1
|
Steiner OM, Johnson RA, Chen X, Simke WC, Li B. Activation of Dithiolopyrrolone Antibiotics by Cellular Reductants. Biochemistry 2025; 64:192-202. [PMID: 39665630 DOI: 10.1021/acs.biochem.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Dithiolopyrrolone (DTP) natural products are broad-spectrum antimicrobial and anticancer prodrugs. The DTP structure contains a unique bicyclic ene-disulfide that once reduced in the cell, chelates metal ions and disrupts metal homeostasis. In this work we investigate the intracellular activation of the DTPs and their resistance mechanisms in bacteria. We show that the prototypical DTP holomycin is reduced by several bacterial reductases and small-molecule thiols in vitro. To understand how bacteria develop resistance to the DTPs, we generate Staphylococcus aureus mutants that exhibit increased resistance to the hybrid DTP antibiotic thiomarinol. From these mutants we identify loss-of-function mutations in redox genes that are involved in DTP activation. This work advances the understanding of how DTPs are activated and informs development of bioreductive disulfide prodrugs.
Collapse
Affiliation(s)
- Olivia M Steiner
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachel A Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xiaoyan Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William C Simke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Bonanata J. The role of the active site lysine residue on FAD reduction by NADPH in glutathione reductase. Comput Biol Chem 2024; 110:108075. [PMID: 38678729 DOI: 10.1016/j.compbiolchem.2024.108075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Glutathione reductase (GR) is a two dinucleotide binding domain flavoprotein (tDBDF) that catalyzes the reduction of glutathione disulfide to glutathione coupled to the oxidation of NADPH to NADP+. An interesting feature of GR and other tDBDFs is the presence of a lysine residue (Lys-66 in human GR) at the active site, which interacts with the flavin group, but has an unknown function. To better understand the role of this residue, the dynamics of GR was studied using molecular dynamics simulations, and the reaction mechanism of FAD reduction by NADPH was studied using QM/MM molecular modeling. The two possible protonation states of Lys-66 were considered: neutral and protonated. Molecular dynamics results suggest that the active site is more structured for neutral Lys-66 than for protonated Lys-66. QM/MM modeling results suggest that Lys-66 should be in its neutral state for a thermodynamically favorable reduction of FAD by NADPH. Since the reaction is unfavorable with protonated Lys-66, the reverse reaction (the reduction of NADP+ by FADH-) is expected to take place. A phylogenetic analysis of various tDBDFs was performed, finding that an active site lysine is present in different the tDBDFs enzymes, suggesting that it has a conserved biological role. Overall, these results suggest that the protonation state of the active site lysine determines the energetics of the reaction, controlling its reversibility.
Collapse
Affiliation(s)
- Jenner Bonanata
- Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Uruguay; Centro de Investigaciones Biomédicas, Universidad de la República, Uruguay.
| |
Collapse
|
3
|
Smith MM, Moran GR. Building on a theme: The redox hierarchy of pyridine nucleotide-disulfide oxidoreductases. Arch Biochem Biophys 2024; 755:109966. [PMID: 38537870 DOI: 10.1016/j.abb.2024.109966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
Flavin disulfide reductases (FDRs) are FAD-dependent enzymes that transmit electrons from NAD(P)H to reduce specific oxidant substrate disulfides. These enzymes have been studied extensively, most particularly the paradigm examples: glutathione reductase and thioredoxin reductase. The common, though not universal, traits of the family include a tyrosine- or phenylalanine-gated binding pocket for NAD(P) nicotinamides adjacent to the FAD isoalloxazine re-face, and a disulfide stacked against the si-face of the isoalloxazine whose dithiol form is activated for subsequent exchange reactions by a nearby histidine acting as a base. This arrangement promotes transduction of the reducing equivalents for disulfide exchange relay reactions. From an observational standpoint the proximal parallel stacking of three redox moieties induces up to three opportunities for unique charge transfer interactions (NAD(P)H FAD, NAD(P)+•FADH2, and FAD•thiolate). In transient state, the charge transfer transitions provide discrete signals to assign reaction sequences. This review summarizes the lineage of observations for the FDR enzymes that have been extensively studied. Where applicable and in order to chart a consistent interpretation of the record, only data derived from studies that used anaerobic methods are cited. These data reveal a recurring theme for catalysis that is elaborated with specific additional functionalities for each oxidant substrate.
Collapse
Affiliation(s)
- Madison M Smith
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL, 60660, United States
| | - Graham R Moran
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL, 60660, United States.
| |
Collapse
|
4
|
Li EHY, Sana B, Ho T, Ke D, Ghadessy FJ, Duong HA, Seayad J. Indole and azaindole halogenation catalyzed by the RebH enzyme variant 3-LSR utilizing co-purified E. coli reductase. Front Bioeng Biotechnol 2022; 10:1032707. [PMID: 36588932 PMCID: PMC9801302 DOI: 10.3389/fbioe.2022.1032707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Biocatalytic C-H halogenation is becoming increasingly attractive due to excellent catalyst-controlled selectivity and environmentally benign reaction conditions. Significant efforts have been made on enzymatic halogenation of industrial arenes in a cost-effective manner. Here we report an unprecedented enzymatic halogenation of a panel of industrially important indole, azaindole and anthranilamide derivatives using a thermostable RebH variant without addition of any external flavin reductase enzyme. The reactions were catalyzed by the RebH variant 3-LSR enzyme with the help of a co-purified E. coli reductase identified as alkyl hydroperoxide reductase F (AhpF).
Collapse
Affiliation(s)
- Eunice Hui Yen Li
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore, Singapore
| | - Barindra Sana
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, A*STAR, Singapore, Singapore
| | - Timothy Ho
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore, Singapore
| | - Ding Ke
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, A*STAR, Singapore, Singapore
| | - Farid J. Ghadessy
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, A*STAR, Singapore, Singapore,*Correspondence: Farid J. Ghadessy, ; Hung A. Duong, ; Jayasree Seayad,
| | - Hung A. Duong
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore, Singapore,*Correspondence: Farid J. Ghadessy, ; Hung A. Duong, ; Jayasree Seayad,
| | - Jayasree Seayad
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore, Singapore,*Correspondence: Farid J. Ghadessy, ; Hung A. Duong, ; Jayasree Seayad,
| |
Collapse
|
5
|
Ozdemir O, Soyer F. Pseudomonas aeruginosa Presents Multiple Vital Changes in Its Proteome in the Presence of 3-Hydroxyphenylacetic Acid, a Promising Antimicrobial Agent. ACS OMEGA 2020; 5:19938-19951. [PMID: 32832748 PMCID: PMC7439270 DOI: 10.1021/acsomega.0c00703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/21/2020] [Indexed: 05/06/2023]
Abstract
Pseudomonas aeruginosa, a widely distributed opportunistic pathogen, is an important threat to human health for causing serious infections worldwide. Due to its antibiotic resistance and virulence factors, it is so difficult to combat this bacterium; thus, new antimicrobial agents are in search. 3-Hydroxyphenylacetic acid (3-HPAA), which is a phenolic acid mostly found in olive oil wastewater, can be a promising candidate with its dose-dependent antimicrobial properties. Elucidating the molecular mechanism of action is crucial for future examinations and the presentation of 3-HPAA as a new agent. In this study, the antimicrobial activity of 3-HPAA on P. aeruginosa and its action mechanism was investigated via shot-gun proteomics. The data, which are available via ProteomeXchange with identifier PXD016243, were examined by STRING analysis to determine the interaction networks of proteins. KEGG Pathway enrichment analysis via the DAVID bioinformatics tool was also performed to investigate the metabolic pathways that undetected and newly detected groups of the proteins. The results displayed remarkable changes after 3-HPAA exposure in the protein profile of P. aeruginosa related to DNA replication and repair, RNA modifications, ribosomes and proteins, cell envelope, oxidative stress, as well as nutrient availability. 3-HPAA showed its antimicrobial action on P. aeruginosa by affecting multiple bacterial processes; hence, it could be categorized as a multitarget antimicrobial agent.
Collapse
|
6
|
Meng Y, Sheen CR, Magon NJ, Hampton MB, Dobson RCJ. Structure-function analyses of alkylhydroperoxidase D from Streptococcus pneumoniae reveal an unusual three-cysteine active site architecture. J Biol Chem 2020; 295:2984-2999. [PMID: 31974167 DOI: 10.1074/jbc.ra119.012226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/19/2020] [Indexed: 12/12/2022] Open
Abstract
During aerobic growth, the Gram-positive facultative anaerobe and opportunistic human pathogen Streptococcus pneumoniae generates large amounts of hydrogen peroxide that can accumulate to millimolar concentrations. The mechanism by which this catalase-negative bacterium can withstand endogenous hydrogen peroxide is incompletely understood. The enzyme alkylhydroperoxidase D (AhpD) has been shown to contribute to pneumococcal virulence and oxidative stress responses in vivo We demonstrate here that SpAhpD exhibits weak thiol-dependent peroxidase activity and, unlike the previously reported Mycobacterium tuberculosis AhpC/D system, SpAhpD does not mediate electron transfer to SpAhpC. A 2.3-Å resolution crystal structure revealed several unusual structural features, including a three-cysteine active site architecture that is buried in a deep pocket, in contrast to the two-cysteine active site found in other AhpD enzymes. All single-cysteine SpAhpD variants remained partially active, and LC-MS/MS analyses revealed that the third cysteine, Cys-163, formed disulfide bonds with either of two cysteines in the canonical Cys-78-X-X-Cys-81 motif. We observed that SpAhpD formed a dimeric quaternary structure both in the crystal and in solution, and that the highly conserved Asn-76 of the AhpD core motif is important for SpAhpD folding. In summary, SpAhpD is a weak peroxidase and does not transfer electrons to AhpC, and therefore does not fit existing models of bacterial AhpD antioxidant defense mechanisms. We propose that it is unlikely that SpAhpD removes peroxides either directly or via AhpC, and that SpAhpD cysteine oxidation may act as a redox switch or mediate electron transfer with other thiol proteins.
Collapse
Affiliation(s)
- Yanxiang Meng
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Campbell R Sheen
- Callaghan Innovation, University of Canterbury, Christchurch 8041, New Zealand
| | - Nicholas J Magon
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
7
|
Novel 5-Nitrofuran-Activating Reductase in Escherichia coli. Antimicrob Agents Chemother 2019; 63:AAC.00868-19. [PMID: 31481448 DOI: 10.1128/aac.00868-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
The global spread of multidrug-resistant enterobacteria warrants new strategies to combat these pathogens. One possible approach is the reconsideration of "old" antimicrobials, which remain effective after decades of use. