1
|
Pérez-López MI, Lubrano P, Angelidou G, Hoch S, Glatter T, Paczia N, Link H, Sourjik V. The SPFH complex HflK-HflC regulates aerobic respiration in bacteria. PLoS Biol 2025; 23:e3003077. [PMID: 40193326 PMCID: PMC12005517 DOI: 10.1371/journal.pbio.3003077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/17/2025] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
The bacterial HflK-HflC membrane complex is a member of the highly conserved family of SPFH proteins, which are present in all domains of life and include eukaryotic stomatins, flotillins, and prohibitins. These proteins organize cell membranes and are involved in various processes. However, the exact physiological functions of most bacterial SPFH proteins remain unclear. Here, we report that the HflK-HflC complex in Escherichia coli is required for growth under high aeration. The absence of this complex causes a growth defect at high oxygen levels due to a reduced abundance of IspG, an essential iron-sulfur cluster enzyme in the isoprenoid biosynthetic pathway. This reduction might be related to lower stability of IspG and several other proteins, including the iron siderophore transporter TonB, in the absence of the HflK-HflC complex. Our results suggest that decreased IspG activity leads to lower levels of ubiquinone and misregulated expression of multiple respiratory enzymes, including cytochrome oxidases, and consequently reduced respiration and lower ATP levels. This impact of the hflK hflC deletion on aerobic respiration resembles the mitochondrial respiratory defects caused by the inactivation of prohibitins in mammalian and yeast cells, indicating functional parallels between these bacterial and eukaryotic SPFH proteins.
Collapse
Affiliation(s)
- María Isabel Pérez-López
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | | | | | - Sarah Hoch
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
2
|
Fahrion J, Gupta S, Mastroleo F, Dussap CG, Leys N. Chronic low-dose rate irradiation induces transient hormesis effect on cyanobacterium Limnospira indica. iScience 2025; 28:111891. [PMID: 40124510 PMCID: PMC11926712 DOI: 10.1016/j.isci.2025.111891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 01/22/2025] [Indexed: 03/25/2025] Open
Abstract
Cultures of Limnospira indica were exposed to low-dose rate γ-irradiation for 8 weeks to simulate 2 months of a Mars transit irradiation. Two experiments were conducted: in the first, 5% v/v inoculations were used over 2-week batches; in the second, 25% v/v inoculations over 1-week batches. The cultures were continuously illuminated (45 μmol photons m-2 s-1, LEDs). A transient hormesis effect was observed in experiment 1, with irradiated cultures showing higher dry weight (1.88 ± 0.05 g L-1) than controls (1.70 ± 0.06 g L-1) on day 14. Irradiated cultures also had fewer pigments. Experiment 2 showed similar, though less pronounced, results. These findings suggest that Limnospira indica would not be negatively affected by cosmic radiation during Mars transit, though further validation under space flight conditions is needed. The resilience of Limnospira indica to chronic low-dose radiation supports its potential for oxygen and food production in life support systems for manned space missions.
Collapse
Affiliation(s)
- Jana Fahrion
- Microbial Biotechnology Unit, Nuclear Medical Applications, Belgian Nuclear Research Center SCK CEN, 2400 Mol, Belgium
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, 63100 Clermont-Ferrand, France
| | - Surya Gupta
- Microbial Biotechnology Unit, Nuclear Medical Applications, Belgian Nuclear Research Center SCK CEN, 2400 Mol, Belgium
| | - Felice Mastroleo
- Microbial Biotechnology Unit, Nuclear Medical Applications, Belgian Nuclear Research Center SCK CEN, 2400 Mol, Belgium
| | - Claude Gilles Dussap
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, 63100 Clermont-Ferrand, France
| | - Natalie Leys
- Microbial Biotechnology Unit, Nuclear Medical Applications, Belgian Nuclear Research Center SCK CEN, 2400 Mol, Belgium
| |
Collapse
|
3
|
Rodriguez EI, Tzeng YL, Sannigrahi S, Stephens DS. Contribution of the gonococcal NEIS1446-ispD gene conversion to the pathobiology of the Neisseria meningitidis urethritis clade, NmUC. Infect Immun 2025; 93:e0035024. [PMID: 39902952 PMCID: PMC11895467 DOI: 10.1128/iai.00350-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025] Open
Abstract
Over the last decade, a Neisseria meningitidis (Nm) urethritis-causing clade (NmUC) has emerged to cause clusters of meningococcal urethritis in the United States and globally. One genomic signature of NmUC is the integration of Neisseria gonorrhoeae (Ng) DNA in an operon, NEIS1446-NEIS1438, which partially replaced the Nm ispD gene. IspD is the 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase of the terpenoid precursor synthesis pathway, required for the production of ubiquinones of the electron transfer chain. IspD is essential in several gram-negative bacteria. The biological importance of the NEIS1446-ispD gene conversion event for NmUC was investigated. The ispD gene was found to be essential in NmUC (CNM3) and non-clade Nm (MC58), and a mutation at the native locus can only be made with the insertion of a second ispD copy in the genome. The IspDMC58 variant was more efficient at promoting aerobic growth at a low level than IspDCNM3; the two proteins differ by 15 residues. Maximal aerobic growth densities of strains with an NmUC background resembled Ng (FA19), and both were significantly lower than Nm. In contrast to non-clade Nm, all NmUC strains survived well anaerobically. Increasing ispD expression by titrating IPTG in non-clade Nm enhanced anaerobic survival. Translational reporters of the NmUC and Ng promoters demonstrated similar expression levels, and both were significantly higher than non-clade Nm, under aerobic and microaerobic conditions. Our findings suggest that the integration of gonococcal DNA into the NEIS1446-NEIS1438 operon of NmUC has increased ispD expression, contributing to NmUC's adaptation to the oxygen-limited environment of the human urogenital tract.
Collapse
Affiliation(s)
- Emilio I. Rodriguez
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - Soma Sannigrahi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Elling FJ, Pierrel F, Chobert SC, Abby SS, Evans TW, Reveillard A, Pelosi L, Schnoebelen J, Hemingway JD, Boumendjel A, Becker KW, Blom P, Cordes J, Nathan V, Baymann F, Lücker S, Spieck E, Leadbetter JR, Hinrichs KU, Summons RE, Pearson A. A novel quinone biosynthetic pathway illuminates the evolution of aerobic metabolism. Proc Natl Acad Sci U S A 2025; 122:e2421994122. [PMID: 39977315 PMCID: PMC11874023 DOI: 10.1073/pnas.2421994122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
The dominant organisms in modern oxic ecosystems rely on respiratory quinones with high redox potential (HPQs) for electron transport in aerobic respiration and photosynthesis. The diversification of quinones, from low redox potential (LPQ) in anaerobes to HPQs in aerobes, is assumed to have followed Earth's surface oxygenation ~2.3 billion years ago. However, the evolutionary origins of HPQs remain unresolved. Here, we characterize the structure and biosynthetic pathway of an ancestral HPQ, methyl-plastoquinone (mPQ), that is unique to bacteria of the phylum Nitrospirota. mPQ is structurally related to the two previously known HPQs, plastoquinone from Cyanobacteriota/chloroplasts and ubiquinone from Pseudomonadota/mitochondria, respectively. We demonstrate a common origin of the three HPQ biosynthetic pathways that predates the emergence of Nitrospirota, Cyanobacteriota, and Pseudomonadota. An ancestral HPQ biosynthetic pathway evolved ≥ 3.4 billion years ago in an extinct lineage and was laterally transferred to these three phyla ~2.5 to 3.2 billion years ago. We show that Cyanobacteriota and Pseudomonadota were ancestrally aerobic and thus propose that aerobic metabolism using HPQs significantly predates Earth's surface oxygenation. Two of the three HPQ pathways were later obtained by eukaryotes through endosymbiosis forming chloroplasts and mitochondria, enabling their rise to dominance in modern oxic ecosystems.
Collapse
Affiliation(s)
- Felix J. Elling
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
- Leibniz-Laboratory for Radiometric Dating and Isotope Research, Christian-Albrecht University of Kiel, Kiel24118, Germany
| | - Fabien Pierrel
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Sophie-Carole Chobert
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Sophie S. Abby
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Thomas W. Evans
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen28359, Germany
| | - Arthur Reveillard
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Ludovic Pelosi
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Juliette Schnoebelen
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Jordon D. Hemingway
- Department of Earth and Planetary Sciences, Geological Institute, ETH Zürich, Zurich8092, Switzerland
| | | | - Kevin W. Becker
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel24148, Germany
| | - Pieter Blom
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen6525 AJ, The Netherlands
| | - Julia Cordes
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen28359, Germany
| | - Vinitra Nathan
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
| | - Frauke Baymann
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, Marseille Cedex 20F-13402, France
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen6525 AJ, The Netherlands
| | - Eva Spieck
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg22609, Germany
| | - Jared R. Leadbetter
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
| | - Kai-Uwe Hinrichs
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen28359, Germany
| | - Roger E. Summons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
| |
Collapse
|
5
|
Richter N, Villanueva L, Hopmans EC, Bale NJ, Sinninghe Damsté JS, Rush D. Methanotroph-methylotroph lipid adaptations to changing environmental conditions. Front Microbiol 2025; 16:1532719. [PMID: 39990143 PMCID: PMC11844350 DOI: 10.3389/fmicb.2025.1532719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Methanotrophs, in particular methane-oxidizing bacteria (MOB), regulate the release of methane from lakes, and often co-occur with methylotrophs that may enhance methane-oxidation rates. Assessing the interaction and physiological status of these two microbial groups is essential for determining the microbial methane buffering capacity of environmental systems. Microbial membrane lipids are commonly used as taxonomic markers of specific microbial groups; however, few studies have characterized the changes of membrane lipids under different environmental conditions. For the case of methane-cycling microorganisms, this could be useful for determining their physiological status and potential methane buffering capacity. Here we investigated the changes in membrane lipids, bacteriohopanepolyols (BHPs) and respiratory quinones, produced by MOB and methylotrophs in an enrichment co-culture that primarily consists of a methanotroph (Methylobacter sp.) and a methylotroph (Methylotenera sp.) enriched from a freshwater lake under different methane concentrations, temperatures, and salinities. To assess whether the lipid response is similar in methanotrophs adapted to extreme environmental conditions, we also characterize the BHP composition and respiratory quinones of a psychrotolerant methanotroph, Methylovulum psychrotolerans, isolated from an Arctic freshwater lake and grown under different temperatures. Notably, in the Methylobacter-Methylotenera enrichment the relative abundance of the BHPs aminobacteriohopanepentol and aminobacteriohopanepolyols with additional modifications to the side chain increased at higher temperatures and salinities, respectively, whereas there was no change in the distribution of respiratory quinones. In contrast, in the Methylovulum psychrotolerans culture, the relative abundance of unsaturated BHPs increased and ubiquinone 8:8 (UQ8:8) decreased at lower temperatures. The distinct changes in lipid composition between the Methylobacter-Methylotenera enrichment and the psychrotolerant methanotroph at different growth temperatures and the ability of the Methylobacter-Methylotenera enrichment to grow at high salinities with a singular BHP distribution, suggests that methane-cycling microbes have unique lipid responses that enable them to grow even under high environmental stress.
Collapse
Affiliation(s)
- Nora Richter
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Ellen C. Hopmans
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Darci Rush
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| |
Collapse
|
6
|
Jensen MB, Langwagen M, Christensen T, Poulsen A, Jakobsen J. Vitamin K - content in food and dietary intake among the Danes. Food Chem 2025; 464:141651. [PMID: 39514936 DOI: 10.1016/j.foodchem.2024.141651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Insufficient information on the content of vitamin K2 in our foods hinder estimation of the dietary intake. We aimed to establish content of eight vitamin K vitamers, vitamin K1 (phylloquinone; PK) and vitamin K2 (menaquinones; MK-4 to MK-10) in 88 composite food samples representing dairy, eggs, meat, fish, cereals, and plant-based alternatives to dairy. Combined with PK data for other foods, the dietary intake among Danes was estimated. The unit'PKeq' is used to compensate for the difference in molecular weight for MK-4 at 445 g/mol up to MK-10 at 853 g/mol. The highest content was found in chicken thigh with skin at 53 μg PKeq/100 g followed by 49 μg PKeq/100 g in Danablue (blue cheese). The daily intake of vitamin K is 139 μg to 160 μg PKeq for adults. The highest percentage comes from PK (64 %), 27 % from MK-4, 4.6 % from MK-9, and 2.4 % from MK-8.
Collapse
Affiliation(s)
- Marie Bagge Jensen
- Reasearch Group for Bioactives - Analysis and Application, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marija Langwagen
- Research Group for Nutrition, Sustainability and Health Promotion, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tue Christensen
- Research Group for Nutrition, Sustainability and Health Promotion, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anders Poulsen
- Research Group for Nutrition, Sustainability and Health Promotion, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jette Jakobsen
- Reasearch Group for Bioactives - Analysis and Application, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Tanikawa R, Sakaguchi H, Ishikawa T, Hihara Y. Accumulation of acyl plastoquinol and triacylglycerol in six cyanobacterial species with different sets of genes encoding type-2 diacylglycerol acyltransferase-like proteins. PLANT & CELL PHYSIOLOGY 2025; 66:15-22. [PMID: 39581854 DOI: 10.1093/pcp/pcae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
Recently, acyl plastoquinol (APQ) and plastoquinone-B (PQ-B), which are fatty acid esters of plastoquinol and plastoquinone-C respectively, have been identified as the major neutral lipids in cyanobacteria. In Synechocystis sp. PCC 6803, Slr2103 having homology with the eukaryotic enzyme for triacylglycerol (TAG) synthesis, diacylglycerol acyltransferase 2 (DGAT2), was identified as responsible for the synthesis of these plastoquinone-related lipids. On the other hand, TAG synthesis in cyanobacteria remains controversial due to the low accumulation level within cyanobacterial cells together with the high contamination level from the environment. In this study, to quantify more precisely and elucidate the relationship between the accumulation of neutral lipids and the presence or absence of DGAT2-like genes, plastoquinone-related lipids and TAG were analyzed directly from total lipids of six cyanobacterial species with different sets of genes encoding DGAT2-like proteins belonging to two distinct subclades. The results showed that the synthesis of these neutral lipids is highly dependent on clade A DGAT2-like proteins under the culture conditions used in this study, although accumulation level of TAG was quite low. In contrast to APQ highly abundant in saturated fatty acids, the fatty acid composition of TAG was species-specific and partly reflected the total lipid composition. Gloeobacter violaceus PCC 7421, which lacks a DGAT2-like gene, accumulated APQ with a high proportion of C18:0, suggesting APQ synthesis by an unidentified acyltransferase.
Collapse
Affiliation(s)
- Riko Tanikawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Haruna Sakaguchi
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
8
|
Brahmachary PP, Erdogan AE, Myers EP, June RK. Metabolomic Profiling and Characterization of a Novel 3D Culture System for Studying Chondrocyte Mechanotransduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.10.598340. [PMID: 38915493 PMCID: PMC11195103 DOI: 10.1101/2024.06.10.598340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Background/Objective Articular chondrocytes synthesize and maintain the avascular and aneural articular cartilage. In vivo these cells are surrounded by a 3D pericellular matrix (PCM) containing predominantly collagen VI. The PCM protects chondrocytes and facilitates mechanotransduction. PCM stiffness is critical in transmitting biomechanical signals to chondrocytes. Various culture systems with different hydrogels are used to encapsulate chondrocytes for 3D culture, but many lack either the PCM or the in vivo stiffness of the cartilage matrix. This study aimed at establishing a culture system to investigate a) if chondrocytes cultured in alginate will develop a PCM and b) study mechanotransduction via metabolic changes induced in 3D agarose-embedded chondrocytes upon mechanical stimulation. Methods We cultured primary human and bovine chondrocytes in monolayers or as alginate encapsulated cells in media containing sodium L-ascorbate. PCM expression was analyzed by immunofluorescence and western blots. We further characterized the response of chondrocytes embedded in physiologically stiff agarose to dynamic compression through metabolomic profiling. Results We found that primary human and bovine chondrocytes, when cultured in alginate beads with addition of sodium L-ascorbate for 7 days, had a pronounced PCM, retained their phenotype, and synthesized both collagens VI and II. This novel culture system enables alginate-encapsulated chondrocytes to develop a robust PCM thereby creating a model system to study mechanotransduction in the presence of an endogenous PCM. We also observed distinct compression-induced changes in metabolomic profiles between the monolayer-agarose and alginate-released agarose-embedded chondrocytes indicating physiological changes in cell metabolism. Conclusion/Significance These data show that 3D preculture of chondrocytes in alginate before encapsulation in physiologically stiff agarose leads to pronounced development of pericellular matrix that is sustained in the presence of ascorbate. This model can be useful in studying the mechanism by which chondrocytes respond to cyclical compression and other types of loading simulating in vivo physiological conditions.
Collapse
Affiliation(s)
- Priyanka P Brahmachary
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717
| | - Ayten E Erdogan
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717
| | - Erik P Myers
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
9
|
Gfellner SV, Colas C, Gabant G, Groninga J, Cadene M, Milojevic T. Improved protocol for metabolite extraction and identification of respiratory quinones in extremophilic Archaea grown on mineral materials. Front Microbiol 2025; 15:1473270. [PMID: 39845047 PMCID: PMC11750793 DOI: 10.3389/fmicb.2024.1473270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
We investigated the metabolome of the iron- and sulfur-oxidizing, extremely thermoacidophilic archaeon Metallosphaera sedula grown on mineral pyrite (FeS2). The extraction of organic materials from these microorganisms is a major challenge because of the tight contact and interaction between cells and mineral materials. Therefore, we applied an improved protocol to break the microbial cells and separate their organic constituents from the mineral surface, to extract lipophilic compounds through liquid-liquid extraction, and performed metabolomics analyses using MALDI-TOF MS and UHPLC-UHR-Q/TOF. Using this approach, we identified several molecules involved in central carbon metabolism and in the modified Entner-Doudoroff pathway found in Archaea, sulfur metabolism-related compounds, and molecules involved in the adaptation of M. sedula to extreme environments, such as metal tolerance and acid resistance. Furthermore, we identified molecules involved in microbial interactions, i.e., cell surface interactions through biofilm formation and cell-cell interactions through quorum sensing, which relies on messenger molecules for microbial communication. Moreover, we successfully extracted and identified different saturated thiophene-bearing quinones using software for advanced compound identification (MetaboScape). These quinones are respiratory chain electron carriers in M. sedula, with biomarker potential for life detection in extreme environmental conditions.
Collapse
Affiliation(s)
- Sebastian V. Gfellner
- UPR4301 Centre de Biophysique Moléculaire (CBM), Orléans, France
- Université d'Orléans, Orléans, France
| | - Cyril Colas
- UPR4301 Centre de Biophysique Moléculaire (CBM), Orléans, France
- Université d'Orléans, Orléans, France
- UMR7311 Institut de Chimie Organique et Analytique (ICOA), Orléans, France
| | - Guillaume Gabant
- UPR4301 Centre de Biophysique Moléculaire (CBM), Orléans, France
- Université d'Orléans, Orléans, France
| | - Janina Groninga
- Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Martine Cadene
- UPR4301 Centre de Biophysique Moléculaire (CBM), Orléans, France
- Université d'Orléans, Orléans, France
| | - Tetyana Milojevic
- UPR4301 Centre de Biophysique Moléculaire (CBM), Orléans, France
- Université d'Orléans, Orléans, France
| |
Collapse
|
10
|
Arvaniti M, Gaballa A, Orsi RH, Skandamis P, Wiedmann M. Deciphering the Molecular Mechanism of Peracetic Acid Response in Listeria monocytogenes. J Food Prot 2025; 88:100401. [PMID: 39515609 DOI: 10.1016/j.jfp.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Peracetic acid (PAA), a strong oxidizing agent, has been widely used as a disinfectant in food processing settings as it does not produce harmful chlorinated by-products. In the present study, the transcriptional response of Listeria monocytogenes to a sub-lethal concentration of PAA (2.5 ppm) was assessed using RNA-sequencing (RNA-seq). Our analysis revealed 12 differentially expressed protein-coding genes, of which nine were upregulated (ohrR, ohrA, rpsN, lmo0637, lmo1973, fur, lmo2492, zurM, and lmo1007), and three were down-regulated (argG, lmo0604 and lmo2156) in PAA-treated samples compared to the control samples. A non-coding small RNA gene (rli32) was also found to be down-regulated. In detail, the organic peroxide toxicity protection (OhrA-OhrR) system, the metal homeostasis genes fur and zurM, the SbrE-regulated lmo0636-lmo0637 operon and a carbohydrate phosphotransferase system (PTS) operon component were induced under exposure of L. monocytogenes to PAA. Hence, this study identified key elements involved in the primary response of L. monocytogenes to oxidative stress caused by PAA, including the expression of the peroxide detoxification system and fine-tuning the levels of redox-active metals in the cell. The investigation of the molecular mechanism of PAA response in L. monocytogenes is of utmost importance for the food industry, as residual PAA can lead to stress tolerance in pathogens.
Collapse
Affiliation(s)
- Marianna Arvaniti
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece.
| | - Ahmed Gaballa
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Renato H Orsi
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Panagiotis Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Chobert SC, Roger-Margueritat M, Flandrin L, Berraies S, Lefèvre CT, Pelosi L, Junier I, Varoquaux N, Pierrel F, Abby SS. Dynamic quinone repertoire accompanied the diversification of energy metabolism in Pseudomonadota. THE ISME JOURNAL 2025; 19:wrae253. [PMID: 39693360 PMCID: PMC11707229 DOI: 10.1093/ismejo/wrae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/27/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
It is currently unclear how Pseudomonadota, a phylum that originated around the time of the Great Oxidation Event, became one of the most abundant and diverse bacterial phyla on Earth, with metabolically versatile members colonizing a wide range of environments with different O2 concentrations. Here, we address this question by studying isoprenoid quinones, which are central components of energy metabolism covering a wide range of redox potentials. We demonstrate that a dynamic repertoire of quinone biosynthetic pathways accompanied the diversification of Pseudomonadota. The low potential menaquinone (MK) was lost in an ancestor of Pseudomonadota while the high potential ubiquinone (UQ) emerged. We show that the O2-dependent and O2-independent UQ pathways were both present in the last common ancestor of Pseudomonadota, and transmitted vertically. The O2-independent pathway has a conserved genetic organization and displays signs of positive regulation by the master regulator "fumarate and nitrate reductase" (FNR), suggesting a conserved role for UQ in anaerobiosis across Pseudomonadota. The O2-independent pathway was lost in some lineages but maintained in others, where it favoured a secondary reacquisition of low potential quinones (MK or rhodoquinone), which promoted diversification towards aerobic facultative and anaerobic metabolisms. Our results support that the ecological success of Pseudomonadota is linked to the acquisition of the largest known repertoire of quinones, which allowed adaptation to oxic niches as O2 levels increased on Earth, and subsequent diversification into anoxic or O2-fluctuating environments.
Collapse
Affiliation(s)
- Sophie-Carole Chobert
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | | | - Laura Flandrin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Safa Berraies
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Christopher T Lefèvre
- Aix-Marseille Université, CNRS, CEA, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez-Durance 13108, France
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Ivan Junier
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Nelle Varoquaux
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Sophie S Abby
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| |
Collapse
|
12
|
Srivastav S, Biswas A, Anand A. Interplay of niche and respiratory network in shaping bacterial colonization. J Biol Chem 2025; 301:108052. [PMID: 39662826 PMCID: PMC11742581 DOI: 10.1016/j.jbc.2024.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024] Open
Abstract
The human body is an intricate ensemble of prokaryotic and eukaryotic cells, and this coexistence relies on the interplay of many biotic and abiotic factors. The inhabiting microbial population has to maintain its physiological homeostasis under highly dynamic and often hostile host environments. While bacterial colonization primarily relies on the metabolic suitability for the niche, there are reports of active remodeling of niche microenvironments to create favorable habitats, especially in the context of pathogenic settlement. Such physiological plasticity requires a robust metabolic system, often dependent on an adaptable energy metabolism. This review focuses on the respiratory electron transport system and its adaptive consequences within the host environment. We provide an overview of respiratory chain plasticity, which allows pathogenic bacteria to niche-specify, niche-diversify, mitigate inflammatory stress, and outcompete the resident microbiota. We have reviewed existing and emerging knowledge about the role of respiratory chain components responsible for the entry and exit of electrons in influencing the pathogenic outcomes.
Collapse
Affiliation(s)
- Stuti Srivastav
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Arpita Biswas
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Amitesh Anand
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India.
| |
Collapse
|
13
|
Jumpathong J, Nishida I, Matsuo Y, Kaino T, Kawamukai M. Investigation and determination of CoQ10(H2) and CoQ10(H4) species from black yeast-like fungi and filamentous fungi. Biosci Biotechnol Biochem 2024; 89:110-123. [PMID: 39434708 DOI: 10.1093/bbb/zbae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Coenzyme Q (CoQ) or ubiquinone functions as an electron transporter in the electron transport system in both prokaryotes and eukaryotes. The isoprenyl side chain of CoQ is modified in some organisms, especially in fungi, for optimal electron transport performance under various conditions. In this study, we investigated the side chain saturated dihydro CoQ (CoQ10(H2)) in Aureobasidium pullulans EXF-150, Sydowia polyspora NBRC 30562, and naturally isolated Plowrightia sp. A37, all of which are melanized Dothideomycetes species within Ascomycota, and also in filamentous fungi Aspergillus oryzae and A. terreus. Plowrightia sp. A37 produced the rarely synthesized tetrahydro type CoQ10(H4), especially in glucose-rich medium, during extended cultivation in contrast to CoQ10(H2) in time-limited cultivation. Using liquid chromatography-mass spectrometry, we identified demethoxyubiquinone-H2 (DMQ(H2)) as an indicative intermediate that suggests that the side chain saturation of CoQ occurs after the formation of DMQ and not always in the last step as previously considered.
Collapse
Affiliation(s)
- Jomkwan Jumpathong
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | | | - Yasuhiro Matsuo
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | - Tomohiro Kaino
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | - Makoto Kawamukai
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| |
Collapse
|
14
|
Xia Z, Xiang H, Shi YM. Bacterial Secondary Metabolites Embedded in Producer Cell Membranes and Antibiotics Targeting Their Biosynthesis. ChemMedChem 2024; 19:e202400469. [PMID: 39287217 DOI: 10.1002/cmdc.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
The bacterial cell membrane primarily houses lipids, carbohydrates, and proteins forming a barrier and interface that maintains cellular integrity, supports homeostasis, and senses environmental changes. Compared to lipid components and excreted secondary metabolites, compounds embedded in the producer cell membrane are often overlooked due to their low abundance and niche-specific functions. The accumulation of findings has led to an increased appreciation of their crucial roles in bacterial cell biochemistry, physiology, and ecology, as well as their impact on mutualistic and pathogenic bacteria-eukaryote interactions. This review highlights the structures, biosynthesis, regulation, and ecological functions of membrane-embedded secondary metabolites. It also discusses antibiotics that target their biosynthetic pathways, aiming to inspire the development of antibiotics specific to pathogenic bacteria without harming human cells.
Collapse
Affiliation(s)
- Zhao Xia
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Xiang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ming Shi
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Bargabos R, Iinishi A, Hawkins B, Privalsky T, Pitt N, Son S, Corsetti R, Gates MF, Miller RD, Lewis K. Small molecule produced by Photorhabdus interferes with ubiquinone biosynthesis in Gram-negative bacteria. mBio 2024; 15:e0116724. [PMID: 39254306 PMCID: PMC11481567 DOI: 10.1128/mbio.01167-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 09/11/2024] Open
Abstract
We report the identification of 3,6-dihydroxy-1,2-benzisoxazole (DHB) in a screen of Photorhabdus and Xenorhabdus, whose symbiotic relationship with eukaryotic nematodes favors secondary metabolites that meet several requirements matching those for clinically useful antibiotics. DHB is produced by Photorhabdus laumondii and is selective against the Gram-negative species Escherichia coli, Enterobacter cloacae, Serratia marcescens, Klebsiella pneumoniae, Proteus mirabilis, and Acinetobacter baumannii. It is inactive against anaerobic gut bacteria and nontoxic to human cells. Mutants resistant to DHB map to the ubiquinone biosynthesis pathway. DHB binds to 4-hydroxybenzoate octaprenyltransferase (UbiA) and prevents the formation of 4-hydroxy-3-octaprenylbenzoate. Remarkably, DHB itself is prenylated, forming an unusable chimeric product that likely contributes to the toxic effect of this antimicrobial. DHB appears to be both a competitive enzyme inhibitor and a prodrug; this dual mode of action is unusual for an antimicrobial compound. IMPORTANCE The spread of resistant pathogens has led to the antimicrobial resistance crisis, and the need for new compounds acting against Gram-negative pathogens is especially acute. From a screen of Photorhabdus symbionts of nematodes, we identified 3,6-dihydroxy-1,2-benzisoxazole (DHB) that acts against a range of Gram-negative bacteria, including Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, and Acinetobacter baumannii. DHB had previously been isolated from other bacterial species, but its mechanism of action remained unknown. We show that DHB is unique among antimicrobials, with dual action as an inhibitor of an important enzyme, UbiA, in the biosynthesis pathway of ubiquinone and as a prodrug. DHB is a mimic of the natural substrate, and UbiA modifies it into a toxic product, contributing to the antimicrobial action of this unusual antibiotic. We also uncover the mechanism of DHB selectivity, which depends on a particular fold of the UbiA enzyme.
Collapse
Affiliation(s)
- Rachel Bargabos
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Akira Iinishi
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Bryson Hawkins
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Thomas Privalsky
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Norman Pitt
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Sangkeun Son
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Rachel Corsetti
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Michael F. Gates
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Ryan D. Miller
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Kim Lewis
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Mou S, Savchenko V, Filz V, Böttcher T, DeShazer D. Burkholderia pseudomallei produces 2-alkylquinolone derivatives important for host virulence and competition with bacteria that employ naphthoquinones for aerobic respiration. Front Microbiol 2024; 15:1474033. [PMID: 39469462 PMCID: PMC11513363 DOI: 10.3389/fmicb.2024.1474033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Melioidosis is caused by Burkholderia pseudomallei, an opportunistic Gram-negative pathogen that inhabits soil and water in tropical and subtropical regions. B. pseudomallei infections often occur following contact with contaminated water or soil or by inhalation of contaminated dust and water droplets. There is limited knowledge about how B. pseudomallei is able to survive in harsh environmental conditions and compete with the microbes that inhabit these niches. Previous research demonstrated that 3-methyl-2-alkylquinolones (MAQs), and their corresponding N-oxides (MAQNOs), are produced by B. pseudomallei and provide a competitive advantage when grown in the presence of Gram-positive bacteria. In this study, 39 Gram-negative environmental bacteria in the Pseudomonadota and Bacteroidota phyla were isolated and characterized. Intriguingly, B. pseudomallei inhibited 71% of bacteria in the phylum Bacteroidota in zone of inhibition and coculture competition assays, but no Pseudomonadota isolates were similarly inhibited. Transposon mutagenesis was utilized to identify B. pseudomallei genes required for the inhibition of Sphingobacterium sp. ST4, a representative member of the Bacteroidota. Three mutations mapped to hmqA-G, the locus encoding 2-alkylquinolone derivatives, and two mutations were identified in scmR, a gene encoding a quorum-sensing controlled LysR-type transcriptional regulator. B. pseudomallei strains with deletion mutations in hmqD and scmR were unable to produce 2-alkylquinolone derivatives or inhibit Bacteroidota isolates in competition assays. RAW264.7 murine macrophage cells were infected with B. pseudomallei 1026b and 1026b ΔhmqD and there was a 94-fold reduction in the number of intracellular 1026b ΔhmqD bacteria relative to 1026b. The 50% lethal dose (LD50) of 1026b and 1026b ΔhmqD in BALB/c mice was determined to be 3 x 105 colony forming units (CFU) and > 1 x 106 CFU, respectively. Taken together, the results indicate that the products of the B. pseudomallei hmqA-G locus are important for intracellular replication in murine macrophages, virulence in a mouse model of melioidosis, and competition with bacteria that utilize naphthoquinones for aerobic respiration.
Collapse
Affiliation(s)
- Sherry Mou
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Viktoriia Savchenko
- Faculty of Chemistry and Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Verena Filz
- Faculty of Chemistry and Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Böttcher
- Faculty of Chemistry and Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - David DeShazer
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
17
|
de Oliveira JC, Abreu BU, Paz ERS, Almeida RG, Honorato J, Souza CP, Fantuzzi F, Ramos VFS, Menna-Barreto RFS, Araujo MH, Jardim GAM, da Silva Júnior EN. SuFEx-Functionalized Quinones via Ruthenium-Catalyzed C-H Alkenylation: A Potential Building Block for Bioactivity Valorization. Chem Asian J 2024:e202400757. [PMID: 39136413 DOI: 10.1002/asia.202400757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Herein, we describe the Ru-catalyzed C-H alkenylation of 1,4-naphthoquinones (1,4-NQs), resulting in 1,4-naphthoquinoidal/SuFEx hybrids with moderate to good yields. This method provides a novel route for direct access to ethenesulfonyl-fluorinated quinone structures. We conducted mechanistic studies to gain an in-depth understanding of the elementary steps of the reaction. Additionally, we evaluated the prototypes against trypomastigote forms of T. cruzi, leading to the identification of compounds with potent trypanocidal activity.
Collapse
Affiliation(s)
- Joyce C de Oliveira
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Breno U Abreu
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Esther R S Paz
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Renata G Almeida
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - João Honorato
- São Carlos Institute of Physics, Physics and Interdisciplinary Sciences Department, Universidade de São Paulo, USP, São Carlos, 13560-970, Brazil
| | - Cauê P Souza
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Victor F S Ramos
- Laboratory of Cellular Biology, IOC, FIOCRUZ, Rio de Janeiro, RJ, 21045-900, Brazil
| | | | - Maria H Araujo
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme A M Jardim
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Eufrânio N da Silva Júnior
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
18
|
Perez-Gil J, Behrendorff J, Douw A, Vickers CE. The methylerythritol phosphate pathway as an oxidative stress sense and response system. Nat Commun 2024; 15:5303. [PMID: 38906898 PMCID: PMC11192765 DOI: 10.1038/s41467-024-49483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/05/2024] [Indexed: 06/23/2024] Open
Abstract
The methylerythritol phosphate (MEP) pathway is responsible for biosynthesis of the precursors of isoprenoid compounds in eubacteria and plastids. It is a metabolic alternative to the well-known mevalonate pathway for isoprenoid production found in archaea and eukaryotes. Recently, a role for the MEP pathway in oxidative stress detection, signalling, and response has been identified. This role is executed in part through the unusual cyclic intermediate, methylerythritol cyclodiphosphate (MEcDP). We postulate that this response is triggered through the oxygen sensitivity of the MEP pathway's terminal iron-sulfur (Fe-S) cluster enzymes. MEcDP is the substrate of IspG, the first Fe-S cluster enzyme in the pathway; it accumulates under oxidative stress conditions and acts as a signalling molecule. It may also act as an antioxidant. Furthermore, evidence is emerging for a broader and highly nuanced role of the MEP pathway in oxidative stress responses, implemented through a complex system of differential regulation and sensitivity at numerous nodes in the pathway. Here, we explore the evidence for such a role (including the contribution of the Fe-S cluster enzymes and different pathway metabolites, especially MEcDP), the evolutionary implications, and the many questions remaining about the behaviour of the MEP pathway in the presence of oxidative stress.
Collapse
Affiliation(s)
- Jordi Perez-Gil
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Environmental and Biological Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - James Behrendorff
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Environmental and Biological Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Andrew Douw
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Claudia E Vickers
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- School of Environmental and Biological Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
- BioBuilt Solutions, Corinda, QLD, 4075, Australia.
| |
Collapse
|
19
|
Ding S, Grossi V, Hopmans EC, Bale NJ, Cravo-Laureau C, Sinninghe Damsté JS. Nitrogen and sulfur for phosphorus: Lipidome adaptation of anaerobic sulfate-reducing bacteria in phosphorus-deprived conditions. Proc Natl Acad Sci U S A 2024; 121:e2400711121. [PMID: 38833476 PMCID: PMC11181052 DOI: 10.1073/pnas.2400711121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Understanding how microbial lipidomes adapt to environmental and nutrient stress is crucial for comprehending microbial survival and functionality. Certain anaerobic bacteria can synthesize glycerolipids with ether/ester bonds, yet the complexities of their lipidome remodeling under varying physicochemical and nutritional conditions remain largely unexplored. In this study, we thoroughly examined the lipidome adaptations of Desulfatibacillum alkenivorans strain PF2803T, a mesophilic anaerobic sulfate-reducing bacterium known for its high proportions of alkylglycerol ether lipids in its membrane, under various cultivation conditions including temperature, pH, salinity, and ammonium and phosphorous concentrations. Employing an extensive analytical and computational lipidomic methodology, we identified an assemblage of nearly 400 distinct lipids, including a range of glycerol ether/ester lipids with various polar head groups. Information theory-based analysis revealed that temperature fluctuations and phosphate scarcity profoundly influenced the lipidome's composition, leading to an enhanced diversity and specificity of novel lipids. Notably, phosphorous limitation led to the biosynthesis of novel glucuronosylglycerols and sulfur-containing aminolipids, termed butyramide cysteine glycerols, featuring various ether/ester bonds. This suggests a novel adaptive strategy for anaerobic heterotrophs to thrive under phosphorus-depleted conditions, characterized by a diverse array of nitrogen- and sulfur-containing polar head groups, moving beyond a reliance on conventional nonphospholipid types.
Collapse
Affiliation(s)
- Su Ding
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, TexelSZ 1797, The Netherlands
| | - Vincent Grossi
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, CNRS, Université Claude Bernard Lyon 1, Villeurbanne69622, France
| | - Ellen C. Hopmans
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, TexelSZ 1797, The Netherlands
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, TexelSZ 1797, The Netherlands
| | - Cristiana Cravo-Laureau
- Institut des Sciences Analytiques et de Physico-chimie pour l’environnement et les Matériaux, Universite de Pau et des Pays de l’Adour, CNRS, Pau64000, France
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, TexelSZ 1797, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, CB3584, The Netherlands
| |
Collapse
|
20
|
Gao S, Wu F, Gurcha SS, Batt SM, Besra GS, Rao Z, Zhang L. Structural analysis of phosphoribosyltransferase-mediated cell wall precursor synthesis in Mycobacterium tuberculosis. Nat Microbiol 2024; 9:976-987. [PMID: 38491273 PMCID: PMC10994848 DOI: 10.1038/s41564-024-01643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
In Mycobacterium tuberculosis, Rv3806c is a membrane-bound phosphoribosyltransferase (PRTase) involved in cell wall precursor production. It catalyses pentosyl phosphate transfer from phosphoribosyl pyrophosphate to decaprenyl phosphate, to generate 5-phospho-β-ribosyl-1-phosphoryldecaprenol. Despite Rv3806c being an attractive drug target, structural and molecular mechanistic insight into this PRTase is lacking. Here we report cryogenic electron microscopy structures for Rv3806c in the donor- and acceptor-bound states. In a lipidic environment, Rv3806c is trimeric, creating a UbiA-like fold. Each protomer forms two helical bundles, which, alongside the bound lipids, are required for PRTase activity in vitro. Mutational and functional analyses reveal that decaprenyl phosphate and phosphoribosyl pyrophosphate bind the intramembrane and extramembrane cavities of Rv3806c, respectively, in a distinct manner to that of UbiA superfamily enzymes. Our data suggest a model for Rv3806c-catalysed phosphoribose transfer through an inverting mechanism. These findings provide a structural basis for cell wall precursor biosynthesis that could have potential for anti-tuberculosis drug development.
Collapse
Affiliation(s)
- Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fangyu Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Sudagar S Gurcha
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Sarah M Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Laboratory of Structural Biology, Tsinghua University, Beijing, China.
| | - Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
21
|
Li Y, Chen X, Zhang W, Fang K, Tian J, Li F, Han M, Huang J, Sun T, Bai F, Cheng M, Xu Y. The metabolic slowdown caused by the deletion of pspA accelerates protein aggregation during stationary phase facilitating antibiotic persistence. Antimicrob Agents Chemother 2024; 68:e0093723. [PMID: 38169282 PMCID: PMC10848772 DOI: 10.1128/aac.00937-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Entering a dormant state is a prevailing mechanism used by bacterial cells to transiently evade antibiotic attacks and become persisters. The dynamic progression of bacterial dormancy depths driven by protein aggregation has been found to be critical for antibiotic persistence in recent years. However, our current understanding of the endogenous genes that affects dormancy depth remains limited. Here, we discovered a novel role of phage shock protein A (pspA) gene in modulating bacterial dormancy depth. Deletion of pspA of Escherichia coli resulted in increased bacterial dormancy depths and prolonged lag times for resuscitation during the stationary phase. ∆pspA exhibited a higher persister ratio compared to the wild type when challenged with various antibiotics. Microscopic images revealed that ∆pspA showed accelerated formation of protein aggresomes, which were collections of endogenous protein aggregates. Time-lapse imaging established the positive correlation between protein aggregation and antibiotic persistence of ∆pspA at the single-cell level. To investigate the molecular mechanism underlying accelerated protein aggregation, we performed transcriptome profiling and found the increased abundance of chaperons and a general metabolic slowdown in the absence of pspA. Consistent with the transcriptomic results, the ∆pspA strain showed a decreased cellular ATP level, which could be rescued by glucose supplementation. Then, we verified that replenishment of cellular ATP levels by adding glucose could inhibit protein aggregation and reduce persister formation in ∆pspA. This study highlights the novel role of pspA in maintaining proteostasis, regulating dormancy depth, and affecting antibiotic persistence during stationary phase.
Collapse
Affiliation(s)
- Yingxing Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- Biomedical Pioneering Innovation Centre (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Weili Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Kefan Fang
- Biomedical Pioneering Innovation Centre (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Jingjing Tian
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangyuan Li
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingfei Han
- National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Jingjing Huang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Clinical Laboratory, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Tianshu Sun
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Bai
- Biomedical Pioneering Innovation Centre (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Mei Cheng
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Herzig M, Hyötyläinen T, Vettese GF, Law GTW, Vierinen T, Bomberg M. Altering environmental conditions induce shifts in simulated deep terrestrial subsurface bacterial communities-Secretion of primary and secondary metabolites. Environ Microbiol 2024; 26:e16552. [PMID: 38098179 DOI: 10.1111/1462-2920.16552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
The deep terrestrial subsurface (DTS) harbours a striking diversity of microorganisms. However, systematic research on microbial metabolism, and how varying groundwater composition affects the bacterial communities and metabolites in these environments is lacking. In this study, DTS groundwater bacterial consortia from two Fennoscandian Shield sites were enriched and studied. We found that the enriched communities from the two sites consisted of distinct bacterial taxa, and alterations in the growth medium composition induced changes in cell counts. The lack of an exogenous organic carbon source (ECS) caused a notable increase in lipid metabolism in one community, while in the other, carbon starvation resulted in low overall metabolism, suggesting a dormant state. ECS supplementation increased CO2 production and SO4 2- utilisation, suggesting activation of a dissimilatory sulphate reduction pathway and sulphate-reducer-dominated total metabolism. However, both communities shared common universal metabolic features, most probably involving pathways needed for the maintenance of cell homeostasis (e.g., mevalonic acid pathway). Collectively, our findings indicate that the most important metabolites related to microbial reactions under varying growth conditions in enriched DTS communities include, but are not limited to, those linked to cell homeostasis, osmoregulation, lipid biosynthesis and degradation, dissimilatory sulphate reduction and isoprenoid production.
Collapse
Affiliation(s)
- Merja Herzig
- Faculty of Nuclear Sciences and Physical Engineering, Department of Nuclear Chemistry, Czech Technical University in Prague, Prague, Czech Republic
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Tuulia Hyötyläinen
- School of Science and Technology, EnForce, Environment and Health and Systems Medicine, Örebro University, Örebro, Sweden
| | - Gianni F Vettese
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Gareth T W Law
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Taavi Vierinen
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
23
|
Dong L, Liu Y. Exploring the Substrate-Assisted Dehydration of Chorismate Catalyzed by Dehydratase MqnA from QM/MM Calculations: The Role of Pocket Residues and the Hydrolysis Mechanism of N17D Mutant. J Chem Inf Model 2023; 63:7499-7507. [PMID: 37970731 DOI: 10.1021/acs.jcim.3c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
MqnA is the first enzyme on the futalosine pathway to menaquinone, which catalyzes the dehydration of chorismate to yield 3-enolpyruvyl-benzoate (3-EPB). MqnA is also the only chorismate dehydratase known so far. In this work, based on the recently determined crystal structures, we constructed the enzyme-substrate complex models and conducted quantum mechanics/molecular mechanics (QM/MM) calculations to elucidate the reaction details of MqnA and the critical roles of pocket residues. The calculation results confirm that the MqnA-catalyzed dehydration of chorismate follows the substrate-assisted E1cb mechanism, in which the enol carboxylate in the side chain of the substrate is responsible for deprotonating the C3 of chorismate. This proton transfer process is much slower than C4-OH departure. Calculations on different mutants reveal that S86 and N17 are important for anchoring the enol carboxylate of the substrate in a favorable conformation to extract the C3-proton. The strong H-bonds formed between the enol carboxylate of chorismate and S86/N17 play a key role in stabilizing the reaction intermediate. Consistent with the experimental observations, our calculations demonstrate that the MqnA N17D mutant also shows hydrolase activity and the typical enzyme-catalyzed hydrolysis mechanism is elucidated. The protonated D17 is responsible for saturating the methylene group of chorismate to start the hydrolysis reaction. The orientation of the carboxyl group of D17 is key in determining MqnA to be a dehydratase or hydrolase.
Collapse
Affiliation(s)
- Lihua Dong
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250013, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
24
|
Smajdor J, Jedlińska K, Porada R, Górska-Ratusznik A, Policht A, Śróttek M, Więcek G, Baś B, Strus M. The impact of gut bacteria producing long chain homologs of vitamin K 2 on colorectal carcinogenesis. Cancer Cell Int 2023; 23:268. [PMID: 37950262 PMCID: PMC10638769 DOI: 10.1186/s12935-023-03114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the foremost causes of cancer-related deaths. Lately, a close connection between the course of CRC and the intestinal microbiota has been revealed. Vitamin K2 (VK2) is a bacterially derived compound that plays a crucial role in the human body. Its significant anti-cancer properties may result, inter alia, from a quinone ring possessing a specific chemical structure found in many chemotherapeutics. VK2 can be supplied to our body exogenously, i.e., through dietary supplements or fermented food (e.g., yellow cheese, fermented soybeans -Natto), and endogenously, i.e., through the production of bacteria that constantly colonize the human microbiome of the large intestine.This paper focuses on endogenous K2 synthesized by the most active members of the human gut microbiome. This analysis tested 86 intestinally derived bacterial strains, among which the largest VK2 producers (Lactobacillus, Bifidobacterium, Bacillus) were selected. Moreover, based on the chosen VK2-MK4 homolog, the potential of VK2 penetration into Caco-2 cells in an aqueous environment without the coexistence of fats, pancreatic enzymes, or bile salts has been displayed. The influence of three VK2 homologs: VK2-MK4, VK2-MK7 and VK2-MK9 on apoptosis and necrosis of Caco-2 cells was tested proving the lack of their harmful effects on the tested cells. Moreover, the unique role of long-chain homologs (VK2-MK9 and VK2-MK7) in inhibiting the secretion of pro-inflammatory cytokines such as IL-8 (for Caco-2 tissue) and IL-6 and TNFα (for RAW 264.7) has been documented.
