases with other respiratory complexes.
Collapse
Affiliation(s)
- Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (O.F.-H.); (L.R.-A.); (H.V.-M.); (G.M.-O.); (F.M.)
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (O.F.-H.); (L.R.-A.); (H.V.-M.); (G.M.-O.); (F.M.)
| | - Guadalupe Guerra-Sánchez
- Laboratorio de Bioquímica y Biotecnología de Hongos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Miguel Hidalgo, Ciudad de México 11350, Mexico
- Correspondence: (G.G.-S.); (J.P.P.)
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (O.F.-H.); (L.R.-A.); (H.V.-M.); (G.M.-O.); (F.M.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (O.F.-H.); (L.R.-A.); (H.V.-M.); (G.M.-O.); (F.M.)
| | - Genaro Matus-Ortega
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (O.F.-H.); (L.R.-A.); (H.V.-M.); (G.M.-O.); (F.M.)
| | - Federico Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (O.F.-H.); (L.R.-A.); (H.V.-M.); (G.M.-O.); (F.M.)
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (O.F.-H.); (L.R.-A.); (H.V.-M.); (G.M.-O.); (F.M.)
- Correspondence: (G.G.-S.); (J.P.P.)
| |
Collapse
|
8
|
Ukolova IV, Kondakova MA, Kondratov IG, Sidorov AV, Borovskii GB, Voinikov VK. New insights into the organisation of the oxidative phosphorylation system in the example of pea shoot mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2020; 1861:148264. [PMID: 32663476 DOI: 10.1016/j.bbabio.2020.148264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
The physical and functional organisation of the OXPHOS system in mitochondria in vivo remains elusive. At present, different models of OXPHOS arrangement, representing either highly ordered respiratory strings or, vice versa, a set of randomly dispersed supercomplexes and respiratory complexes, have been suggested. In the present study, we examined a supramolecular arrangement of the OXPHOS system in pea shoot mitochondria using digitonin solubilisation of its constituents, which were further analysed by classical BN-related techniques and a multidimensional gel electrophoresis system when required. As a result, in addition to supercomplexes I1III2, I1III2IVn and III2IV1-2, dimer V2, and individual complexes I-V previously detected in plant mitochondria, new OXPHOS structures were also revealed. Of them, (1) a megacomplex (IIxIIIyIVz)n including complex II, (2) respirasomes I2III4IVn with two copies of complex I and dimeric complex III2, (3) a minor new supercomplex IV1Va2 comigrating with I1III2, and (4) a second minor form of ATP synthase, Va, were found. The activity of singular complexes I, IV, and V was higher than the activity of the associated forms. The detection of new supercomplex IV1Va2, along with assemblies I1III2 and I1-2III2-4IVn, prompted us to suggest the occurrence of in vivo oxphosomes comprising complexes I, III2, IV, and V. The putative oxphosome's stoichiometry, historical background, assumed functional significance, and subcompartmental location are discussed herein.
Collapse
Affiliation(s)
- Irina V Ukolova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk 664033, Russia.
| | - Marina A Kondakova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk 664033, Russia
| | - Ilya G Kondratov
- Limnological Institute SB RAS, 3, Ulan-Batorskaya St., Irkutsk 664033, Russia
| | - Alexander V Sidorov
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk 664033, Russia; Irkutsk State Medical University, 1, Krasnogo Vosstaniya St., Irkutsk 664003, Russia
| | - Gennadii B Borovskii
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk 664033, Russia
| | - Victor K Voinikov
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk 664033, Russia
| |
Collapse
|
9
|
Antos-Krzeminska N, Jarmuszkiewicz W. Alternative Type II NAD(P)H Dehydrogenases in the Mitochondria of Protists and Fungi. Protist 2018; 170:21-37. [PMID: 30553126 DOI: 10.1016/j.protis.2018.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/12/2018] [Accepted: 11/04/2018] [Indexed: 01/11/2023]
Abstract
Plants, fungi, and some protists possess a more branched electron transport chain in their mitochondria compared to canonical one. In these organisms, the electron transport chain contains several rotenone-insensitive NAD(P)H dehydrogenases. Some are located on the outer surface, and others are located on the inner surface of the inner mitochondrial membrane. The putative role of these enzymes still remains elusive, but they may prevent the overreduction of the electron transport chain components and decrease the production of reaction oxygen species as a consequence. The last two decades resulted in the discovery of alternative rotenone-insensitive NAD(P)H dehydrogenases present in representatives of fungi and protozoa. The aim of this review is to gather and focus on current information concerning molecular and functional properties, regulation, and the physiological role of fungal and protozoan alternative NAD(P)H dehydrogenases.
Collapse
Affiliation(s)
- Nina Antos-Krzeminska
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland.
| | - Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
10
|
Miranda-Astudillo HV, Yadav KNS, Colina-Tenorio L, Bouillenne F, Degand H, Morsomme P, Boekema EJ, Cardol P. The atypical subunit composition of respiratory complexes I and IV is associated with original extra structural domains in Euglena gracilis. Sci Rep 2018; 8:9698. [PMID: 29946152 PMCID: PMC6018760 DOI: 10.1038/s41598-018-28039-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/14/2018] [Indexed: 11/10/2022] Open
Abstract
In mitochondrial oxidative phosphorylation, electron transfer from NADH or succinate to oxygen by a series of large protein complexes in the inner mitochondrial membrane (complexes I-IV) is coupled to the generation of an electrochemical proton gradient, the energy of which is utilized by complex V to generate ATP. In Euglena gracilis, a non-parasitic secondary green alga related to trypanosomes, these respiratory complexes totalize more than 40 Euglenozoa-specific subunits along with about 50 classical subunits described in other eukaryotes. In the present study the Euglena proton-pumping complexes I, III, and IV were purified from isolated mitochondria by a two-steps liquid chromatography approach. Their atypical subunit composition was further resolved and confirmed using a three-steps PAGE analysis coupled to mass spectrometry identification of peptides. The purified complexes were also observed by electron microscopy followed by single-particle analysis. Even if the overall structures of the three oxidases are similar to the structure of canonical enzymes (e.g. from mammals), additional atypical domains were observed in complexes I and IV: an extra domain located at the tip of the peripheral arm of complex I and a "helmet-like" domain on the top of the cytochrome c binding region in complex IV.
Collapse
Affiliation(s)
- H V Miranda-Astudillo
- Laboratoire de Génétique et Physiologie des microalgues, InBioS/Phytosystems, Institut de Botanique, Université de Liège, Liege, Belgium
| | - K N S Yadav
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - L Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - F Bouillenne
- InBioS/Center for Protein Engineering, Université de Liège, Liege, Belgium
| | - H Degand
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - P Morsomme
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - E J Boekema
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - P Cardol
- Laboratoire de Génétique et Physiologie des microalgues, InBioS/Phytosystems, Institut de Botanique, Université de Liège, Liege, Belgium.
| |
Collapse
|
11
|
Alternative mitochondrial respiratory chains from two crustaceans: Artemia franciscana nauplii and the white shrimp, Litopenaeus vannamei. J Bioenerg Biomembr 2018; 50:143-152. [PMID: 29594796 DOI: 10.1007/s10863-018-9753-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
Mitochondrial ATP is synthesized by coupling between the electron transport chain and complex V. In contrast, physiological uncoupling of these processes allows mitochondria to consume oxygen at high rates without ATP synthesis. Such uncoupling mechanisms prevent reactive oxygen species overproduction. One of these mechanisms are the alternative redox enzymes from the mitochondrial respiratory chain, which may help cells to maintain homeostasis under stress independently of ATP synthesis. To date, no reports have been published on alternative redox enzymes in crustaceans mitochondria. Specific inhibitors were used to identify alternative redox enzymes in mitochondria isolated from Artemia franciscana nauplii, and the white shrimp, Litopenaeus vannamei. We report the presence of two alternative redox enzymes in the respiratory chain of A. franciscana nauplii, whose isolated mitochondria used glycerol-3-phosphate as a substrate, suggesting the existence of a glycerol-3-phosphate dehydrogenase. In addition, cyanide and octyl-gallate were necessary to fully inhibit this species' mitochondrial oxygen consumption, suggesting an alternative oxidase is present. The in-gel activity analysis confirmed that additional mitochondrial redox proteins exist in A. franciscana. A mitochondrial glycerol-3-phosphate dehydrogenase oxidase was identified by protein sequencing as part of a branched respiratory chain, and an alternative oxidase was also identified in this species by western blot. These results indicate different adaptive mechanisms from artemia to face environmental challenges related to the changing levels of oxygen concentration in seawater through their life cycles. No alternative redox enzymes were found in shrimp mitochondria, further efforts will determine the existence of an uncoupling mechanism such as uncoupling proteins.
Collapse
|
12
|
Miranda-Astudillo H, Colina-Tenorio L, Jiménez-Suárez A, Vázquez-Acevedo M, Salin B, Giraud MF, Remacle C, Cardol P, González-Halphen D. Oxidative phosphorylation supercomplexes and respirasome reconstitution of the colorless alga Polytomella sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018. [PMID: 29540299 DOI: 10.1016/j.bbabio.2018.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The proposal that the respiratory complexes can associate with each other in larger structures named supercomplexes (SC) is generally accepted. In the last decades most of the data about this association came from studies in yeasts, mammals and plants, and information is scarce in other lineages. Here we studied the supramolecular association of the F1FO-ATP synthase (complex V) and the respiratory complexes I, III and IV of the colorless alga Polytomella sp. with an approach that involves solubilization using mild detergents, n-dodecyl-β-D-maltoside (DDM) or digitonin, followed by separation of native protein complexes by electrophoresis (BN-PAGE), after which we identified oligomeric forms of complex V (mainly V2 and V4) and different respiratory supercomplexes (I/IV6, I/III4, I/IV). In addition, purification/reconstitution of the supercomplexes by anion exchange chromatography was also performed. The data show that these complexes have the ability to strongly associate with each other and form DDM-stable macromolecular structures. The stable V4 ATPase oligomer was observed by electron-microscopy and the association of the respiratory complexes in the so-called "respirasome" was able to perform in-vitro oxygen consumption.
Collapse
Affiliation(s)
- Héctor Miranda-Astudillo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico; Genetics and Physiology of microalgae, InBioS/Phytosystems, University of Liège, Belgium.
| | - Lilia Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Alejandra Jiménez-Suárez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Miriam Vázquez-Acevedo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Bénédicte Salin
- CNRS, UMR5095, IBGC, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Campus Carreire, 146 Rue Léo Saignat, 33077 Bordeaux, France
| | - Marie-France Giraud
- CNRS, UMR5095, IBGC, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Campus Carreire, 146 Rue Léo Saignat, 33077 Bordeaux, France
| | - Claire Remacle
- Genetics and Physiology of microalgae, InBioS/Phytosystems, University of Liège, Belgium
| | - Pierre Cardol
- Genetics and Physiology of microalgae, InBioS/Phytosystems, University of Liège, Belgium
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
13
|
Xu P, Qiao K, Stephanopoulos G. Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnol Bioeng 2017; 114:1521-1530. [PMID: 28295166 DOI: 10.1002/bit.26285] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/05/2017] [Accepted: 03/09/2017] [Indexed: 12/22/2022]
Abstract
Microbially derived lipids have recently attracted renewed interests due to their broad applications in production of green diesels, cosmetic additives, and oleochemicals. Metabolic engineering efforts have targeted a large portfolio of biosynthetic pathways to efficiently convert sugar to lipids in oleaginous yeast. In the engineered overproducing strains, endogenous cell metabolism typically generates harmful electrophilic molecules that compromise cell fitness and productivity. Lipids, particularly unsaturated fatty acids, are highly susceptible to oxygen radical attack and the resulting oxidative species are detrimental to cell metabolism and limit lipid productivity. In this study, we investigated cellular oxidative stress defense pathways in Yarrowia lipolytica to further improve the lipid titer, yield, and productivity. Specifically, we determined that coupling glutathione disulfide reductase and glucose-6-phosphate dehydrogenase along with aldehyde dehydrogenase are efficient solutions to combat reactive oxygen and aldehyde stress in Y. lipolytica. With the reported engineering strategies, we were able to synchronize cell growth and lipid production, improve cell fitness and morphology, and achieved industrially-relevant level of lipid titer (72.7 g/L), oil content (81.4%) and productivity (0.97 g/L/h) in controlled bench-top bioreactors. The strategies reported here represent viable steps in the development of sustainable biorefinery platforms that potentially upgrade low value carbons to high value oleochemicals and biofuels. Biotechnol. Bioeng. 2017;114: 1521-1530. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peng Xu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Kangjian Qiao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
14
|
Yadav KS, Miranda-Astudillo HV, Colina-Tenorio L, Bouillenne F, Degand H, Morsomme P, González-Halphen D, Boekema EJ, Cardol P. Atypical composition and structure of the mitochondrial dimeric ATP synthase from Euglena gracilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:267-275. [DOI: 10.1016/j.bbabio.2017.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 11/26/2022]
|
15
|
Guarás A, Perales-Clemente E, Calvo E, Acín-Pérez R, Loureiro-Lopez M, Pujol C, Martínez-Carrascoso I, Nuñez E, García-Marqués F, Rodríguez-Hernández MA, Cortés A, Diaz F, Pérez-Martos A, Moraes CT, Fernández-Silva P, Trifunovic A, Navas P, Vazquez J, Enríquez JA. The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency. Cell Rep 2016; 15:197-209. [PMID: 27052170 DOI: 10.1016/j.celrep.2016.03.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/03/2016] [Accepted: 02/27/2016] [Indexed: 02/01/2023] Open
Abstract
Electrons feed into the mitochondrial electron transport chain (mETC) from NAD- or FAD-dependent enzymes. A shift from glucose to fatty acids increases electron flux through FAD, which can saturate the oxidation capacity of the dedicated coenzyme Q (CoQ) pool and result in the generation of reactive oxygen species. To prevent this, the mETC superstructure can be reconfigured through the degradation of respiratory complex I, liberating associated complex III to increase electron flux via FAD at the expense of NAD. Here, we demonstrate that this adaptation is driven by the ratio of reduced to oxidized CoQ. Saturation of CoQ oxidation capacity induces reverse electron transport from reduced CoQ to complex I, and the resulting local generation of superoxide oxidizes specific complex I proteins, triggering their degradation and the disintegration of the complex. Thus, CoQ redox status acts as a metabolic sensor that fine-tunes mETC configuration in order to match the prevailing substrate profile.
Collapse
Affiliation(s)
- Adela Guarás
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Ester Perales-Clemente
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Enrique Calvo
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Rebeca Acín-Pérez
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Marta Loureiro-Lopez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Claire Pujol
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Isabel Martínez-Carrascoso
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Estefanía Nuñez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Fernando García-Marqués
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - María Angeles Rodríguez-Hernández
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Sevilla 41013, Spain
| | - Ana Cortés
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Sevilla 41013, Spain
| | - Francisca Diaz
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Acisclo Pérez-Martos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Carlos T Moraes
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Patricio Fernández-Silva
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Sevilla 41013, Spain
| | - Jesús Vazquez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Jose A Enríquez
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain.
| |
Collapse
|
16
|
Vázquez-Acevedo M, Vega-deLuna F, Sánchez-Vásquez L, Colina-Tenorio L, Remacle C, Cardol P, Miranda-Astudillo H, González-Halphen D. Dissecting the peripheral stalk of the mitochondrial ATP synthase of chlorophycean algae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1183-1190. [PMID: 26873638 DOI: 10.1016/j.bbabio.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/25/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
The algae Chlamydomonas reinhardtii and Polytomella sp., a green and a colorless member of the chlorophycean lineage respectively, exhibit a highly-stable dimeric mitochondrial F1Fo-ATP synthase (complex V), with a molecular mass of 1600 kDa. Polytomella, lacking both chloroplasts and a cell wall, has greatly facilitated the purification of the algal ATP-synthase. Each monomer of the enzyme has 17 polypeptides, eight of which are the conserved, main functional components, and nine polypeptides (Asa1 to Asa9) unique to chlorophycean algae. These atypical subunits form the two robust peripheral stalks observed in the highly-stable dimer of the algal ATP synthase in several electron-microscopy studies. The topological disposition of the components of the enzyme has been addressed with cross-linking experiments in the isolated complex; generation of subcomplexes by limited dissociation of complex V; detection of subunit-subunit interactions using recombinant subunits; in vitro reconstitution of subcomplexes; silencing of the expression of Asa subunits; and modeling of the overall structural features of the complex by EM image reconstruction. Here, we report that the amphipathic polymer Amphipol A8-35 partially dissociates the enzyme, giving rise to two discrete dimeric subcomplexes, whose compositions were characterized. An updated model for the topological disposition of the 17 polypeptides that constitute the algal enzyme is suggested. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Miriam Vázquez-Acevedo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Félix Vega-deLuna
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Lorenzo Sánchez-Vásquez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Lilia Colina-Tenorio
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Claire Remacle
- Genetics and Physiology of Microalgae, Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Pierre Cardol
- Genetics and Physiology of Microalgae, Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Héctor Miranda-Astudillo
- Genetics and Physiology of Microalgae, Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico.
| |
Collapse
|
17
|
Abstract
Since the discovery of the existence of superassemblies between mitochondrial respiratory complexes, such superassemblies have been the object of a passionate debate. It is accepted that respiratory supercomplexes are structures that occur in vivo, although which superstructures are naturally occurring and what could be their functional role remain open questions. The main difficulty is to make compatible the existence of superassemblies with the corpus of data that drove the field to abandon the early understanding of the physical arrangement of the mitochondrial respiratory chain as a compact physical entity (the solid model). This review provides a nonexhaustive overview of the evolution of our understanding of the structural organization of the electron transport chain from the original idea of a compact organization to a view of freely moving complexes connected by electron carriers. Today supercomplexes are viewed not as a revival of the old solid model but rather as a refined revision of the fluid model, which incorporates a new layer of structural and functional complexity.
