1
|
Virtanen O, Khorobrykh S, Tyystjärvi E. Acclimation of Chlamydomonas reinhardtii to extremely strong light. PHOTOSYNTHESIS RESEARCH 2021; 147:91-106. [PMID: 33280077 PMCID: PMC7728646 DOI: 10.1007/s11120-020-00802-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/17/2020] [Indexed: 05/27/2023]
Abstract
Most photosynthetic organisms are sensitive to very high light, although acclimation mechanisms enable them to deal with exposure to strong light up to a point. Here we show that cultures of wild-type Chlamydomonas reinhardtii strain cc124, when exposed to photosynthetic photon flux density 3000 μmol m-2 s-1 for a couple of days, are able to suddenly attain the ability to grow and thrive. We compared the phenotypes of control cells and cells acclimated to this extreme light (EL). The results suggest that genetic or epigenetic variation, developing during maintenance of the population in moderate light, contributes to the acclimation capability. EL acclimation was associated with a high carotenoid-to-chlorophyll ratio and slowed down PSII charge recombination reactions, probably by affecting the pre-exponential Arrhenius factor of the rate constant. In agreement with these findings, EL acclimated cells showed only one tenth of the 1O2 level of control cells. In spite of low 1O2 levels, the rate of the damaging reaction of PSII photoinhibition was similar in EL acclimated and control cells. Furthermore, EL acclimation was associated with slow PSII electron transfer to artificial quinone acceptors. The data show that ability to grow and thrive in extremely strong light is not restricted to photoinhibition-resistant organisms such as Chlorella ohadii or to high-light tolerant mutants, but a wild-type strain of a common model microalga has this ability as well.
Collapse
Affiliation(s)
- Olli Virtanen
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
2
|
Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E. Oxygen and ROS in Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E91. [PMID: 31936893 PMCID: PMC7020446 DOI: 10.3390/plants9010091] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Oxygen is a natural acceptor of electrons in the respiratory pathway of aerobic organisms and in many other biochemical reactions. Aerobic metabolism is always associated with the formation of reactive oxygen species (ROS). ROS may damage biomolecules but are also involved in regulatory functions of photosynthetic organisms. This review presents the main properties of ROS, the formation of ROS in the photosynthetic electron transport chain and in the stroma of chloroplasts, and ROS scavenging systems of thylakoid membrane and stroma. Effects of ROS on the photosynthetic apparatus and their roles in redox signaling are discussed.
Collapse
Affiliation(s)
| | | | | | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland or (S.K.); (V.H.); (H.M.)
| |
Collapse
|
3
|
Kosugi M, Maruo F, Inoue T, Kurosawa N, Kawamata A, Koike H, Kamei Y, Kudoh S, Imura S. A comparative study of wavelength-dependent photoinactivation in photosystem II of drought-tolerant photosynthetic organisms in Antarctica and the potential risks of photoinhibition in the habitat. ANNALS OF BOTANY 2018; 122:1263-1278. [PMID: 30052754 PMCID: PMC6324753 DOI: 10.1093/aob/mcy139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/16/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS All photosynthetic organisms are faced with photoinhibition, which would lead to death in severe environments. Because light quality and light intensity fluctuate dynamically in natural microenvironments, quantitative and qualitative analysis of photoinhibition is important to clarify how this environmental pressure has impacted ecological behaviour in different organisms. METHODS We evaluated the wavelength dependency of photoinactivation to photosystem II (PSII) of Prasiola crispa (green alga), Umbilicaria decussata (lichen) and Ceratodon purpureus (bryophyte) harvested from East Antarctica. For evaluation, we calculated reaction coefficients, Epis, of PSII photoinactivation against energy dose using a large spectrograph. Daily fluctuation of the rate coefficient of photoinactivation, kpi, was estimated from Epis and ambient light spectra measured during the summer season. KEY RESULTS Wavelength dependency of PSII photoinactivation was different for the three species, although they form colonies in close proximity to each other in Antarctica. The lichen exhibited substantial resistance to photoinactivation at all wavelengths, while the bryophyte showed sensitivity only to UV-B light (<325 nm). On the other hand, the green alga, P. crispa, showed ten times higher Epi to UV-B light than the bryophyte. It was much more sensitive to UV-A (325-400 nm). The risk of photoinhibition fluctuated considerably throughout the day. On the other hand, Epis were reduced dramatically for dehydrated compared with hydrated P. crispa. CONCLUSIONS The deduced rate coefficients of photoinactivation under ambient sunlight suggested that P. crispa needs to pay a greater cost to recover from photodamage than the lichen or the bryophyte in order to keep sufficient photosynthetic activity under the Antarctic habitat. A newly identified drought-induced protection mechanism appears to operate in P. crispa, and it plays a critical role in preventing the oxygen-evolving complex from photoinactivation when the repair cycle is inhibited by dehydration.
Collapse
Affiliation(s)
- Makiko Kosugi
- National Institute of Polar Research, Research Organization of Information and Systems, Tachikawa, Tokyo, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan
- For correspondence. E-mail:
| | - Fumino Maruo
- Department of Polar Science, School of Multidisciplinary Science, SOKENDAI (The Graduate University for Advanced Studies), Tachikawa, Tokyo, Japan
| | - Takeshi Inoue
- Department of Polar Science, School of Multidisciplinary Science, SOKENDAI (The Graduate University for Advanced Studies), Tachikawa, Tokyo, Japan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Akinori Kawamata
- Nature Research Group, Ehime Prefectural Science Museum, Ehime, Japan
| | - Hiroyuki Koike
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan
| | - Yasuhiro Kamei
- Department of Basic Biology, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji, Okazaki, Japan
| | - Sakae Kudoh
- National Institute of Polar Research, Research Organization of Information and Systems, Tachikawa, Tokyo, Japan
- Department of Polar Science, School of Multidisciplinary Science, SOKENDAI (The Graduate University for Advanced Studies), Tachikawa, Tokyo, Japan
| | - Satoshi Imura
- National Institute of Polar Research, Research Organization of Information and Systems, Tachikawa, Tokyo, Japan
- Department of Polar Science, School of Multidisciplinary Science, SOKENDAI (The Graduate University for Advanced Studies), Tachikawa, Tokyo, Japan
| |
Collapse
|
4
|
Ding S, Jiang R, Lu Q, Wen X, Lu C. Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:665-77. [PMID: 26906429 DOI: 10.1016/j.bbabio.2016.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/28/2016] [Accepted: 02/19/2016] [Indexed: 12/18/2022]
Abstract
Glutathione reductase plays a crucial role in the elimination of H(2)O(2) molecules via the ascorbate-glutathione cycle. In this study, we used transgenic Arabidopsis plants with decreased glutathione reductase 2 (GR2) levels to investigate whether this GR2 activity protects the photosynthetic machinery under excess light. The transgenic plants were highly sensitive to excess light and accumulated high levels of H(2)O(2). Photosystem II (PSII) activity was significantly decreased in transgenic plants. Flash-induced fluorescence relaxation and thermoluminescence measurements demonstrated inhibition of electron transfer between Q(A) and Q(B) and decreased redox potential of Q(B) in transgenic plants. Immunoblot and blue native gel analysis showed that the levels of PSII proteins and PSII complexes were decreased in transgenic plants. Analyses of the repair of photodamaged PSII and in vivo pulse labeling of thylakoid proteins showed that the repair of photodamaged PSII is inhibited due to the inhibition of the synthesis of the D1 protein de novo in transgenic plants. Taken together, our results suggest that under excess light conditions, GR2 plays an important role in maintaining both the function of the acceptor side of PSII and the repair of photodamaged PSII by preventing the accumulation of H(2)O(2). In addition, our results provide details of the role of H(2)O(2) in vivo accumulation in photoinhibition in plants.
Collapse
Affiliation(s)
- Shunhua Ding
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rui Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingtao Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
5
|
Condat M, Babinot J, Tomane S, Malval JP, Kang IK, Spillebout F, Mazeran PE, Lalevée J, Andalloussi SA, Versace DL. Development of photoactivable glycerol-based coatings containing quercetin for antibacterial applications. RSC Adv 2016. [DOI: 10.1039/c5ra25267a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Synthesis of antibacterial coatings derived from glycerol and quercetin for the inhibition of bacteria proliferation.
Collapse
Affiliation(s)
- Michael Condat
- Université Paris Est
- ICMPE (UMR7182)
- CNRS
- UPEC
- F-94320 Thiais
| | - Julien Babinot
- Université Paris Est
- ICMPE (UMR7182)
- CNRS
- UPEC
- F-94320 Thiais
| | - Somia Tomane
- Université Paris Est
- ICMPE (UMR7182)
- CNRS
- UPEC
- F-94320 Thiais
| | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse
- IS2M-LRC 7228
- 68057 Mulhouse
- France
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering
- Kyungpook National University
- Daegu 702-701
- South Korea
| | - Faustine Spillebout
- National Institute for Nanotechnology
- Department of Chemistry
- Department of Mechanical Engineering
- University of Alberta
- Edmonton
| | - Pierre-Emmanuel Mazeran
- Laboratoire Roberval
- UMR CRNS-UTC 7337
- Centre de Recherche de Royallieu
- Université de Technologie de Compiègne
- 60205 Compiègne Cedex
| | - Jacques Lalevée
- Institut de Science des Matériaux de Mulhouse
- IS2M-LRC 7228
- 68057 Mulhouse
- France
| | - Samir Abbad Andalloussi
- Unité Bioemco Equipe IBIOS
- UMR 7618 CNRS – Université Paris-Est Créteil Val-de-Marne
- 94010 Créteil cedex
- France
| | | |
Collapse
|
6
|
Mattila H, Khorobrykh S, Havurinne V, Tyystjärvi E. Reactive oxygen species: Reactions and detection from photosynthetic tissues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:176-214. [PMID: 26498710 DOI: 10.1016/j.jphotobiol.2015.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have long been recognized as compounds with dual roles. They cause cellular damage by reacting with biomolecules but they also function as agents of cellular signaling. Several different oxygen-containing compounds are classified as ROS because they react, at least with certain partners, more rapidly than ground-state molecular oxygen or because they are known to have biological effects. The present review describes the typical reactions of the most important ROS. The reactions are the basis for both the detection methods and for prediction of reactions between ROS and biomolecules. Chemical and physical methods used for detection, visualization and quantification of ROS from plants, algae and cyanobacteria will be reviewed. The main focus will be on photosynthetic tissues, and limitations of the methods will be discussed.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Vesa Havurinne
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland.
| |
Collapse
|
7
|
Karonen M, Mattila H, Huang P, Mamedov F, Styring S, Tyystjärvi E. A tandem mass spectrometric method for singlet oxygen measurement. Photochem Photobiol 2014; 90:965-71. [PMID: 24849296 DOI: 10.1111/php.12291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/15/2014] [Indexed: 11/29/2022]
Abstract
Singlet oxygen, a harmful reactive oxygen species, can be quantified with the substance 2,2,6,6-tetramethylpiperidine (TEMP) that reacts with singlet oxygen, forming a stable nitroxyl radical (TEMPO). TEMPO has earlier been quantified with electron paramagnetic resonance (EPR) spectroscopy. In this study, we designed an ultra-high-performance liquid chromatographic-tandem mass spectrometric (UHPLC-ESI-MS/MS) quantification method for TEMPO and showed that the method based on multiple reaction monitoring (MRM) can be used for the measurements of singlet oxygen from both nonbiological and biological samples. Results obtained with both UHPLC-ESI-MS/MS and EPR methods suggest that plant thylakoid membranes produce 3.7 × 10(-7) molecules of singlet oxygen per chlorophyll molecule in a second when illuminated with the photosynthetic photon flux density of 2000 μmol m(-2 ) s(-1).
Collapse
Affiliation(s)
- Maarit Karonen
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, Turku, Finland
| | | | | | | | | | | |
Collapse
|
8
|
Fischer BB, Hideg É, Krieger-Liszkay A. Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid Redox Signal 2013; 18:2145-62. [PMID: 23320833 DOI: 10.1089/ars.2012.5124] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SIGNIFICANCE In photosynthetic organisms, excited chlorophylls (Chl) can stimulate the formation of singlet oxygen ((1)O(2)), a highly toxic molecule that acts in addition to its damaging nature as an important signaling molecule. Thus, due to this dual role of (1)O(2), its production and detoxification have to be strictly controlled. RECENT ADVANCES Regulation of pigment synthesis is essential to control (1)O(2) production, and several components of the Chl synthesis and pigment insertion machineries to assemble and disassemble protein/pigment complexes have recently been identified. Once produced, (1)O(2) activates a signaling cascade from the chloroplast to the nucleus that can involve multiple mechanisms and stimulate a specific gene expression response. Further, (1)O(2) signaling was shown to interact with signal cascades of other reactive oxygen species, oxidized carotenoids, and lipid hydroperoxide-derived reactive electrophile species. CRITICAL ISSUES Despite recent progresses, hardly anything is known about how and where the (1)O(2) signal is sensed and transmitted to the cytoplasm. One reason for that is the limitation of available detection methods challenging the reliable quantification and localization of (1)O(2) in plant cells. In addition, the process of Chl insertion into the reaction centers and antenna complexes is still unclear. FUTURE DIRECTIONS Unraveling the mechanisms controlling (1)O(2) production and signaling would help clarifying the specific role of (1)O(2) in cellular stress responses. It would further enable to investigate the interaction and sensitivity to other abiotic and biotic stress signals and thus allow to better understand why some stressors activate an acclimation, while others provoke a programmed cell death response.
Collapse
Affiliation(s)
- Beat B Fischer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| | | | | |
Collapse
|
9
|
Dobrikova AG, Domonkos I, Sözer Ö, Laczkó-Dobos H, Kis M, Párducz Á, Gombos Z, Apostolova EL. Effect of partial or complete elimination of light-harvesting complexes on the surface electric properties and the functions of cyanobacterial photosynthetic membranes. PHYSIOLOGIA PLANTARUM 2013; 147:248-260. [PMID: 22582961 DOI: 10.1111/j.1399-3054.2012.01648.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Influence of the modification of the cyanobacterial light-harvesting complex [i.e. phycobilisomes (PBS)] on the surface electric properties and the functions of photosynthetic membranes was investigated. We used four PBS mutant strains of Synechocystis sp. PCC6803 as follows: PAL (PBS-less), CK (phycocyanin-less), BE (PSII-PBS-less) and PSI-less/apcE(-) (PSI-less with detached PBS). Modifications of the PBS content lead to changes in the cell morphology and surface electric properties of the thylakoid membranes as well as in their functions, such as photosynthetic oxygen-evolving activity, P700 kinetics and energy transfer between the pigment-protein complexes. Data reveal that the complete elimination of PBS in the PAL mutant causes a slight decrease in the electric dipole moments of the thylakoid membranes, whereas significant perturbations of the surface charges were registered in the membranes without assembled PBS-PSII macrocomplex (BE mutant) or PSI complex (PSI-less mutant). These observations correlate with the detected alterations in the membrane structural organization. Using a polarographic oxygen rate electrode, we showed that the ratio of the fast to the slow oxygen-evolving PSII centers depends on the partial or complete elimination of light-harvesting complexes, as the slow operating PSII centers dominate in the PBS-less mutant and in the mutant with detached PBS.
Collapse
Affiliation(s)
- Anelia G Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Tyystjärvi E. Photoinhibition of Photosystem II. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:243-303. [PMID: 23273864 DOI: 10.1016/b978-0-12-405210-9.00007-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Photoinhibition of Photosystem II (PSII) is the light-induced loss of PSII electron-transfer activity. Although photoinhibition has been studied for a long time, there is no consensus about its mechanism. On one hand, production of singlet oxygen ((1)O(2)) by PSII has promoted models in which this reactive oxygen species (ROS) is considered to act as the agent of photoinhibitory damage. These chemistry-based models have often not taken into account the photophysical features of photoinhibition-like light response and action spectrum. On the other hand, models that reproduce these basic photophysical features of the reaction have not considered the importance of data about ROS. In this chapter, it is shown that the evidence behind the chemistry-based models and the photophysically oriented models can be brought together to build a mechanism that confirms with all types of experimental data. A working hypothesis is proposed, starting with inhibition of the manganese complex by light. Inability of the manganese complex to reduce the primary donor promotes recombination between the oxidized primary donor and Q(A), the first stable quinone acceptor of PSII. (1)O(2) production due to this recombination may inhibit protein synthesis or spread the photoinhibitory damage to another PSII center. The production of (1)O(2) is transient because loss of activity of the oxygen-evolving complex induces an increase in the redox potential of Q(A), which lowers (1)O(2) production.