Collapse
Affiliation(s)
- Joanna Smajdor
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza, Kraków, 30-059, Poland
| | - Katarzyna Jedlińska
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza, Kraków, 30-059, Poland
| | - Radosław Porada
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków, 30- 387, Poland
| | - Anna Górska-Ratusznik
- Sieć Badawcza Łukasiewicz-Krakowski Instytut Technologiczny, ul. Zakopiańska 73, Cracow, 30-418, Poland
| | - Aleksandra Policht
- Chair of Microbiology, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Małgorzata Śróttek
- Chair of Microbiology, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Grażyna Więcek
- Chair of Microbiology, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Bogusław Baś
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza, Kraków, 30-059, Poland
| | - Magdalena Strus
- Chair of Microbiology, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland.
| |
Collapse
|
25
|
Nagatani H, Mae Y, Konishi M, Matsuzaki M, Kita K, Daldal F, Sakamoto K. UbiN, a novel Rhodobacter capsulatus decarboxylative hydroxylase involved in aerobic ubiquinone biosynthesis. FEBS Open Bio 2023; 13:2081-2093. [PMID: 37716914 PMCID: PMC10626278 DOI: 10.1002/2211-5463.13707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023] Open
Abstract
Ubiquinone (UQ) is a lipophilic electron carrier that functions in the respiratory and photosynthetic electron transfer chains of proteobacteria and eukaryotes. Bacterial UQ biosynthesis is well studied in the gammaproteobacterium Escherichia coli, in which most bacterial UQ-biosynthetic enzymes have been identified. However, these enzymes are not always conserved among UQ-containing bacteria. In particular, the alphaproteobacterial UQ biosynthesis pathways contain many uncharacterized steps with unknown features. In this work, we identified in the alphaproteobacterium Rhodobacter capsulatus a new decarboxylative hydroxylase and named it UbiN. Remarkably, the UbiN sequence is more similar to a salicylate hydroxylase than the conventional flavin-containing UQ-biosynthetic monooxygenases. Under aerobic conditions, R. capsulatus ΔubiN mutant cells accumulate 3-decaprenylphenol, which is a UQ-biosynthetic intermediate. In addition, 3-decaprenyl-4-hydroxybenzoic acid, which is the substrate of UQ-biosynthetic decarboxylase UbiD, also accumulates in ΔubiN cells under aerobic conditions. Considering that the R. capsulatus ΔubiD-X double mutant strain (UbiX produces a prenylated FMN required for UbiD) grows as a wild-type strain under aerobic conditions, these results indicate that UbiN catalyzes the aerobic decarboxylative hydroxylation of 3-decaprenyl-4-hydroxybenzoic acid. This is the first example of the involvement of decarboxylative hydroxylation in ubiquinone biosynthesis. This finding suggests that the C1 hydroxylation reaction is, at least in R. capsulatus, the first step among the three hydroxylation steps involved in UQ biosynthesis. Although the C5 hydroxylation reaction is often considered to be the first hydroxylation step in bacterial UQ biosynthesis, it appears that the R. capsulatus pathway is more similar to that found in mammalians.
Collapse
Affiliation(s)
- Haruka Nagatani
- United Graduate School of Agricultural SciencesIwate UniversityMoriokaJapan
| | - Yoshiyuki Mae
- Faculty of Agriculture and Life ScienceHirosaki UniversityJapan
| | - Miharu Konishi
- Faculty of Agriculture and Life ScienceHirosaki UniversityJapan
| | | | - Kiyoshi Kita
- School of Tropical Medicine and Global HealthNagasaki UniversityJapan
- Department of Host‐Defense Biochemistry, Institute of Tropical Medicine (NEKKEN)Nagasaki UniversityJapan
| | - Fevzi Daldal
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Kimitoshi Sakamoto
- United Graduate School of Agricultural SciencesIwate UniversityMoriokaJapan
- Faculty of Agriculture and Life ScienceHirosaki UniversityJapan
| |
Collapse
|
26
|
Kazemzadeh K, Pelosi L, Chenal C, Chobert SC, Hajj Chehade M, Jullien M, Flandrin L, Schmitt W, He Q, Bouvet E, Jarzynka M, Varoquaux N, Junier I, Pierrel F, Abby SS. Diversification of Ubiquinone Biosynthesis via Gene Duplications, Transfers, Losses, and Parallel Evolution. Mol Biol Evol 2023; 40:msad219. [PMID: 37788637 PMCID: PMC10597321 DOI: 10.1093/molbev/msad219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023] Open
Abstract
The availability of an ever-increasing diversity of prokaryotic genomes and metagenomes represents a major opportunity to understand and decipher the mechanisms behind the functional diversification of microbial biosynthetic pathways. However, it remains unclear to what extent a pathway producing a specific molecule from a specific precursor can diversify. In this study, we focus on the biosynthesis of ubiquinone (UQ), a crucial coenzyme that is central to the bioenergetics and to the functioning of a wide variety of enzymes in Eukarya and Pseudomonadota (a subgroup of the formerly named Proteobacteria). UQ biosynthesis involves three hydroxylation reactions on contiguous carbon atoms. We and others have previously shown that these reactions are catalyzed by different sets of UQ-hydroxylases that belong either to the iron-dependent Coq7 family or to the more widespread flavin monooxygenase (FMO) family. Here, we combine an experimental approach with comparative genomics and phylogenetics to reveal how UQ-hydroxylases evolved different selectivities within the constrained framework of the UQ pathway. It is shown that the UQ-FMOs diversified via at least three duplication events associated with two cases of neofunctionalization and one case of subfunctionalization, leading to six subfamilies with distinct hydroxylation selectivity. We also demonstrate multiple transfers of the UbiM enzyme and the convergent evolution of UQ-FMOs toward the same function, which resulted in two independent losses of the Coq7 ancestral enzyme. Diversification of this crucial biosynthetic pathway has therefore occurred via a combination of parallel evolution, gene duplications, transfers, and losses.
Collapse
Affiliation(s)
- Katayoun Kazemzadeh
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Clothilde Chenal
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Sophie-Carole Chobert
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Mahmoud Hajj Chehade
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Margaux Jullien
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Laura Flandrin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - William Schmitt
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Qiqi He
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Emma Bouvet
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Manon Jarzynka
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Nelle Varoquaux
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Ivan Junier
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Sophie S Abby
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
27
|
Wolters SM, Benninghaus VA, Roelfs KU, van Deenen N, Twyman RM, Prüfer D, Schulze Gronover C. Overexpression of a pseudo-etiolated-in-light-like protein in Taraxacum koksaghyz leads to a pale green phenotype and enables transcriptome-based network analysis of photomorphogenesis and isoprenoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1228961. [PMID: 37841614 PMCID: PMC10569127 DOI: 10.3389/fpls.2023.1228961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Introduction Plant growth and greening in response to light require the synthesis of photosynthetic pigments such as chlorophylls and carotenoids, which are derived from isoprenoid precursors. In Arabidopsis, the pseudo-etiolated-in-light phenotype is caused by the overexpression of repressor of photosynthetic genes 2 (RPGE2), which regulates chlorophyll synthesis and photosynthetic genes. Methods We investigated a homologous protein in the Russian dandelion (Taraxacum koksaghyz) to determine its influence on the rich isoprenoid network in this species, using a combination of in silico analysis, gene overexpression, transcriptomics and metabolic profiling. Results Homology-based screening revealed a gene designated pseudo-etiolated-in-light-like (TkPEL-like), and in silico analysis identified a light-responsive G-box element in its promoter. TkPEL-like overexpression in dandelion plants and other systems reduced the levels of chlorophylls and carotenoids, but this was ameliorated by the mutation of one or both conserved cysteine residues. Comparative transcriptomics in dandelions overexpressing TkPEL-like showed that genes responsible for the synthesis of isoprenoid precursors and chlorophyll were downregulated, probably explaining the observed pale green leaf phenotype. In contrast, genes responsible for carotenoid synthesis were upregulated, possibly in response to feedback signaling. The evaluation of additional differentially expressed genes revealed interactions between pathways. Discussion We propose that TkPEL-like negatively regulates chlorophyll- and photosynthesis-related genes in a light-dependent manner, which appears to be conserved across species. Our data will inform future studies addressing the regulation of leaf isoprenoid biosynthesis and photomorphogenesis and could be used in future breeding strategies to optimize selected plant isoprenoid profiles and generate suitable plant-based production platforms.
Collapse
Affiliation(s)
- Silva Melissa Wolters
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | | | - Kai-Uwe Roelfs
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Nicole van Deenen
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | | | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | | |
Collapse
|
28
|
Schelz Z, Muddather HF, Zupkó I. Repositioning of HMG-CoA Reductase Inhibitors as Adjuvants in the Modulation of Efflux Pump-Mediated Bacterial and Tumor Resistance. Antibiotics (Basel) 2023; 12:1468. [PMID: 37760764 PMCID: PMC10525194 DOI: 10.3390/antibiotics12091468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Efflux pump (EP)-mediated multidrug resistance (MDR) seems ubiquitous in bacterial infections and neoplastic diseases. The diversity and lack of specificity of these efflux mechanisms raise a great obstacle in developing drugs that modulate efflux pumps. Since developing novel chemotherapeutic drugs requires large investments, drug repurposing offers a new approach that can provide alternatives as adjuvants in treating resistant microbial infections and progressive cancerous diseases. Hydroxy-methyl-glutaryl coenzyme-A (HMG-CoA) reductase inhibitors, also known as statins, are promising agents in this respect. Originally, statins were used in the therapy of dyslipidemia and for the prevention of cardiovascular diseases; however, extensive research has recently been performed to elucidate the functions of statins in bacterial infections and cancers. The mevalonate pathway is essential in the posttranslational modification of proteins related to vital eukaryotic cell functions. In this article, a comparative review is given about the possible role of HMG-CoA reductase inhibitors in managing diseases of bacterial and neoplastic origin. Molecular research and clinical studies have proven the justification of statins in this field. Further well-designed clinical trials are urged to clarify the significance of the contribution of statins to the lower risk of disease progression in bacterial infections and cancerous diseases.
Collapse
Affiliation(s)
| | | | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.)
| |
Collapse
|
29
|
Breaker RR, Harris KA, Lyon SE, Wencker FDR, Fernando CM. Evidence that OLE RNA is a component of a major stress-responsive ribonucleoprotein particle in extremophilic bacteria. Mol Microbiol 2023; 120:324-340. [PMID: 37469248 DOI: 10.1111/mmi.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
OLE RNA is a ~600-nucleotide noncoding RNA present in many Gram-positive bacteria that thrive mostly in extreme environments, including elevated temperature, salt, and pH conditions. The precise biochemical functions of this highly conserved RNA remain unknown, but it forms a ribonucleoprotein (RNP) complex that localizes to cell membranes. Genetic disruption of the RNA or its essential protein partners causes reduced cell growth under various stress conditions. These phenotypes include sensitivity to short-chain alcohols, cold intolerance, reduced growth on sub-optimal carbon sources, and intolerance of even modest concentrations of Mg2+ . Thus, many bacterial species appear to employ OLE RNA as a component of an intricate RNP apparatus to monitor fundamental cellular processes and make physiological and metabolic adaptations. Herein we hypothesize that the OLE RNP complex is functionally equivalent to the eukaryotic TOR complexes, which integrate signals from various diverse pathways to coordinate processes central to cell growth, replication, and survival.