Collapse
Affiliation(s)
- José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| |
Collapse
|
18
|
Uribe-Alvarez C, Chiquete-Félix N, Contreras-Zentella M, Guerrero-Castillo S, Peña A, Uribe-Carvajal S. Staphylococcus epidermidis: metabolic adaptation and biofilm formation in response to different oxygen concentrations. Pathog Dis 2015; 74:ftv111. [PMID: 26610708 DOI: 10.1093/femspd/ftv111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus epidermidis has become a major health hazard. It is necessary to study its metabolism and hopefully uncover therapeutic targets. Cultivating S. epidermidis at increasing oxygen concentration [O2] enhanced growth, while inhibiting biofilm formation. Respiratory oxidoreductases were differentially expressed, probably to prevent reactive oxygen species formation. Under aerobiosis, S. epidermidis expressed high oxidoreductase activities, including glycerol-3-phosphate dehydrogenase, pyruvate dehydrogenase, ethanol dehydrogenase and succinate dehydrogenase, as well as cytochromes bo and aa3; while little tendency to form biofilms was observed. Under microaerobiosis, pyruvate dehydrogenase and ethanol dehydrogenase decreased while glycerol-3-phosphate dehydrogenase and succinate dehydrogenase nearly disappeared; cytochrome bo was present; anaerobic nitrate reductase activity was observed; biofilm formation increased slightly. Under anaerobiosis, biofilms grew; low ethanol dehydrogenase, pyruvate dehydrogenase and cytochrome bo were still present; nitrate dehydrogenase was the main terminal electron acceptor. KCN inhibited the aerobic respiratory chain and increased biofilm formation. In contrast, methylamine inhibited both nitrate reductase and biofilm formation. The correlation between the expression and/or activity or redox enzymes and biofilm-formation activities suggests that these are possible therapeutic targets to erradicate S. epidermidis.
Collapse
Affiliation(s)
- Cristina Uribe-Alvarez
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Natalia Chiquete-Félix
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Martha Contreras-Zentella
- Department of Cellular and Developmental Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Sergio Guerrero-Castillo
- Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Antonio Peña
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Salvador Uribe-Carvajal
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| |
Collapse
|
19
|
Cabrera-Orefice A, Ibarra-García-Padilla R, Maldonado-Guzmán R, Guerrero-Castillo S, Luévano-Martínez LA, Pérez-Vázquez V, Gutiérrez-Aguilar M, Uribe-Carvajal S. The Saccharomyces cerevisiae mitochondrial unselective channel behaves as a physiological uncoupling system regulated by Ca2+, Mg2+, phosphate and ATP. J Bioenerg Biomembr 2015; 47:477-91. [PMID: 26530988 DOI: 10.1007/s10863-015-9632-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
It is proposed that the Saccharomyces cerevisiae the Mitochondrial Unselective Channel ((Sc)MUC) is tightly regulated constituting a physiological uncoupling system that prevents overproduction of reactive oxygen species (ROS). Mg(2+), Ca(2+) or phosphate (Pi) close (Sc)MUC, while ATP or a high rate of oxygen consumption open it. We assessed (Sc)MUC activity by measuring in isolated mitochondria the respiratory control, transmembrane potential (ΔΨ), swelling and production of ROS. At increasing [Pi], less [Ca(2+)] and/or [Mg(2+)] were needed to close (Sc)MUC or increase ATP synthesis. The Ca(2+)-mediated closure of (Sc)MUC was prevented by high [ATP] while the Mg(2+) or Pi effect was not. When Ca(2+) and Mg(2+) were alternatively added or chelated, (Sc)MUC opened and closed reversibly. Different effects of Ca(2+) vs Mg(2+) effects were probably due to mitochondrial Mg(2+) uptake. Our results suggest that (Sc)MUC activity is dynamically controlled by both the ATP/Pi ratio and divalent cation fluctuations. It is proposed that the reversible opening/closing of (Sc)MUC leads to physiological uncoupling and a consequent decrease in ROS production.
Collapse
Affiliation(s)
- Alfredo Cabrera-Orefice
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rodrigo Ibarra-García-Padilla
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rocío Maldonado-Guzmán
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Luis A Luévano-Martínez
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Salvador Uribe-Carvajal
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico. .,Salvador Uribe-Carvajal, Department of Molecular Genetics, Instituto de Fisiología Celular, UNAM, Apdo. postal 70-242, 04510, Mexico City, Mexico.
| |
Collapse
|
20
|
Matus-Ortega MG, Cárdenas-Monroy CA, Flores-Herrera O, Mendoza-Hernández G, Miranda M, González-Pedrajo B, Vázquez-Meza H, Pardo JP. New complexes containing the internal alternative NADH dehydrogenase (Ndi1) in mitochondria of Saccharomyces cerevisiae. Yeast 2015; 32:629-41. [PMID: 26173916 DOI: 10.1002/yea.3086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/27/2015] [Accepted: 06/27/2015] [Indexed: 11/07/2022] Open
Abstract
Mitochondria of Saccharomyces cerevisiae lack the respiratory complex I, but contain three rotenone-insensitive NADH dehydrogenases distributed on both the external (Nde1 and Nde2) and internal (Ndi1) surfaces of the inner mitochondrial membrane. These enzymes catalyse the transfer of electrons from NADH to ubiquinone without the translocation of protons across the membrane. Due to the high resolution of the Blue Native PAGE (BN-PAGE) technique combined with digitonin solubilization, several bands with NADH dehydrogenase activity were observed on the gel. The use of specific S. cerevisiae single and double mutants of the external alternative elements (ΔNDE1, ΔNDE2, ΔNDE1/ΔNDE2) showed that the high and low molecular weight complexes contained the Ndi1. Some of the Ndi1 associations took place with complexes III and IV, suggesting the formation of respirasome-like structures. Complex II interacted with other proteins to form a high molecular weight supercomplex with a molecular mass around 600 kDa. We also found that the majority of the Ndi1 was in a dimeric form, which is in agreement with the recently reported three-dimensional structure of the protein.
