1
|
Fan X, Fraaije MW. Flavin transferase ApbE: From discovery to applications. J Biol Chem 2025; 301:108453. [PMID: 40154617 PMCID: PMC12052999 DOI: 10.1016/j.jbc.2025.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025] Open
Abstract
ApbE is a unique, membrane-bound enzyme which covalently attaches a flavin cofactor to specific target proteins. This irreversible posttranslational modification is crucial for proper functioning of various bacterial proteins. ApbEs have also been identified in archaea and eukaryotes. This review summarizes current knowledge on the structural and mechanistic properties of this unique protein-modifying enzyme and its recent applications. The flavin transferase is typically membrane-anchored and located in the periplasm and it possesses a conserved flavin-binding domain and a catalytic domain. It recognizes a specific sequence motif of target proteins, resulting in flavinylation of a threonine or serine. For flavinylation, it depends on magnesium and utilizes flavin adenine dinucleotide as substrate to attach the flavin mononucleotide moiety to the target protein, analogous to phosphorylation. ApbE-mediated flavinylation supports critical bacterial respiratory and metabolic pathways. Recently, ApbE was also shown to be a versatile tool for selectively modifying proteins. Using the flavin-tagging approach, proteins can be decorated with flavin mononucleotide or other flavins. Furthermore, it was demonstrated that ApbE can be employed to turn natural noncovalent flavoproteins into covalent flavoproteins. In summary, ApbE is crucial for the maturation of various flavoproteins by catalyzing covalent flavinylation. While great progress has been made in understanding the role and mode of action of ApbE, there are still many bacterial proteins predicted to be flavinylated by ApbE for which their role is enigmatic. Also, exploration of the potential of ApbE as protein modification tool has just begun. Clearly, future research will generate new ApbE-related insights and applications.
Collapse
Affiliation(s)
- Xiaoman Fan
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Bertsova YV, Serebryakova MV, Bogachev VA, Baykov AA, Bogachev AV. Acrylate Reductase of an Anaerobic Electron Transport Chain of the Marine Bacterium Shewanella woodyi. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:701-710. [PMID: 38831506 DOI: 10.1134/s0006297924040096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 06/05/2024]
Abstract
Many microorganisms are capable of anaerobic respiration in the absence of oxygen, by using different organic compounds as terminal acceptors in electron transport chain. We identify here an anaerobic respiratory chain protein responsible for acrylate reduction in the marine bacterium Shewanella woodyi. When the periplasmic proteins of S. woodyi were separated by ion exchange chromatography, acrylate reductase activity copurified with an ArdA protein (Swoo_0275). Heterologous expression of S. woodyi ardA gene (swoo_0275) in Shewanella oneidensis MR-1 cells did not result in the appearance in them of periplasmic acrylate reductase activity, but such activity was detected when the ardA gene was co-expressed with an ardB gene (swoo_0276). Together, these genes encode flavocytochrome c ArdAB, which is thus responsible for acrylate reduction in S. woodyi cells. ArdAB was highly specific for acrylate as substrate and reduced only methacrylate (at a 22-fold lower rate) among a series of other tested 2-enoates. In line with these findings, acrylate and methacrylate induced ardA gene expression in S. woodyi under anaerobic conditions, which was accompanied by the appearance of periplasmic acrylate reductase activity. ArdAB-linked acrylate reduction supports dimethylsulfoniopropionate-dependent anaerobic respiration in S. woodyi and, possibly, other marine bacteria.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir A Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
3
|
Bertsova YV, Serebryakova MV, Anashkin VA, Baykov AA, Bogachev AV. A Redox-Regulated, Heterodimeric NADH:cinnamate Reductase in Vibrio ruber. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:241-256. [PMID: 38622093 DOI: 10.1134/s0006297924020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 04/17/2024]
Abstract
Genes of putative reductases of α,β-unsaturated carboxylic acids are abundant among anaerobic and facultatively anaerobic microorganisms, yet substrate specificity has been experimentally verified for few encoded proteins. Here, we co-produced in Escherichia coli a heterodimeric protein of the facultatively anaerobic marine bacterium Vibrio ruber (GenBank SJN56019 and SJN56021; annotated as NADPH azoreductase and urocanate reductase, respectively) with Vibrio cholerae flavin transferase. The isolated protein (named Crd) consists of the sjn56021-encoded subunit CrdB (NADH:flavin, FAD binding 2, and FMN bind domains) and an additional subunit CrdA (SJN56019, a single NADH:flavin domain) that interact via their NADH:flavin domains (Alphafold2 prediction). Each domain contains a flavin group (three FMNs and one FAD in total), one of the FMN groups being linked covalently by the flavin transferase. Crd readily reduces cinnamate, p-coumarate, caffeate, and ferulate under anaerobic conditions with NADH or methyl viologen as the electron donor, is moderately active against acrylate and practically inactive against urocanate and fumarate. Cinnamates induced Crd synthesis in V. ruber cells grown aerobically or anaerobically. The Crd-catalyzed reduction started by NADH demonstrated a time lag of several minutes, suggesting a redox regulation of the enzyme activity. The oxidized enzyme is inactive, which apparently prevents production of reactive oxygen species under aerobic conditions. Our findings identify Crd as a regulated NADH-dependent cinnamate reductase, apparently protecting V. ruber from (hydroxy)cinnamate poisoning.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Victor A Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
4
|
WANG M, ZHANG W, WANG N. Covalent flavoproteins: types, occurrence, biogenesis and catalytic mechanisms. Chin J Nat Med 2022; 20:749-760. [DOI: 10.1016/s1875-5364(22)60194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Indexed: 11/03/2022]
|
5
|
Abstract
Bacteria coping with oxygen deficiency use alternative terminal electron acceptors for NADH regeneration, particularly fumarate. Fumarate is reduced by the FAD_binding_2 domain of cytoplasmic fumarate reductase in many bacteria. The variability of the primary structure of this domain in homologous proteins suggests the existence of reducing activities with different specificities. Here, we produced and characterized one such protein encoded in the Vibrio harveyi genome (GenBank ID: AIV07243) and found it to be a specific NADH:acrylate oxidoreductase (ARD). This previously unknown enzyme is formed by the OYE-like, FMN_bind, and FAD_binding_2 domains and contains covalently bound flavin mononucleotide (FMN) and noncovalently bound flavin adenine dinucleotide (FAD) and FMN in a ratio of 1:1:1. The covalently bound FMN is absolutely required for activity and is attached by the specific flavin transferase, ApbE, to the FMN_bind domain. Quantitative reverse transcription PCR (RT-qPCR) and activity measurements indicated dramatic stimulation of ARD biosynthesis by acrylate in the V. harveyi cells grown aerobically. In contrast, the ard gene expression in the cells grown anaerobically without acrylate was higher than that in aerobic cultures and increased only 2-fold in the presence of acrylate. These findings suggest that the principal role of ARD in Vibrio is energy-saving detoxification of acrylate coming from the environment. IMPORTANCE The benefits of the massive genomic information accumulated in recent years for biological sciences have been limited by the lack of data on the function of most gene products. Approximately half of the known prokaryotic genes are annotated as "proteins with unknown functions," and many other genes are annotated incorrectly. Thus, the functional and structural characterization of the products of such genes, including identification of all existing enzymatic activities, is a pressing issue in modern biochemistry. In this work, we have shown that the product of the V. harveyi ard gene exhibits a yet-undescribed NADH:acrylate oxidoreductase activity. This activity may allow acrylate detoxification and its use as a terminal electron acceptor in anaerobic or substrate in aerobic respiration of marine and other bacteria.