Collapse
Affiliation(s)
- Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Kimberly A Harris
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Seth E Lyon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Freya D R Wencker
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Chrishan M Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
30
|
Yin F, Qin Z. Long-Chain Molecules with Agro-Bioactivities and Their Applications. Molecules 2023; 28:5880. [PMID: 37570848 PMCID: PMC10421526 DOI: 10.3390/molecules28155880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Long-chain molecules play a vital role in agricultural production and find extensive use as fungicides, insecticides, acaricides, herbicides, and plant growth regulators. This review article specifically addresses the agricultural biological activities and applications of long-chain molecules. The utilization of long-chain molecules in the development of pesticides is an appealing avenue for designing novel pesticide compounds. By offering valuable insights, this article serves as a useful reference for the design of new long-chain molecules for pesticide applications.
Collapse
Affiliation(s)
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
31
|
Kruk J, Szymańska R. Synthesis of natural polyprenols for the production of biological prenylquinones and tocochromanols. RSC Adv 2023; 13:23122-23129. [PMID: 37529360 PMCID: PMC10388336 DOI: 10.1039/d3ra02872k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
We elaborate the chemical synthesis of polyprenols by chain lengthening, which is considerably less time-consuming than the other previously described methods. Our method eliminates critical steps requiring low temperature and toxic chemicals, which are difficult to perform in ordinary laboratories. The critical step of acetylene addition in liquid ammonia was replaced by a new approach, namely, the use of sodium acetylide in dimethoxyethane at room temperature, where the reaction is completed within one hour. This method is of general significance as it can also be applied to the synthesis of any other acetylides. Our method provides reasonable yields and can be scaled depending on the requirements. All the reactions were followed by high-performance liquid chromatography, allowing the formation of undesired isomers and other side-products to be controlled. The resulting polyprenols were further used in the synthesis of plastoquinones, although a variety of biological prenylquinones can be synthesized this way. Moreover, we found a new method for the direct formation of tocochromanols (plastochromanols, tocochromanols) from polyprenols and aromatic head groups.
Collapse
Affiliation(s)
- Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 30-387 Kraków Poland +48 126646361
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology Reymonta 19 30-059 Kraków Poland
| |
Collapse
|
32
|
Eliani-Russak E, Tik Z, Uzi-Gavrilov S, Meijler MM, Sivan O. The reduction of environmentally abundant iron oxides by the methanogen Methanosarcina barkeri. Front Microbiol 2023; 14:1197299. [PMID: 37547683 PMCID: PMC10399698 DOI: 10.3389/fmicb.2023.1197299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Microbial dissimilatory iron reduction is a fundamental respiratory process that began early in evolution and is performed in diverse habitats including aquatic anoxic sediments. In many of these sediments microbial iron reduction is not only observed in its classical upper zone, but also in the methane production zone, where low-reactive iron oxide minerals are present. Previous studies in aquatic sediments have shown the potential role of the archaeal methanogen Methanosarcinales in this reduction process, and their use of methanophenazines was suggested as an advantage in reducing iron over other iron-reducing bacteria. Here we tested the capability of the methanogenic archaeon Methanosarcina barkeri to reduce three naturally abundant iron oxides in the methanogenic zone: the low-reactive iron minerals hematite and magnetite, and the high-reactive amorphous iron oxide. We also examined the potential role of their methanophenazines in promoting the reduction. Pure cultures were grown close to natural conditions existing in the methanogenic zone (under nitrogen atmosphere, N2:CO2, 80:20), in the presence of these iron oxides and different electron shuttles. Iron reduction by M. barkeri was observed in all iron oxide types within 10 days. The reduction during that time was most notable for amorphous iron, then magnetite, and finally hematite. Importantly, the reduction of iron inhibited archaeal methane production. When hematite was added inside cryogenic vials, thereby preventing direct contact with M. barkeri, no iron reduction was observed, and methanogenesis was not inhibited. This suggests a potential role of methanophenazines, which are strongly associated with the membrane, in transferring electrons from the cell to the minerals. Indeed, adding dissolved phenazines as electron shuttles to the media with iron oxides increased iron reduction and inhibited methanogenesis almost completely. When M. barkeri was incubated with hematite and the phenazines together, there was a change in the amounts (but not the type) of specific metabolites, indicating a difference in the ratio of metabolic pathways. Taken together, the results show the potential role of methanogens in reducing naturally abundant iron minerals in methanogenic sediments under natural energy and substrate limitations and shed new insights into the coupling of microbial iron reduction and the important greenhouse gas methane.
Collapse
Affiliation(s)
- Efrat Eliani-Russak
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Zohar Tik
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Shaked Uzi-Gavrilov
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Michael M. Meijler
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Orit Sivan
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
33
|
Wilkens D, Simon J. Biosynthesis and function of microbial methylmenaquinones. Adv Microb Physiol 2023; 83:1-58. [PMID: 37507157 DOI: 10.1016/bs.ampbs.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The membranous quinone/quinol pool is essential for the majority of life forms and its composition has been widely used as a biomarker in microbial taxonomy. The most abundant quinone is menaquinone (MK), which serves as an essential redox mediator in various electron transport chains of aerobic and anaerobic respiration. Several methylated derivatives of MK, designated methylmenaquinones (MMKs), have been reported to be present in members of various microbial phyla possessing either the classical MK biosynthesis pathway (Men) or the futalosine pathway (Mqn). Due to their low redox midpoint potentials, MMKs have been proposed to be specifically involved in appropriate electron transport chains of anaerobic respiration. The class C radical SAM methyltransferases MqnK, MenK and MenK2 have recently been shown to catalyse specific MK methylation reactions at position C-8 (MqnK/MenK) or C-7 (MenK2) to synthesise 8-MMK, 7-MMK and 7,8-dimethylmenaquinone (DMMK). MqnK, MenK and MenK2 from organisms such as Wolinella succinogenes, Adlercreutzia equolifaciens, Collinsella tanakaei, Ferrimonas marina and Syntrophus aciditrophicus have been functionally produced in Escherichia coli, enabling extensive quinone/quinol pool engineering of the native MK and 2-demethylmenaquinone (DMK). Cluster and phylogenetic analyses of available MK and MMK methyltransferase sequences revealed signature motifs that allowed the discrimination of MenK/MqnK/MenK2 family enzymes from other radical SAM enzymes and the identification of C-7-specific menaquinone methyltransferases of the MenK2 subfamily. It is envisaged that this knowledge will help to predict the methylation status of the menaquinone/menaquinol pool of any microbial species (or even a microbial community) from its (meta)genome.
Collapse
Affiliation(s)
- Dennis Wilkens
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
34
|
Mishima E, Wahida A, Seibt T, Conrad M. Diverse biological functions of vitamin K: from coagulation to ferroptosis. Nat Metab 2023:10.1038/s42255-023-00821-y. [PMID: 37337123 DOI: 10.1038/s42255-023-00821-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/12/2023] [Indexed: 06/21/2023]
Abstract
Vitamin K is essential for several physiological processes, such as blood coagulation, in which it serves as a cofactor for the conversion of peptide-bound glutamate to γ-carboxyglutamate in vitamin K-dependent proteins. This process is driven by the vitamin K cycle facilitated by γ-carboxyglutamyl carboxylase, vitamin K epoxide reductase and ferroptosis suppressor protein-1, the latter of which was recently identified as the long-sought-after warfarin-resistant vitamin K reductase. In addition, vitamin K has carboxylation-independent functions. Akin to ubiquinone, vitamin K acts as an electron carrier for ATP production in some organisms and prevents ferroptosis, a type of cell death hallmarked by lipid peroxidation. In this Perspective, we provide an overview of the diverse functions of vitamin K in physiology and metabolism and, at the same time, offer a perspective on its role in ferroptosis together with ferroptosis suppressor protein-1. A comparison between vitamin K and ubiquinone, from an evolutionary perspective, may offer further insights into the manifold roles of vitamin K in biology.
Collapse
Affiliation(s)
- Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany.
- Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tobias Seibt
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
35
|
Xia Q, Zhou Y, Yang X, Zhang Y, Wang J, Song G. Solvent-switchable regioselective 1,2- or 1,6-addition of quinones with boronic acids. Chem Commun (Camb) 2023. [PMID: 37334622 DOI: 10.1039/d3cc01968c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
An efficient copper-catalyzed solvent-switchable regioselective 1,2- or 1,6-addition of quinones with boronic acids has been developed. This novel catalytic protocol for the synthesis of various quinols and 4-phenoxyphenols was enabled by a simple solvent swap between H2O and MeOH. It features mild reaction conditions, simple and easy operation, broad substrate scope and excellent regioselectivity. The gram-scale reactions as well as the further transformations of both addition products were also successfully investigated.
Collapse
Affiliation(s)
- Qi Xia
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yaxuan Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Xiaoning Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yanqiu Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jiayi Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Gonghua Song
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
36
|
Teixeira O, Martins IBS, Froes TQ, de Araújo AS, Nonato MC. Kinetic and structural studies of Mycobacterium tuberculosis dihydroorotate dehydrogenase reveal new insights into class 2 DHODH inhibition. Biochim Biophys Acta Gen Subj 2023; 1867:130378. [PMID: 37150227 DOI: 10.1016/j.bbagen.2023.130378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Tuberculosis (TB) is a leading cause of death worldwide. TB represents a serious public health threat, and it is characterized by high transmission rates, prevalence in impoverished regions, and high co-infection rates with HIV. Moreover, the serious side effects of long-term treatment that decrease patient adherence, and the emergence of multi-resistant strains of Mycobacterium tuberculosis, the causing agent of TBs, pose several challenges for its eradication. The search for a new TB treatment is necessary and urgent. Dihydroorotate dehydrogenase (DHODH) is responsible for the stereospecific oxidation of (S)-dihydroorotate (DHO) to orotate during the fourth and only redox step of the de novo pyrimidine nucleotide biosynthetic pathway. DHODH has been considered an attractive target against infectious diseases. As a first step towards exploiting DHODH as a drug target against TB, we performed a full kinetic characterization of both bacterial MtDHODH and its human ortholog (HsDHDOH) using both substrates coenzyme Q0 (Q0) and vitamin K3 (K3). MtDHODH follows a ping-pong mechanism of catalysis and shares similar catalytic parameters with the human enzyme. Serendipitously, Q0 was found to inhibit MtDHODH (KI (Q0) = 138 ± 31 μM). To the best of our knowledge, Q0 is the first non-orotate like dihydroorotate-competitive inhibitor for class 2 DHODHs ever described. Molecular dynamics simulations along with in silico solvent mapping allowed us to successfully probe protein flexibility and correlate it with the druggability of binding sites. Together, our results provide the starting point for the design of a new generation of potent and selective inhibitors against MtDHODH.