Collapse
Affiliation(s)
- M G Matus-Ortega
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, México, D. F., México
| | - C A Cárdenas-Monroy
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, México, D. F., México
| | - O Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, México, D. F., México
| | - G Mendoza-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, México, D. F., México
| | - M Miranda
- Department of Biological Sciences, University of Texas, El Paso, TX, USA
| | - B González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán 04510, México, D. F., México
| | - H Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, México, D. F., México
| | - J P Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, México, D. F., México
| |
Collapse
|
21
|
Gonçalves AP, Videira A. Mitochondrial type II NAD(P)H dehydrogenases in fungal cell death. MICROBIAL CELL 2015; 2:68-73. [PMID: 28357279 PMCID: PMC5349180 DOI: 10.15698/mic2015.03.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(P)H dehydrogenases (also called alternative NAD(P)H dehydrogenases) are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(P)H dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(P)H dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF)-family.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. ; Current address: Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720, USA
| | - Arnaldo Videira
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. ; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| |
Collapse
|
22
|
Oxidative phosphorylation in Debaryomyces hansenii: physiological uncoupling at different growth phases. Biochimie 2014; 102:124-36. [PMID: 24657599 DOI: 10.1016/j.biochi.2014.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/03/2014] [Indexed: 12/31/2022]
Abstract
Physiological uncoupling of mitochondrial oxidative phosphorylation (OxPhos) was studied in Debaryomyces hansenii. In other species, such as Yarrowia lipolytica and Saccharomyces cerevisiae, OxPhos can be uncoupled through differential expression of branched respiratory chain enzymes or by opening of a mitochondrial unspecific channel (ScMUC), respectively. However D. hansenii mitochondria, which contain both a branched respiratory chain and a mitochondrial unspecific channel (DhMUC), selectively uncouple complex I-dependent rate of oxygen consumption in the stationary growth phase. The uncoupled complex I-dependent respiration was only 20% of the original activity. Inhibition was not due to inactivation of complex I, lack of protein expression or to differential expression of alternative oxidoreductases. Furthermore, all other respiratory chain activities were normal. Decrease of complex I-dependent respiration was due to NAD(+) loss from the matrix, probably through an open of DhMUC. When NAD(+) was added back, coupled complex I-activity was recovered. NAD(+) re-uptake was independent of DhMUC opening and seemed to be catalyzed by a NAD(+)-specific transporter, which was sensitive to bathophenanthroline, bromocresol purple or pyridoxal-5'-phosphate as described for S. cerevisiae mitochondrial NAD(+) transporters. Loss of NAD(+) from the matrix through an open MUC is proposed as an additional mechanism to uncouple OxPhos.
Collapse
|
23
|
Electron Transport in the Mitochondrial Respiratory Chain. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Cabrera-Orefice A, Chiquete-Félix N, Espinasa-Jaramillo J, Rosas-Lemus M, Guerrero-Castillo S, Peña A, Uribe-Carvajal S. The branched mitochondrial respiratory chain from Debaryomyces hansenii: Components and supramolecular organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:73-84. [DOI: 10.1016/j.bbabio.2013.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 11/29/2022]
|
25
|
Respiratory Chain Supercomplexes in Mitochondria. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
The cytochrome c oxidase and its mitochondrial function in the whiteleg shrimp Litopenaeus vannamei during hypoxia. J Bioenerg Biomembr 2013; 46:189-96. [PMID: 24338495 DOI: 10.1007/s10863-013-9537-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/06/2013] [Indexed: 02/06/2023]
Abstract
Cytochrome c oxidase (COX), which is located in the inner membrane of mitochondria, is a key constituent of the electron transport chain that catalyzes the reduction of oxygen. The Pacific whiteleg shrimp Litopenaeus vannamei is constantly exposed to hypoxic conditions, which affects both the central metabolism and the mitochondrial function. The purpose of this study was to isolate shrimp mitochondria, identify the COX complex and to evaluate the effect of hypoxia on the shrimp mitochondrial function and in the COX activity. A 190 kDa protein was identified as COX by immunodetection techniques. The effect of hypoxia was confirmed by an increase in the shrimp plasma L-lactate concentration. COX activity, mitochondrial oxygen uptake and protein content were reduced under hypoxic conditions, and gradually restored as hypoxia continued, this suggests an adaptive mitochondrial response and a highly effective COX enzyme. Both mitochondrial oxygen uptake and COX activity were completely inhibited by KCN and sodium azide, suggesting that COX is the unique oxidase in L. vannamei mitochondria.
Collapse
|
27
|
Cruz-Torres V, Vázquez-Acevedo M, García-Villegas R, Pérez-Martínez X, Mendoza-Hernández G, González-Halphen D. The cytosol-synthesized subunit II (Cox2) precursor with the point mutation W56R is correctly processed in yeast mitochondria to rescue cytochrome oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2128-39. [PMID: 22985601 DOI: 10.1016/j.bbabio.2012.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/01/2012] [Accepted: 09/07/2012] [Indexed: 01/07/2023]
Abstract
Deletion of the yeast mitochondrial gene COX2 encoding subunit 2 (Cox2) of cytochrome c oxidase (CcO) results in loss of respiration (Δcox2 strain). Supekova et al. (2010) [1] transformed a Δcox2 strain with a vector expressing Cox2 with a mitochondrial targeting sequence (MTS) and the point mutation W56R (Cox2(W56R)), restoring respiratory growth. Here, the CcO carrying the allotopically-expressed Cox2(W56R) was characterized. Yeast mitochondria from the wild-type (WT) and the Δcox2+Cox2(W56R) strains were subjected to Blue Native electrophoresis. In-gel activity of CcO and spectroscopic quantitation of cytochromes revealed that only 60% of CcO is present in the complemented strain, and that less CcO is found associated in supercomplexes as compared to WT. CcOs from the WT and the mutant exhibited similar subunit composition, although activity was 20-25% lower in the enzyme containing Cox2(W56R) than in the one with Cox2(WT). Tandem mass spectrometry confirmed that W(56) was substituted by R(56) in Cox2(W56R). In addition, Cox2(W56R) exhibited the same N-terminus than Cox2(WT), indicating that the MTS of Oxa1 and the leader sequence of 15 residues were removed from Cox2(W56R) during maturation. Thus, Cox2(W56R) is identical to Cox2(WT) except for the point mutation W56R. Mitochondrial Cox1 synthesis is strongly reduced in Δcox2 mutants, but the Cox2(W56R) complemented strain led to full restoration of Cox1 synthesis. We conclude that the cytosol-synthesized Cox2(W56R) follows a rate-limiting process of import, maturation or assembly that yields lower steady-state levels of CcO. Still, the allotopically-expressed Cox2(W56R) restores CcO activity and allows mitochondrial Cox1 synthesis to advance at WT levels.