Collapse
|
6
|
Bertsova YV, Oleynikov IP, Bogachev AV. A new water-soluble bacterial NADH: fumarate oxidoreductase. FEMS Microbiol Lett 2021; 367:5941483. [PMID: 33107907 DOI: 10.1093/femsle/fnaa175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 11/12/2022] Open
Abstract
The cytoplasmic fumarate reductase of Klebsiella pneumoniae (FRD) is a monomeric protein which contains three prosthetic groups: noncovalently bound FMN and FAD plus a covalently bound FMN. In the present work, NADH is revealed to be an inherent electron donor for this enzyme. We found that the fumarate reductase activity of FRD significantly exceeds its NADH dehydrogenase activity. During the catalysis of NADH:fumarate oxidoreductase reaction, FRD turnover is limited by a very low rate (∼10/s) of electron transfer between the noncovalently and covalently bound FMN moieties. Induction of FRD synthesis in K. pneumoniae cells was observed only under anaerobic conditions in the presence of fumarate or malate. Enzymes with the FRD-like domain architecture are widely distributed among various bacteria and apparently comprise a new type of water-soluble NADH:fumarate oxidoreductases.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| | - Ilya P Oleynikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| |
Collapse
|
7
|
Schenk R, Bachmaier S, Bringaud F, Boshart M. Efficient flavinylation of glycosomal fumarate reductase by its own ApbE domain in Trypanosoma brucei. FEBS J 2021; 288:5430-5445. [PMID: 33755328 DOI: 10.1111/febs.15812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 01/26/2023]
Abstract
A subset of flavoproteins has a covalently attached flavin prosthetic group enzymatically attached via phosphoester bonding. In prokaryotes, this is catalysed by alternative pyrimidine biosynthesis E (ApbE) flavin transferases. ApbE-like domains are present in few eukaryotic taxa, for example the N-terminal domain of fumarate reductase (FRD) of Trypanosoma, a parasitic protist known as a tropical pathogen causing African sleeping sickness. We use the versatile reverse genetic tools available for Trypanosoma to investigate the flavinylation of glycosomal FRD (FRDg) in vivo in the physiological and organellar context. Using direct in-gel fluorescence detection of covalently attached flavin as proxy for activity, we show that the ApbE-like domain of FRDg has flavin transferase activity in vivo. The ApbE domain is preceded by a consensus flavinylation target motif at the extreme N terminus of FRDg, and serine 9 in this motif is essential as flavin acceptor. The preferred mode of flavinylation in the glycosome was addressed by stoichiometric expression and comparison of native and catalytically inactive ApbE domains. In addition to the trans-flavinylation activity, the ApbE domain catalyses the intramolecular cis-flavinylation with at least fivefold higher efficiency. We discuss how the higher efficiency due to unusual fusion of the ApbE domain to its substrate protein FRD may provide a selective advantage by faster FRD biogenesis during rapid metabolic adaptation of trypanosomes. The first 37 amino acids of FRDg, including the consensus motif, are sufficient as flavinylation target upon fusion to other proteins. We propose FRDg(1-37) as 4-kDa heat-stable, detergent-resistant fluorescent protein tag and suggest its use as a new tool to study glycosomal protein import.
Collapse
Affiliation(s)
- Robin Schenk
- Biozentrum, Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München (LMU), Martinsried, Germany
| | - Sabine Bachmaier
- Biozentrum, Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München (LMU), Martinsried, Germany
| | - Frédéric Bringaud
- CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Université de Bordeaux, France
| | - Michael Boshart
- Biozentrum, Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München (LMU), Martinsried, Germany
| |
Collapse
|
8
|
Bertsova YV, Baykov AA, Bogachev AV. A simple strategy to differentiate between H +- and Na +-transporting NADH:quinone oxidoreductases. Arch Biochem Biophys 2020; 681:108266. [PMID: 31953132 DOI: 10.1016/j.abb.2020.108266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/30/2019] [Accepted: 01/12/2020] [Indexed: 10/25/2022]
Abstract
We describe here a simple strategy to characterize transport specificity of NADH:quinone oxidoreductases, using Na+-translocating (NQR) and H+-translocating (NDH-1) enzymes of the soil bacterium Azotobactervinelandii as the models. Submillimolar concentrations of Na+ and Li+ increased the rate of deaminoNADH oxidation by the inverted membrane vesicles prepared from the NDH-1-deficient strain. The vesicles generated carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-resistant electric potential difference and CCCP-stimulated pH difference (alkalinization inside) in the presence of Na+. These findings testified a primary Na+-pump function of A. vinelandii NQR. Furthermore, ΔpH measurements with fluorescent probes (acridine orange and pyranine) demonstrated that A. vinelandii NQR cannot transport H+ under various conditions. The opposite results obtained in similar measurements with the vesicles prepared from the NQR-deficient strain indicated a primary H+-pump function of NDH-1. Based on our findings, we propose a package of simple experiments that are necessary and sufficient to unequivocally identify the pumping specificity of a bacterial Na+ or H+ transporter. The NQR-deficient strain, but not the NDH-1-deficient one, exhibited impaired growth characteristics under diazotrophic condition, suggesting a role for the Na+ transport in nitrogen fixation by A. vinelandii.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
9
|