Collapse
Affiliation(s)
- Olívia Teixeira
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil; Center for the Research and Advancement in Fragments and molecular Targets (CRAFT), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Ingrid Bernardes Santana Martins
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto de Biociências, Letras e Ciências Exatas, Departamento de Física, UNESP, 15054-000 São José do Rio Preto, SP, Brazil
| | - Thamires Quadros Froes
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil; Center for the Research and Advancement in Fragments and molecular Targets (CRAFT), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Alexandre Suman de Araújo
- Instituto de Biociências, Letras e Ciências Exatas, Departamento de Física, UNESP, 15054-000 São José do Rio Preto, SP, Brazil
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil; Center for the Research and Advancement in Fragments and molecular Targets (CRAFT), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
37
|
Ivanova AY, Shirokov IV, Toshchakov SV, Kozlova AD, Obolenskaya ON, Mariasina SS, Ivlev VA, Gartseev IB, Medvedev OS. Effects of Coenzyme Q10 on the Biomarkers (Hydrogen, Methane, SCFA and TMA) and Composition of the Gut Microbiome in Rats. Pharmaceuticals (Basel) 2023; 16:ph16050686. [PMID: 37242469 DOI: 10.3390/ph16050686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The predominant route of administration of drugs with coenzyme Q10 (CoQ10) is administration per os. The bioavailability of CoQ10 is about 2-3%. Prolonged use of CoQ10 to achieve pharmacological effects contributes to the creation of elevated concentrations of CoQ10 in the intestinal lumen. CoQ10 can have an effect on the gut microbiota and the levels of biomarkers it produces. CoQ10 at a dose of 30 mg/kg/day was administered per os to Wistar rats for 21 days. The levels of gut microbiota biomarkers (hydrogen, methane, short-chain fatty acids (SCFA), and trimethylamine (TMA)) and taxonomic composition were measured twice: before the administration of CoQ10 and at the end of the experiment. Hydrogen and methane levels were measured using the fasting lactulose breath test, fecal and blood SCFA and fecal TMA concentrations were determined by NMR, and 16S sequencing was used to analyze the taxonomic composition. Administration of CoQ10 for 21 days resulted in a 1.83-fold (p = 0.02) increase in hydrogen concentration in the total air sample (exhaled air + flatus), a 63% (p = 0.02) increase in the total concentration of SCFA (acetate, propionate, butyrate) in feces, a 126% increase in butyrate (p = 0.04), a 6.56-fold (p = 0.03) decrease in TMA levels, a 2.4-fold increase in relative abundance of Ruminococcus and Lachnospiraceae AC 2044 group by 7.5 times and a 2.8-fold decrease in relative representation of Helicobacter. The mechanism of antioxidant effect of orally administered CoQ10 can include modification of the taxonomic composition of the gut microbiota and increased generation of molecular hydrogen, which is antioxidant by itself. The evoked increase in the level of butyric acid can be followed by protection of the gut barrier function.
Collapse
Affiliation(s)
- Anastasiia Yu Ivanova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
- National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Laboratory of Experimental Pharmacology, Moscow 121552, Russia
| | - Ivan V Shirokov
- Medical and Technical Information Technologies, Bauman Moscow State Technical University, Moscow 105005, Russia
| | - Stepan V Toshchakov
- Center for Genome Research, National Research Center "Kurchatov Institute", Moscow 123098, Russia
| | - Aleksandra D Kozlova
- Center for Genome Research, National Research Center "Kurchatov Institute", Moscow 123098, Russia
| | - Olga N Obolenskaya
- Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sofia S Mariasina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute of Functional Genomics, Moscow State University, Moscow 119991, Russia
| | - Vasily A Ivlev
- Pharmacy Resource Center, Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Ilya B Gartseev
- The Institute of Artificial Intelligence of Russian Technological University MIREA, Moscow 119454, Russia
| | - Oleg S Medvedev
- Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
- National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Laboratory of Experimental Pharmacology, Moscow 121552, Russia
| |
Collapse
|
38
|
Norcott PL. Benzoquinone Enhances Hyperpolarization of Surface Alcohols with Para-Hydrogen. J Am Chem Soc 2023; 145:9970-9975. [PMID: 37127286 PMCID: PMC10176463 DOI: 10.1021/jacs.3c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The nuclear singlet state of H2, para-hydrogen, can be used to increase the measurable signal-to-noise for magnetic resonance techniques─a form of hyperpolarization. Transfer of this polarization from para-hydrogen to alcohols through surface interactions rather than formal hydrogenation has only been demonstrated on heterogeneous catalysts tailored to minimize loss of spin order. Here, we find that a common platinum-on-carbon catalyst is capable of this interaction and that the addition of a benzoquinone significantly increases the signal output of hyperpolarized methanol or water.
Collapse
Affiliation(s)
- Philip L Norcott
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
39
|
Mong MA. Vitamin K and the Visual System-A Narrative Review. Nutrients 2023; 15:nu15081948. [PMID: 37111170 PMCID: PMC10143727 DOI: 10.3390/nu15081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Vitamin K occupies a unique and often obscured place among its fellow fat-soluble vitamins. Evidence is mounting, however, that vitamin K (VK) may play an important role in the visual system apart from the hepatic carboxylation of hemostatic-related proteins. However, to our knowledge, no review covering the topic has appeared in the medical literature. Recent studies have confirmed that matrix Gla protein (MGP), a vitamin K-dependent protein (VKDP), is essential for the regulation of intraocular pressure in mice. The PREDIMED (Prevención con Dieta Mediterránea) study, a randomized trial involving 5860 adults at risk for cardiovascular disease, demonstrated a 29% reduction in the risk of cataract surgery in participants with the highest tertile of dietary vitamin K1 (PK) intake compared with those with the lowest tertile. However, the specific requirements of the eye and visual system (EVS) for VK, and what might constitute an optimized VK status, is currently unknown and largely unexplored. It is, therefore, the intention of this narrative review to provide an introduction concerning VK and the visual system, review ocular VK biology, and provide some historical context for recent discoveries. Potential opportunities and gaps in current research efforts will be touched upon in the hope of raising awareness and encouraging continued VK-related investigations in this important and highly specialized sensory system.
Collapse
Affiliation(s)
- Michael A Mong
- Department of Ophthalmology, Veteran Affairs North Texas Health Care Medical Center, Dallas, TX 75216, USA
| |
Collapse
|
40
|
Deng YJ, Duan AQ, Liu H, Wang YH, Zhang RR, Xu ZS, Xiong AS. Generating colorful carrot germplasm through metabolic engineering of betalains pigments. HORTICULTURE RESEARCH 2023; 10:uhad024. [PMID: 37786858 PMCID: PMC10541523 DOI: 10.1093/hr/uhad024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/05/2023] [Indexed: 10/04/2023]
Abstract
Betalains are tyrosine-derived plant pigments exclusively found in the Caryophyllales order and some higher fungi and generally classified into two groups: red-violet betacyanins and yellow-orange betaxanthins. Betalains attract great scientific and economic interest because of their relatively simple biosynthesis pathway, attractive colors and health-promoting properties. Co-expressing two core genes BvCYP76AD1 and BvDODA1 with or without a glycosyltransferase gene MjcDOPA5GT allowed the engineering of carrot (an important taproot vegetable) to produce a palette of unique colors. The highest total betalains content, 943.2 μg·g-1 DW, was obtained in carrot taproot transformed with p35S:RUBY which produces all of the necessary enzymes for betalains synthesis. Root-specific production of betalains slightly relieved tyrosine consumption revealing the possible bottleneck in betalains production. Furthermore, a unique volcano-like phenotype in carrot taproot cross-section was created by vascular cambium-specific production of betalains. The betalains-fortified carrot in this study is thus anticipated to be used as functional vegetable and colorful carrot germplasm in breeding to promote health.
Collapse
Affiliation(s)
- Yuan-Jie Deng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ao-Qi Duan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Hui Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ya-Hui Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Rong-Rong Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhi-Sheng Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ai-Sheng Xiong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
41
|
Dong Y, Luo LX, Hua C, He ZJ, Chen Y, Shi ZC, Li ZH, He B. 'On Water'-Promoted Three-Component Tandem Michael Addition/D-A Cycloaddition Reaction to Construct Polycyclic N-Heterocycles Derivatives. Chem Biodivers 2023; 20:e202300100. [PMID: 36930226 DOI: 10.1002/cbdv.202300100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
'On Water'-promoted the three-component tandem Michael addition/D-A cycloaddition reaction in 80 °C at 3 h has been developed without employing any catalyst and organic solvent. The process allows facile access to polycyclic N-heterocycles derivatives contain indole and maleimide from easily accessible starting materials in moderate to high yields (up to 91 %). Compared with conventional reaction conditions, this reaction not only improves the reaction efficiency and rate but also minimizes the side reaction.
Collapse
Affiliation(s)
- Yu Dong
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - Liang-Xian Luo
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - Chen Hua
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - Ze-Jing He
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - Yong Chen
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - Zhi-Chuan Shi
- Southwest Minzu University, Chengdu, 610041, P. R. China
| | - Zhong-Hui Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - Bing He
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| |
Collapse
|
42
|
Freire MÁ. The origins of photosynthetic systems: Clues from the phosphorus and sulphur chemical scenarios. Biosystems 2023; 226:104873. [PMID: 36906114 DOI: 10.1016/j.biosystems.2023.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Photosynthesis is the predominant biochemical process of carbon dioxide assimilation in the biosphere. To reduce carbon dioxide into organic compounds, photosynthetic organisms have one or two distinct photochemical reaction centre complexes with which they capture solar energy and generate ATP and reducing power. The core polypeptides of the photosynthetic reaction centres show low homologies but share overlapping structural folds, overall architecture, similar functional properties and highly conserved positions in protein sequences suggesting a common ancestry. However, the other biochemical components of photosynthetic apparatus appear to be a mosaic resulting from different evolutionary trajectories. The current proposal focusses on the nature and biosynthetic pathways of some organic redox cofactors that participate in the photosynthetic systems: quinones, chlorophyll and heme rings and their attached isoprenoid side chains, as well as on the coupled proton motive forces and associated carbon fixation pathways. This perspective highlights clues about the involvement of the phosphorus and sulphur chemistries that would have shaped the different types of photosynthetic systems.
Collapse
Affiliation(s)
- Miguel Ángel Freire
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Exactas, Físicas y Naturales. Av. Vélez Sarsfield 299, CC 495, 5000, Córdoba, Argentina.
| |
Collapse
|
43
|
Stanborough T, Ho NAT, Bulloch EMM, Bashiri G, Dawes SS, Akazong EW, Titterington J, Allison TM, Jiao W, Johnston JM. Allosteric inhibition of Staphylococcus aureus MenD by 1,4-dihydroxy naphthoic acid: a feedback inhibition mechanism of the menaquinone biosynthesis pathway. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220035. [PMID: 36633276 PMCID: PMC9835592 DOI: 10.1098/rstb.2022.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Menaquinones (MKs) are electron carriers in bacterial respiratory chains. In Staphylococcus aureus (Sau), MKs are essential for aerobic and anaerobic respiration. As MKs are redox-active, their biosynthesis likely requires tight regulation to prevent disruption of cellular redox balance. We recently found that the Mycobacterium tuberculosis MenD, the first committed enzyme of the MK biosynthesis pathway, is allosterically inhibited by the downstream metabolite 1,4-dihydroxy-2-naphthoic acid (DHNA). To understand if this is a conserved mechanism in phylogenetically distant genera that also use MK, we investigated whether the Sau-MenD is allosterically inhibited by DHNA. Our results show that DHNA binds to and inhibits the SEPHCHC synthase activity of Sau-MenD enzymes. We identified residues in the DHNA binding pocket that are important for catalysis (Arg98, Lys283, Lys309) and inhibition (Arg98, Lys283). Furthermore, we showed that exogenous DHNA inhibits the growth of Sau, an effect that can be rescued by supplementing the growth medium with MK-4. Our results demonstrate that, despite a lack of strict conservation of the DHNA binding pocket between Mtb-MenD and Sau-MenD, feedback inhibition by DHNA is a conserved mechanism in Sau-MenD and hence the Sau MK biosynthesis pathway. These findings may have implications for the development of anti-staphylococcal agents targeting MK biosynthesis. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Tamsyn Stanborough
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
| | - Ngoc Anh Thu Ho
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Esther M. M. Bulloch
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ghader Bashiri
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephanie S. Dawes
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Etheline W. Akazong
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - James Titterington
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
| | - Timothy M. Allison
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jodie M. Johnston
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
44
|
Seasonal activities of the phyllosphere microbiome of perennial crops. Nat Commun 2023; 14:1039. [PMID: 36823152 PMCID: PMC9950430 DOI: 10.1038/s41467-023-36515-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, we apply a genome-centric approach to identify ecologically important leaf microbiome members on replicated plots of field-grown switchgrass and miscanthus, and to quantify their activities over two growing seasons for switchgrass. We use metagenome and metatranscriptome sequencing and curate 40 medium- and high-quality metagenome-assembled-genomes (MAGs). We find that classes represented by these MAGs (Actinomycetia, Alpha- and Gamma- Proteobacteria, and Bacteroidota) are active in the late season, and upregulate transcripts for short-chain dehydrogenase, molybdopterin oxidoreductase, and polyketide cyclase. Stress-associated pathways are expressed for most MAGs, suggesting engagement with the host environment. We also detect seasonally activated biosynthetic pathways for terpenes and various non-ribosomal peptide pathways that are poorly annotated. Our findings support that leaf-associated bacterial populations are seasonally dynamic and responsive to host cues.