Collapse
Affiliation(s)
- Valentín Cruz-Torres
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | | | | | | | | | |
Collapse
|
28
|
Characterization of an internal type-II NADH dehydrogenase from Chlamydomonas reinhardtii mitochondria. Curr Genet 2012; 58:205-16. [PMID: 22814755 DOI: 10.1007/s00294-012-0378-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 05/22/2012] [Accepted: 07/04/2012] [Indexed: 12/28/2022]
Abstract
Type-II NAD(P)H dehydrogenases form a multigene family that comprise six members in the green microalga Chlamydomonas. To date, only one enzyme (Nda2) located in the chloroplast has been characterized in this alga and demonstrated to participate in the reduction of the plastoquinone pool. We present here the functional characterization of Nda1. The enzyme is located on the inner face of the inner mitochondrial membrane. Its downregulation leads to a slight decrease of NADH:ferricyanide activity and of dark whole cell respiration. To determine whether the reduction of Nda1 combined with the lack of complex I would affect mitochondrial processes, double mutants affected in both Nda1 and complex I were isolated. Respiration and growth rates in heterotrophic conditions were significantly altered in the double mutants investigated, suggesting that Nda1 plays a role in the oxidation of matrix NADH in the absence of complex I.
Collapse
|
29
|
Inactivating alternative NADH dehydrogenases: enhancing fungal bioprocesses by improving growth and biomass yield? Sci Rep 2012; 2:322. [PMID: 22435085 PMCID: PMC3308132 DOI: 10.1038/srep00322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 03/06/2012] [Indexed: 12/28/2022] Open
Abstract
Debate still surrounds the physiological roles of the alternative respiratory enzymes found in many fungi and plants. It has been proposed that alternative NADH:ubiquinone oxidoreductases (NADH dehydrogenases) may protect against oxidative stress, conversely, elevated activity of these enzymes has been linked to senescence. Here we show that inhibition of these enzymes in a fungal protein expression system (Aspergillus niger) leads to significantly enhanced specific growth rate, substrate uptake, carbon dioxide evolution, higher protein content, and more efficient use of substrates. These findings are consistent with a protective role of the NADH dehydrogenases against oxidative stress, thus, when electron flow via these enzymes is blocked, flux through the main respiratory pathway rises, leading to enhanced ATP generation. We anticipate that our findings will stimulate further studies in fungal and plant cultures leading to significant improvements in these expression systems, and to deeper insights into the cellular roles of alternative respiration.
Collapse
|
30
|
Balagurunathan B, Jonnalagadda S, Tan L, Srinivasan R. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis. Microb Cell Fact 2012; 11:27. [PMID: 22356827 PMCID: PMC3310799 DOI: 10.1186/1475-2859-11-27] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/23/2012] [Indexed: 11/16/2022] Open
Abstract
Background Fermentation of xylose, the major component in hemicellulose, is essential for economic conversion of lignocellulosic biomass to fuels and chemicals. The yeast Scheffersomyces stipitis (formerly known as Pichia stipitis) has the highest known native capacity for xylose fermentation and possesses several genes for lignocellulose bioconversion in its genome. Understanding the metabolism of this yeast at a global scale, by reconstructing the genome scale metabolic model, is essential for manipulating its metabolic capabilities and for successful transfer of its capabilities to other industrial microbes. Results We present a genome-scale metabolic model for Scheffersomyces stipitis, a native xylose utilizing yeast. The model was reconstructed based on genome sequence annotation, detailed experimental investigation and known yeast physiology. Macromolecular composition of Scheffersomyces stipitis biomass was estimated experimentally and its ability to grow on different carbon, nitrogen, sulphur and phosphorus sources was determined by phenotype microarrays. The compartmentalized model, developed based on an iterative procedure, accounted for 814 genes, 1371 reactions, and 971 metabolites. In silico computed growth rates were compared with high-throughput phenotyping data and the model could predict the qualitative outcomes in 74% of substrates investigated. Model simulations were used to identify the biosynthetic requirements for anaerobic growth of Scheffersomyces stipitis on glucose and the results were validated with published literature. The bottlenecks in Scheffersomyces stipitis metabolic network for xylose uptake and nucleotide cofactor recycling were identified by in silico flux variability analysis. The scope of the model in enhancing the mechanistic understanding of microbial metabolism is demonstrated by identifying a mechanism for mitochondrial respiration and oxidative phosphorylation. Conclusion The genome-scale metabolic model developed for Scheffersomyces stipitis successfully predicted substrate utilization and anaerobic growth requirements. Useful insights were drawn on xylose metabolism, cofactor recycling and mechanism of mitochondrial respiration from model simulations. These insights can be applied for efficient xylose utilization and cofactor recycling in other industrial microorganisms. The developed model forms a basis for rational analysis and design of Scheffersomyces stipitis metabolic network for the production of fuels and chemicals from lignocellulosic biomass.
Collapse
Affiliation(s)
- Balaji Balagurunathan
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1, Pesek Road, Jurong Island, Singapore 627833, Singapore
| | | | | | | |
Collapse
|
31
|
Physiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species. J Bioenerg Biomembr 2011; 43:323-31. [PMID: 21556887 DOI: 10.1007/s10863-011-9356-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Under non-phosphorylating conditions a high proton transmembrane gradient inhibits the rate of oxygen consumption mediated by the mitochondrial respiratory chain (state IV). Slow electron transit leads to production of reactive oxygen species (ROS) capable of participating in deleterious side reactions. In order to avoid overproducing ROS, mitochondria maintain a high rate of O(2) consumption by activating different exquisitely controlled uncoupling pathways. Different yeast species possess one or more uncoupling systems that work through one of two possible mechanisms: i) Proton sinks and ii) Non-pumping redox enzymes. Proton sinks are exemplified by mitochondrial unspecific channels (MUC) and by uncoupling proteins (UCP). Saccharomyces. cerevisiae and Debaryomyces hansenii express highly regulated MUCs. Also, a UCP was described in Yarrowia lipolytica which promotes uncoupled O(2) consumption. Non-pumping alternative oxido-reductases may substitute for a pump, as in S. cerevisiae or may coexist with a complete set of pumps as in the branched respiratory chains from Y. lipolytica or D. hansenii. In addition, pumps may suffer intrinsic uncoupling (slipping). Promising models for study are unicellular parasites which can turn off their aerobic metabolism completely. The variety of energy dissipating systems in eukaryote species is probably designed to control ROS production in the different environments where each species lives.