Light SH, Méheust R, Ferrell JL, Cho J, Deng D, Agostoni M, Iavarone AT, Banfield JF, D’Orazio SEF, Portnoy DA. Extracellular electron transfer powers flavinylated extracellular reductases in Gram-positive bacteria. Proc Natl Acad Sci U S A 2019; 116:26892-26899. [PMID: 31818955 PMCID: PMC6936397 DOI: 10.1073/pnas.1915678116] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mineral-respiring bacteria use a process called extracellular electron transfer to route their respiratory electron transport chain to insoluble electron acceptors on the exterior of the cell. We recently characterized a flavin-based extracellular electron transfer system that is present in the foodborne pathogen Listeria monocytogenes, as well as many other Gram-positive bacteria, and which highlights a more generalized role for extracellular electron transfer in microbial metabolism. Here we identify a family of putative extracellular reductases that possess a conserved posttranslational flavinylation modification. Phylogenetic analyses suggest that divergent flavinylated extracellular reductase subfamilies possess distinct and often unidentified substrate specificities. We show that flavinylation of a member of the fumarate reductase subfamily allows this enzyme to receive electrons from the extracellular electron transfer system and support L. monocytogenes growth. We demonstrate that this represents a generalizable mechanism by finding that a L. monocytogenes strain engineered to express a flavinylated extracellular urocanate reductase uses urocanate by a related mechanism and to a similar effect. These studies thus identify an enzyme family that exploits a modular flavin-based electron transfer strategy to reduce distinct extracellular substrates and support a multifunctional view of the role of extracellular electron transfer activities in microbial physiology.
Collapse
Affiliation(s)
- Samuel H. Light
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720
- Innovative Genomics Institute, Berkeley, CA 94704
| | - Jessica L. Ferrell
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298
| | - Jooyoung Cho
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298
| | - David Deng
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Marco Agostoni
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, CA 94720
| | - Jillian F. Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720
- Innovative Genomics Institute, Berkeley, CA 94704
| | - Sarah E. F. D’Orazio
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
10
|
Bertsova YV, Serebryakova MV, Anashkin VA, Baykov AA, Bogachev AV. Mutational analysis of the flavinylation and binding motifs in two protein targets of the flavin transferase ApbE. FEMS Microbiol Lett 2019; 366:5675630. [DOI: 10.1093/femsle/fnz252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Many flavoproteins belonging to three domain types contain an FMN residue linked through a phosphoester bond to a threonine or serine residue found in a conserved seven-residue motif. The flavinylation reaction is catalyzed by a specific enzyme, ApbE, which uses FAD as a substrate. To determine the structural requirements of the flavinylation reaction, we examined the effects of single substitutions in the flavinylation motif of Klebsiella pneumoniae cytoplasmic fumarate reductase on its modification by its own ApbE in recombinant Escherichia coli cells. The replacement of the flavin acceptor threonine with alanine completely abolished the modification reaction, whereas the replacements of conserved aspartate and serine had only minor effects. Effects of other substitutions, including replacing the acceptor threonine with serine, (a 10–55% decrease in the flavinylation degree) pinpointed important glycine and alanine residues and suggested an excessive capacity of the ApbE-based flavinylation system in vivo. Consistent with this deduction, drastic replacements of conserved leucine and threonine residues in the binding pocket that accommodates FMN residue still allowed appreciable flavinylation of the NqrC subunit of Vibrio harveyi Na+-translocating NADH:quinone oxidoreductase, despite a profound weakening of the isoalloxazine ring binding and an increase in its exposure to solvent.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| | - Victor A Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobievy Gory 1/40, Moscow 119234, Russia
| |
Collapse
|
11
|
Bertsova YV, Kulik LV, Mamedov MD, Baykov AA, Bogachev AV. Flavodoxin with an air-stable flavin semiquinone in a green sulfur bacterium. PHOTOSYNTHESIS RESEARCH 2019; 142:127-136. [PMID: 31302833 DOI: 10.1007/s11120-019-00658-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Flavodoxins are small proteins with a non-covalently bound FMN that can accept two electrons and accordingly adopt three redox states: oxidized (quinone), one-electron reduced (semiquinone), and two-electron reduced (quinol). In iron-deficient cyanobacteria and algae, flavodoxin can substitute for ferredoxin as the electron carrier in the photosynthetic electron transport chain. Here, we demonstrate a similar function for flavodoxin from the green sulfur bacterium Chlorobium phaeovibrioides (cp-Fld). The expression of the cp-Fld gene, found in a close proximity with the genes for other proteins associated with iron transport and storage, increased in a low-iron medium. cp-Fld produced in Escherichia coli exhibited the optical, ERP, and electron-nuclear double resonance spectra that were similar to those of known flavodoxins. However, unlike all other flavodoxins, cp-Fld exhibited unprecedented stability of FMN semiquinone to oxidation by air and difference in midpoint redox potentials for the quinone-semiquinone and semiquinone-quinol couples (- 110 and - 530 mV, respectively). cp-Fld could be reduced by pyruvate:ferredoxin oxidoreductase found in the membrane-free extract of Chl. phaeovibrioides cells and photo-reduced by the photosynthetic reaction center found in membrane vesicles from these cells. The green sulfur bacterium Chl. phaeovibrioides appears thus to be a new type of the photosynthetic organisms that can use flavodoxin as an alternative electron carrier to cope with iron deficiency.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Leonid V Kulik
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, Russia, 630090
- Novosibirsk State University, Novosibirsk, Russia, 630090
| | - Mahir D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.