Collapse
|
45
|
Sun M, Cai M, Zeng Q, Han Y, Zhang S, Wang Y, Xie Q, Chen Y, Zeng Y, Chen T. Genome-Wide Identification and Expression Analysis of UBiA Family Genes Associated with Abiotic Stress in Sunflowers ( Helianthus annuus L.). Int J Mol Sci 2023; 24:ijms24031883. [PMID: 36768207 PMCID: PMC9916351 DOI: 10.3390/ijms24031883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023] Open
Abstract
The UBiA genes encode a large class of isopentenyltransferases, which are involved in the synthesis of secondary metabolites such as chlorophyll and vitamin E. They performed important functions in the whole plant's growth and development. Current studies on UBiA genes were not comprehensive enough, especially for sunflower UBiA genes. In this study, 10 HaUBiAs were identified by domain analysis these HaUBiAs had five major conserved domains and were unevenly distributed on six chromosomes. By constructing phylogenetic trees, 119 UBiA genes were found in 12 species with different evolutionary levels and divided into five major groups, which contained seven conserved motifs and eight UBiA subsuper family domains. Tissue expression analysis showed that HaUBiAs were highly expressed in the roots, leaves, and seeds. By using promoter analysis, the cis-elements of UBiA genes were mainly in hormone signaling and stress responses. The qRT-PCR results showed that HaUBiA1 and HaUBiA5 responded strongly to abiotic stresses. Under ABA and MeJA treatments, HaUBiA1 significantly upregulated, while HaUBiA5 significantly decreased. Under cold stress, the expression of UBiA1 was significantly upregulated in the roots and stems, while UBiA5 expression was increased only in the leaves. Under anaerobic induction, UBiA1 and UBiA5 were both upregulated in the roots, stems and leaves. In summary, this study systematically classified the UBiA family and identified two abiotic stress candidate genes in the sunflower. It expands the understanding of the UBiA family and provides a theoretical basis for future abiotic stress studies in sunflowers.
Collapse
Affiliation(s)
- Mingzhe Sun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Maohong Cai
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Qinzong Zeng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuliang Han
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Siqi Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Yingwei Wang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Qinyu Xie
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Youheng Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Youling Zeng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
- Correspondence: (Y.Z.); (T.C.)
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (Y.Z.); (T.C.)
| |
Collapse
|
46
|
Verdaguer IB, Crispim M, Hernández A, Katzin AM. The Biomedical Importance of the Missing Pathway for Farnesol and Geranylgeraniol Salvage. Molecules 2022; 27:molecules27248691. [PMID: 36557825 PMCID: PMC9782597 DOI: 10.3390/molecules27248691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Isoprenoids are the output of the polymerization of five-carbon, branched isoprenic chains derived from isopentenyl pyrophosphate (IPP) and its isomer, dimethylallyl pyrophosphate (DMAPP). Isoprene units are consecutively condensed to form longer structures such as farnesyl and geranylgeranyl pyrophosphate (FPP and GGPP, respectively), necessary for the biosynthesis of several metabolites. Polyprenyl transferases and synthases use polyprenyl pyrophosphates as their natural substrates; however, it is known that free polyprenols, such as farnesol (FOH), and geranylgeraniol (GGOH) can be incorporated into prenylated proteins, ubiquinone, cholesterol, and dolichols. Furthermore, FOH and GGOH have been shown to block the effects of isoprenoid biosynthesis inhibitors such as fosmidomycin, bisphosphonates, or statins in several organisms. This phenomenon is the consequence of a short pathway, which was observed for the first time more than 25 years ago: the polyprenol salvage pathway, which works via the phosphorylation of FOH and GGOH. Biochemical studies in bacteria, animals, and plants suggest that this pathway can be carried out by two enzymes: a polyprenol kinase and a polyprenyl-phosphate kinase. However, to date, only a few genes have been unequivocally identified to encode these enzymes in photosynthetic organisms. Nevertheless, pieces of evidence for the importance of this pathway abound in studies related to infectious diseases, cancer, dyslipidemias, and nutrition, and to the mitigation of the secondary effects of several drugs. Furthermore, nowadays it is known that both FOH and GGOH can be incorporated via dietary sources that produce various biological effects. This review presents, in a simplified but comprehensive manner, the most important data on the FOH and GGOH salvage pathway, stressing its biomedical importance The main objective of this review is to bring to light the need to discover and characterize the kinases associated with the isoprenoid salvage pathway in animals and pathogens.
Collapse
Affiliation(s)
- Ignasi Bofill Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Agustín Hernández
- Integrated Unit for Research in Biodiversity (BIOTROP-CCBS), Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Alejandro Miguel Katzin
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-000, Brazil
- Correspondence: ; Tel.: +55-11-3091-7330; Fax: +55-11-3091-7417
| |
Collapse
|
47
|
Liu J, Qi M, Yuan Z, Wong TY, Song X, Lam H. Nontargeted metabolomics reveals differences in the metabolite profiling among methicillin-resistant and methicillin-susceptible Staphylococcus aureus in response to antibiotics. Mol Omics 2022; 18:948-956. [PMID: 36218091 DOI: 10.1039/d2mo00229a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Staphylococcus aureus (S. aureus) causes infections and can be fatal. In the long-term struggle against antibiotics, S. aureus has acquired resistance toward antibiotics and become more difficult to kill. Metabolomics could directly reflect the responses of S. aureus toward antibiotics, which is effective for studying the resistance mechanism of S. aureus. In this study, based on a nontargeted metabolic figure printing technique, the metabolome of a pair of isogenic methicillin-susceptible and resistant S. aureus strains ATCC25923 (MSSA) and ATCC43300 (MRSA) treated with or without oxacillin was characterized. 7 and 29 significantly changed metabolites in MRSA and MSSA were identified by combined accurate mass and mass fragmentation analysis. Pathway enrichment analysis suggested that DNA repair and flavin biosynthesis are the universal pathways of both MSSA and MRSA under antibiotic stress. MRSA systematically and effectively fights against oxacillin through precise control of energy production, PBP2a substrate biosynthesis and antioxidant function. In contrast, MSSA lacks effective defense pathways against oxacillin. The different metabolome responses of MSSA and MRSA toward antibiotics provide us with new insights into how S. aureus develops antibiotic resistance.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China. .,Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Mingyang Qi
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Zichen Yuan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Tin Yan Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
48
|
Guha S, Prabakar T, Sen S. Blue Light-Emitting Diode-Induced Direct C-H Functionalization of 1,4-Quinones with Aryl and Alkyl Boronic Acids. J Org Chem 2022; 87:15421-15434. [PMID: 36322678 DOI: 10.1021/acs.joc.2c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A direct functionalization of numerous 1,4-quinones with various aryl boronic acids is reported under blue light-emitting diodes (LEDs). This reaction occurs at room temperature in an open flask without any catalysts, base, and oxidants in acetonitrile (ACN) and is scalable in grams. With diverse 1,4-quinones like 1,4-benzo-, naphtho-, anthra-, and 4-bromonaphthoquinones as substrates, facile cross coupling reactions occur with aryl and alkyl boronic acids without assistance from any photocatalysts. 2-Alkylated cyclohexene-1,4-diones were obtained when the 1,4-quinones were reacted with alkyl boronic acids under standard reaction conditions. However, slight warming of the reaction mixture afforded the desired alkylated 1,4-quinones. The reaction is believed to proceed through the blue LED-induced radical formation of the aryl rings assisted by the 1,4-quinones.
Collapse
Affiliation(s)
- Souvik Guha
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Greater Noida, UP 201314, India
| | - Tejas Prabakar
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Greater Noida, UP 201314, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Chithera, Greater Noida, UP 201314, India
| |
Collapse
|
49
|
Manicki M, Aydin H, Abriata LA, Overmyer KA, Guerra RM, Coon JJ, Dal Peraro M, Frost A, Pagliarini DJ. Structure and functionality of a multimeric human COQ7:COQ9 complex. Mol Cell 2022; 82:4307-4323.e10. [PMID: 36306796 PMCID: PMC10058641 DOI: 10.1016/j.molcel.2022.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/01/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Abstract
Coenzyme Q (CoQ) is a redox-active lipid essential for core metabolic pathways and antioxidant defense. CoQ is synthesized upon the mitochondrial inner membrane by an ill-defined "complex Q" metabolon. Here, we present structure-function analyses of a lipid-, substrate-, and NADH-bound complex comprising two complex Q subunits: the hydroxylase COQ7 and the lipid-binding protein COQ9. We reveal that COQ7 adopts a ferritin-like fold with a hydrophobic channel whose substrate-binding capacity is enhanced by COQ9. Using molecular dynamics, we further show that two COQ7:COQ9 heterodimers form a curved tetramer that deforms the membrane, potentially opening a pathway for the CoQ intermediates to translocate from the bilayer to the proteins' lipid-binding sites. Two such tetramers assemble into a soluble octamer with a pseudo-bilayer of lipids captured within. Together, these observations indicate that COQ7 and COQ9 cooperate to access hydrophobic precursors within the membrane and coordinate subsequent synthesis steps toward producing CoQ.
Collapse
Affiliation(s)
- Mateusz Manicki
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| | - Halil Aydin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Luciano A Abriata
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI 53715, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53562, USA
| | - Rachel M Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI 53715, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53562, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53506, USA
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub and Altos Labs Bay Area Institute of Science, San Francisco, CA, USA.
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
50
|
Nirati Y, Purushotham N, Alagesan S. Quantitative insight into the metabolism of isoprene-producing Synechocystis sp. PCC 6803 using steady state 13C-MFA. PHOTOSYNTHESIS RESEARCH 2022; 154:195-206. [PMID: 36070060 DOI: 10.1007/s11120-022-00957-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria are photosynthetic bacteria, widely studied for the conversion of atmospheric carbon dioxide to useful platform chemicals. Isoprene is one such industrially important chemical, primarily used for production of synthetic rubber and biofuels. Synechocystis sp. PCC 6803, a genetically amenable cyanobacterium, produces isoprene on heterologous expression of isoprene synthase gene, albeit in very low quantities. Rationalized metabolic engineering to re-route the carbon flux for enhanced isoprene production requires in-dept knowledge of the metabolic flux distribution in the cell. Hence, in the present study, we undertook steady state 13C-metabolic flux analysis of glucose-tolerant wild-type (GTN) and isoprene-producing recombinant (ISP) Synechocystis sp. to understand and compare the carbon flux distribution in the two strains. The R-values for amino acids, flux analysis predictions and gene expression profiles emphasized predominance of Calvin cycle and glycogen metabolism in GTN. Alternatively, flux analysis predicted higher activity of the anaplerotic pathway through phosphoenolpyruvate carboxylase and malic enzyme in ISP. The striking difference in the Calvin cycle, glycogen metabolism and anaplerotic pathway activity in GTN and ISP suggested a possible role of energy molecules (ATP and NADPH) in regulating the carbon flux distribution in GTN and ISP. This claim was further supported by the transcript level of selected genes of the electron transport chain. This study provides the first quantitative insight into the carbon flux distribution of isoprene-producing cyanobacterium, information critical for developing Synechocystis sp. as a single cell factory for isoprenoid/terpenoid production.
Collapse
Affiliation(s)
- Yasha Nirati
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, 560100, India
| | - Nidhish Purushotham
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, 560100, India
- Dayananda Sagar University, Bengaluru, India
| | - Swathi Alagesan
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, 560100, India.
| |
Collapse
|