Collapse
Affiliation(s)
- Esa Tyystjärvi
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland.
| |
Collapse
|
11
|
Pure forms of the singlet oxygen sensors TEMP and TEMPD do not inhibit Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1658-61. [DOI: 10.1016/j.bbabio.2011.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/06/2011] [Accepted: 09/14/2011] [Indexed: 11/18/2022]
|
12
|
Analysis of charge recombination with the Arrhenius, Eyring and Marcus theories. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:292-300. [DOI: 10.1016/j.jphotobiol.2011.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 03/20/2011] [Accepted: 03/22/2011] [Indexed: 11/23/2022]
|
13
|
Hakala-Yatkin M, Sarvikas P, Paturi P, Mäntysaari M, Mattila H, Tyystjärvi T, Nedbal L, Tyystjärvi E. Magnetic field protects plants against high light by slowing down production of singlet oxygen. PHYSIOLOGIA PLANTARUM 2011; 142:26-34. [PMID: 21288249 DOI: 10.1111/j.1399-3054.2011.01453.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Recombination of the primary radical pair of photosystem II (PSII) of photosynthesis may produce the triplet state of the primary donor of PSII. Triplet formation is potentially harmful because chlorophyll triplets can react with molecular oxygen to produce the reactive singlet oxygen (¹O₂). The yield of ¹O₂ is expected to be directly proportional to the triplet yield and the triplet yield of charge recombination can be lowered with a magnetic field of 100-300 mT. In this study, we illuminated intact pumpkin leaves with strong light in the presence and absence of a magnetic field and found that the magnetic field protects against photoinhibition of PSII. The result suggests that radical pair recombination is responsible for significant part of ¹O₂ production in the chloroplast. The magnetic field effect vanished if leaves were illuminated in the presence of lincomycin, an inhibitor of chloroplast protein synthesis, or if isolated thylakoid membranes were exposed to light. These data, in turn, indicate that ¹O₂ produced by the recombination of the primary charge pair is not directly involved in photoinactivation of PSII but instead damages PSII by inhibiting the repair of photoinhibited PSII. We also found that an Arabidopsis thaliana mutant lacking α-tocopherol, a scavenger of ¹O₂, is more sensitive to photoinhibition than the wild-type in the absence but not in the presence of lincomycin, confirming that the target of ¹O₂ is the repair mechanism.
Collapse
Affiliation(s)
- Marja Hakala-Yatkin
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, FI-20014, Finland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Parameterization of photosystem II photoinactivation and repair. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:258-65. [PMID: 21565161 DOI: 10.1016/j.bbabio.2011.04.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/23/2011] [Accepted: 04/02/2011] [Indexed: 11/22/2022]
Abstract
The photoinactivation (also termed photoinhibition or photodamage) of Photosystem II (PSII) and the counteracting repair reactions are fundamental elements of the metabolism and ecophysiology of oxygenic photoautotrophs. Differences in the quantification, parameterization and terminology of Photosystem II photoinactivation and repair can erect barriers to understanding, and particular parameterizations are sometimes incorrectly associated with particular mechanistic models. These issues lead to problems for ecophysiologists seeking robust methods to include photoinhibition in ecological models. We present a comparative analysis of terms and parameterizations applied to photoinactivation and repair of Photosystem II. In particular, we show that the target size and quantum yield approaches are interconvertible generalizations of the rate constant of photoinactivation across a range of incident light levels. Our particular emphasis is on phytoplankton, although we draw upon the literature from vascular plants. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|