| |
Collapse
|
12
|
Flavin transferase: the maturation factor of flavin-containing oxidoreductases. Biochem Soc Trans 2018; 46:1161-1169. [PMID: 30154099 DOI: 10.1042/bst20180524] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Flavins, cofactors of many enzymes, are often covalently linked to these enzymes; for instance, flavin adenine mononucleotide (FMN) can form a covalent bond through either its phosphate or isoalloxazine group. The prevailing view had long been that all types of covalent attachment of flavins occur as autocatalytic reactions; however, in 2013, the first flavin transferase was identified, which catalyzes phosphoester bond formation between FMN and Na+-translocating NADH:quinone oxidoreductase in certain bacteria. Later studies have indicated that this post-translational modification is widespread in prokaryotes and is even found in some eukaryotes. Flavin transferase can occur as a separate ∼40 kDa protein or as a domain within the target protein and recognizes a degenerate DgxtsAT/S motif in various target proteins. The purpose of this review was to summarize the progress already achieved by studies of the structure, mechanism, and specificity of flavin transferase and to encourage future research on this topic. Interestingly, the flavin transferase gene (apbE) is found in many bacteria that have no known target protein, suggesting the presence of yet unknown flavinylation targets.
Collapse
|
13
|
Catalytically important flavin linked through a phosphoester bond in a eukaryotic fumarate reductase. Biochimie 2018; 149:34-40. [DOI: 10.1016/j.biochi.2018.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/28/2018] [Indexed: 02/03/2023]
|
14
|
Steuber J, Vohl G, Muras V, Toulouse C, Claußen B, Vorburger T, Fritz G. The structure of Na⁺-translocating of NADH:ubiquinone oxidoreductase of Vibrio cholerae: implications on coupling between electron transfer and Na⁺ transport. Biol Chem 2016; 396:1015-30. [PMID: 26146127 DOI: 10.1515/hsz-2015-0128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/29/2015] [Indexed: 11/15/2022]
Abstract
The Na⁺-translocating NADH:ubiquinone oxidoreductase (Na⁺-NQR) of Vibrio cholerae is a respiratory complex that couples the exergonic oxidation of NADH to the transport of Na⁺ across the cytoplasmic membrane. It is composed of six different subunits, NqrA, NqrB, NqrC, NqrD, NqrE, and NqrF, which harbor FAD, FMN, riboflavin, quinone, and two FeS centers as redox co-factors. We recently determined the X-ray structure of the entire Na⁺-NQR complex at 3.5-Å resolution and complemented the analysis by high-resolution structures of NqrA, NqrC, and NqrF. The position of flavin and FeS co-factors both at the cytoplasmic and the periplasmic side revealed an electron transfer pathway from cytoplasmic subunit NqrF across the membrane to the periplasmic NqrC, and via NqrB back to the quinone reduction site on cytoplasmic NqrA. A so far unknown Fe site located in the midst of membrane-embedded subunits NqrD and NqrE shuttles the electrons over the membrane. Some distances observed between redox centers appear to be too large for effective electron transfer and require conformational changes that are most likely involved in Na⁺ transport. Based on the structure, we propose a mechanism where redox induced conformational changes critically couple electron transfer to Na⁺ translocation from the cytoplasm to the periplasm through a channel in subunit NqrB.
Collapse
|
15
|
NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase. J Bacteriol 2015; 198:655-63. [PMID: 26644436 DOI: 10.1128/jb.00757-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na(+) translocation across the membrane. Na(+)-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na(+)-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na(+)-NQR, resulted in an enzyme incapable of Na(+)-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na(+)-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na(+)-NQR, which could be recovered by an nqrM-containing plasmid. The Na(+)-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na(+)-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na(+)-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na(+)-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na(+)-translocating NADH:quinone oxidoreductase complex (Na(+)-NQR) is a unique primary Na(+) pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio parahaemolyticus, Haemophilus influenzae, Neisseria gonorrhoeae, Pasteurella multocida, Porphyromonas gingivalis, Enterobacter aerogenes, and Yersinia pestis. Production of Na(+)-NQR in bacteria requires Na(+)-NQR-specific maturation factors. We earlier identified one such factor (ApbE) that covalently attaches flavin residues to Na(+)-NQR. Here we identify the other protein factor, designated NqrM, and show that NqrM and ApbE suffice to produce functional Na(+)-NQR from the Vibrio harveyi nqr operon. NqrM may be involved in Fe delivery to a unique Cys4[Fe] center during Na(+)-NQR assembly. Besides highlighting Na(+)-NQR biogenesis, these findings suggest a novel drug target to combat Na(+)-NQR-containing bacteria.
Collapse
|
16
|
Belevich NP, Bertsova YV, Verkhovskaya ML, Baykov AA, Bogachev AV. Identification of the coupling step in Na(+)-translocating NADH:quinone oxidoreductase from real-time kinetics of electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:141-149. [PMID: 26655930 DOI: 10.1016/j.bbabio.2015.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/02/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
Abstract
Bacterial Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) uses a unique set of prosthetic redox groups-two covalently bound FMN residues, a [2Fe-2S] cluster, FAD, riboflavin and a Cys4[Fe] center-to catalyze electron transfer from NADH to ubiquinone in a reaction coupled with Na(+) translocation across the membrane. Here we used an ultra-fast microfluidic stopped-flow instrument to determine rate constants and the difference spectra for the six consecutive reaction steps of Vibrio harveyi Na(+)-NQR reduction by NADH. The instrument, with a dead time of 0.25 ms and optical path length of 1 cm allowed collection of visible spectra in 50-μs intervals. By comparing the spectra of reaction steps with the spectra of known redox transitions of individual enzyme cofactors, we were able to identify the chemical nature of most intermediates and the sequence of electron transfer events. A previously unknown spectral transition was detected and assigned to the Cys4[Fe] center reduction. Electron transfer from the [2Fe-2S] cluster to the Cys4[Fe] center and all subsequent steps were markedly accelerated when Na(+) concentration was increased from 20 μM to 25 mM, suggesting coupling of the former step with tight Na(+) binding to or occlusion by the enzyme. An alternating access mechanism was proposed to explain electron transfer between subunits NqrF and NqrC. According to the proposed mechanism, the Cys4[Fe] center is alternatively exposed to either side of the membrane, allowing the [2Fe-2S] cluster of NqrF and the FMN residue of NqrC to alternatively approach the Cys4[Fe] center from different sides of the membrane.
Collapse
Affiliation(s)
- Nikolai P Belevich
- Institute of Biotechnology, University of Helsinki, PO Box 65, Viikinkaari 1, FIN-00014, Finland
| | - Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Marina L Verkhovskaya
- Institute of Biotechnology, University of Helsinki, PO Box 65, Viikinkaari 1, FIN-00014, Finland
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
17
|
Borshchevskiy V, Round E, Bertsova Y, Polovinkin V, Gushchin I, Ishchenko A, Kovalev K, Mishin A, Kachalova G, Popov A, Bogachev A, Gordeliy V. Structural and functional investigation of flavin binding center of the NqrC subunit of sodium-translocating NADH:quinone oxidoreductase from Vibrio harveyi. PLoS One 2015; 10:e0118548. [PMID: 25734798 PMCID: PMC4348036 DOI: 10.1371/journal.pone.0118548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/17/2015] [Indexed: 12/20/2022] Open
Abstract
Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium.
Collapse
Affiliation(s)
- Valentin Borshchevskiy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Ekaterina Round
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Yulia Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vitaly Polovinkin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Andrii Ishchenko
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Kirill Kovalev
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Alexey Mishin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Galina Kachalova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Alexander Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- * E-mail: (AB); (VG)
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- * E-mail: (AB); (VG)
| |
Collapse
|