Collapse
|
32
|
Guerrero-Castillo S, Cabrera-Orefice A, Vázquez-Acevedo M, González-Halphen D, Uribe-Carvajal S. During the stationary growth phase, Yarrowia lipolytica prevents the overproduction of reactive oxygen species by activating an uncoupled mitochondrial respiratory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:353-62. [PMID: 22138628 DOI: 10.1016/j.bbabio.2011.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/01/2022]
Abstract
In the branched mitochondrial respiratory chain from Yarrowia lipolytica there are two alternative oxido-reductases that do not pump protons, namely an external type II NADH dehydrogenase (NDH2e) and the alternative oxidase (AOX). Direct electron transfer between these proteins is not coupled to ATP synthesis and should be avoided in most physiological conditions. However, under low energy-requiring conditions an uncoupled high rate of oxygen consumption would be beneficial, as it would prevent overproduction of reactive oxygen species (ROS). In mitochondria from high energy-requiring, logarithmic-growth phase cells, most NDH2e was associated to cytochrome c oxidase and electrons from NADH were channeled to the cytochromic pathway. In contrast, in the low energy requiring, late stationary-growth phase, complex IV concentration decreased, the cells overexpressed NDH2e and thus a large fraction of this enzyme was found in a non-associated form. Also, the NDH2e-AOX uncoupled pathway was activated and the state IV external NADH-dependent production of ROS decreased. Association/dissociation of NDH2e to/from complex IV is proposed to be the switch that channels electrons from external NADH to the coupled cytochrome pathway or allows them to reach an uncoupled, alternative, ΔΨ-independent pathway.
Collapse
|
33
|
Postmus J, Tuzun I, Bekker M, Müller WH, Teixeira de Mattos MJ, Brul S, Smits GJ. Dynamic regulation of mitochondrial respiratory chain efficiency in Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2011; 157:3500-3511. [PMID: 21964735 DOI: 10.1099/mic.0.050039-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To adapt to changes in the environment, cells have to dynamically alter their phenotype in response to, for instance, temperature and oxygen availability. Interestingly, mitochondrial function in Saccharomyces cerevisiae is inherently temperature sensitive; above 37 °C, yeast cells cannot grow on respiratory carbon sources. To investigate this phenomenon, we studied the effect of cultivation temperature on the efficiency (production of ATP per atom of oxygen consumed, or P/O) of the yeast respiratory chain in glucose-limited chemostats. We determined that even though the specific oxygen consumption rate did not change with temperature, oxygen consumption no longer contributed to mitochondrial ATP generation at temperatures higher than 37 °C. Remarkably, between 30 and 37 °C, we observed a linear increase in respiratory efficiency with growth temperature, up to a P/O of 1.4, close to the theoretical maximum that can be reached in vivo. The temperature-dependent increase in efficiency required the presence of the mitochondrial glycerol-3-phosphate dehydrogenase GUT2. Respiratory chain efficiency was also altered in response to changes in oxygen availibility. Our data show that, even in the absence of alternative oxidases or uncoupling proteins, yeast has retained the ability to dynamically regulate the efficiency of coupling of oxygen consumption to proton translocation in the respiratory chain in response to changes in the environment.
Collapse
Affiliation(s)
- Jarne Postmus
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Işil Tuzun
- Department of Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Martijn Bekker
- Department of Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Wally H Müller
- Department of Biology, Biomolecular Imaging, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - M Joost Teixeira de Mattos
- Department of Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Gertien J Smits
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
34
|
Lin SS, Gross U, Bohne W. Two internal type II NADH dehydrogenases of Toxoplasma gondii are both required for optimal tachyzoite growth. Mol Microbiol 2011; 82:209-21. [PMID: 21854467 DOI: 10.1111/j.1365-2958.2011.07807.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In many apicomplexan parasites the entry of electrons from NADH into the electron transport chain is governed by type II NADH dehydrogenases (NDH2s) instead of a canonical complex I. Toxoplasma gondii expresses two NDH2 isoforms, TgNDH2-I and TgNDH2-II with no indication for stage-specific regulation. We dissected the orientation of both isoforms by using a split GFP assay and a protease protection assay after selective membrane permeabilization. The two approaches revealed that both TgNDH2 isoforms are internal enzymes facing with their active sites to the mitochondrial matrix. Single knockout mutants displayed a decreased replication rate and a reduced mitochondrial membrane potential, which were both more severe in the Tgndh2-II-deleted than in the Tgndh2-I-deleted mutant. Complementation with a myc-tagged, ectopic copy of the deleted gene restored the growth rate and the mitochondrial membrane potential. However, an overexpression of the remaining intact isoform could not restore the phenotype, suggesting that the two TgNDH2 isoforms are non-redundant and possess functional differences. Together, our studies indicate that although TgNDH2-I and TgNDH2-II are individually non-essential, the expression of both internal isoforms is required to maintain the mitochondrial physiology in T. gondii tachyzoites.
Collapse
Affiliation(s)
- San San Lin
- Institute of Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, Göttingen D-37075, Germany
| | | | | |
Collapse
|
35
|
Qin Y, Johnson CH, Liu L, Chen J. Introduction of heterogeneous NADH reoxidation pathways into Torulopsis glabrata significantly increases pyruvate production efficiency. KOREAN J CHEM ENG 2011. [DOI: 10.1007/s11814-010-0483-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Enzymatic dysfunction of mitochondrial complex I of the Candida albicans goa1 mutant is associated with increased reactive oxidants and cell death. EUKARYOTIC CELL 2011; 10:672-82. [PMID: 21398508 DOI: 10.1128/ec.00303-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have previously shown that deletion of GOA1 (growth and oxidant adaptation) of Candida albicans results in a loss of mitochondrial membrane potential, ATP synthesis, increased sensitivity to oxidants and killing by human neutrophils, and avirulence in a systemic model of candidiasis. We established that translocation of Goa1p to mitochondria occurred during peroxide stress. In this report, we show that the goa1Δ (GOA31), compared to the wild type (WT) and a gene-reconstituted (GOA32) strain, exhibits sensitivity to inhibitors of the classical respiratory chain (CRC), including especially rotenone (complex I [CI]) and salicylhydroxamic acid (SHAM), an inhibitor of the alternative oxidase pathway (AOX), while potassium cyanide (KCN; CIV) causes a partial inhibition of respiration. In the presence of SHAM, however, GOA31 has an enhanced respiration, which we attribute to the parallel respiratory (PAR) pathway and alternative NADH dehydrogenases. Interestingly, deletion of GOA1 also results in a decrease in transcription of the alternative oxidase gene AOX1 in untreated cells as well as negligible AOX1 and AOX2 transcription in peroxide-treated cells. To explain the rotenone sensitivity, we measured enzyme activities of complexes I to IV (CI to CIV) and observed a major loss of CI activity in GOA31 but not in control strains. Enzymatic data of CI were supported by blue native polyacrylamide gel electrophoresis (BN-PAGE) experiments which demonstrated less CI protein and reduced enzyme activity. The consequence of a defective CI in GOA31 is an increase in reactive oxidant species (ROS), loss of chronological aging, and programmed cell death ([PCD] apoptosis) in vitro compared to control strains. The increase in PCD was indicated by an increase in caspase activity and DNA fragmentation in GOA31. Thus, GOA1 is required for a functional CI and partially for the AOX pathway; loss of GOA1 compromises cell survival. Further, the loss of chronological aging is new to studies of Candida species and may offer an insight into therapies to control these pathogens. Our observation of increased ROS production associated with a defective CI and PCD is reminiscent of mitochondrial studies of patients with some types of neurodegenerative diseases where CI and/or CIII dysfunctions lead to increased ROS and apoptosis.
Collapse
|
37
|
Li Q, Bai Z, O’Donnell A, Harvey LM, Hoskisson PA, McNeil B. Oxidative stress in fungal fermentation processes: the roles of alternative respiration. Biotechnol Lett 2010; 33:457-67. [DOI: 10.1007/s10529-010-0471-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/03/2010] [Indexed: 02/07/2023]
|
38
|
Dinamarco TM, Pimentel BDCF, Savoldi M, Malavazi I, Soriani FM, Uyemura SA, Ludovico P, Goldman MHS, Goldman GH. The roles played by Aspergillus nidulans apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase (AifA) and NADH-ubiquinone oxidoreductases (NdeA-B and NdiA) in farnesol resistance. Fungal Genet Biol 2010; 47:1055-69. [PMID: 20654725 DOI: 10.1016/j.fgb.2010.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 12/13/2022]
Abstract
Farnesol (FOH) is a nonsterol isoprenoid produced by dephosphorylation of farnesyl pyrophosphate, a catabolite of the cholesterol biosynthetic pathway. These isoprenoids inhibit proliferation and induce apoptosis. Here, we show that Aspergillus nidulans AifA encoding the apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase plays a role in the function of the mitochondrial Complex I. Additionally, we demonstrated that ndeA-B and ndiA encode external and internal alternative NADH dehydrogenases, respectively, that have a function in FOH resistance. When exposed to FOH, the ΔaifA and ΔndeA strains have increased ROS production while ΔndeB, ΔndeA ΔndeB, and ΔndiA mutant strains showed the same ROS accumulation than in the absence of FOH. We observed several compensatory mechanisms affecting the differential survival of these mutants to FOH.
Collapse
Affiliation(s)
- Taísa Magnani Dinamarco
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café S/N, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Koopman WJH, Nijtmans LGJ, Dieteren CEJ, Roestenberg P, Valsecchi F, Smeitink JAM, Willems PHGM. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal 2010; 12:1431-70. [PMID: 19803744 DOI: 10.1089/ars.2009.2743] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Virtually every mammalian cell contains mitochondria. These double-membrane organelles continuously change shape and position and contain the complete metabolic machinery for the oxidative conversion of pyruvate, fatty acids, and amino acids into ATP. Mitochondria are crucially involved in cellular Ca2+ and redox homeostasis and apoptosis induction. Maintenance of mitochondrial function and integrity requires an inside-negative potential difference across the mitochondrial inner membrane. This potential is sustained by the electron-transport chain (ETC). NADH:ubiquinone oxidoreductase or complex I (CI), the first and largest protein complex of the ETC, couples the oxidation of NADH to the reduction of ubiquinone. During this process, electrons can escape from CI and react with ambient oxygen to produce superoxide and derived reactive oxygen species (ROS). Depending on the balance between their production and removal by antioxidant systems, ROS may function as signaling molecules or induce damage to a variety of biomolecules or both. The latter ultimately leads to a loss of mitochondrial and cellular function and integrity. In this review, we discuss (a) the role of CI in mitochondrial functioning; (b) the composition, structure, and biogenesis of CI; (c) regulation of CI function; (d) the role of CI in ROS generation; and (e) adaptive responses to CI deficiency.
Collapse
Affiliation(s)
- Werner J H Koopman
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
40
|
Isakova EP, Deryabina YI, Gessler NN, Belozerskaya TA, Rabinovich YM. Comparative analysis of respiratory activity in the wild type strain of Neurospora crassa and its photoreceptor complex mutants. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810030129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Gutiérrez-Aguilar M, Pérez-Martínez X, Chávez E, Uribe-Carvajal S. In Saccharomyces cerevisiae, the phosphate carrier is a component of the mitochondrial unselective channel. Arch Biochem Biophys 2009; 494:184-91. [PMID: 19995548 DOI: 10.1016/j.abb.2009.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 11/24/2022]
Abstract
The mitochondrial permeability transition (PT) involves the opening of a mitochondrial unselective channel (MUC) resulting in membrane depolarization and increased permeability to ions. PT has been observed in many, but not all eukaryotic species. In some species, PT has been linked to cell death, although other functions, such as matrix ion detoxification or regulation of the rate of oxygen consumption have been considered. The identification of the proteins constituting MUC would help understand the biochemistry and physiology of this channel. It has been suggested that the mitochondrial phosphate carrier is a structural component of MUC and we decided to test this in yeast mitochondria. Mersalyl inhibits the phosphate carrier and it has been reported that it also triggers PT. Mersalyl induced opening of the decavanadate-sensitive Yeast Mitochondrial Unselective Channel (YMUC). In isolated yeast mitochondria from a phosphate carrier-null strain the sensitivity to both phosphate and mersalyl was lost, although the permeability transition was still evoked by ATP in a decavanadate-sensitive fashion. Polyethylene glycol (PEG)-induced mitochondrial contraction results indicated that in mitochondria lacking the phosphate carrier the YMUC is smaller: complete contraction for mitochondria from the wild type and the mutant strains was achieved with 1.45 and 1.1 kDa PEGs, respectively. Also, as expected for a smaller channel titration with 1.1 kDa PEG evidenced a higher sensitivity in mitochondria from the mutant strain. The above data suggest that the phosphate carrier is the phosphate sensor in YMUC and contributes to the structure of this channel.
Collapse
|
42
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|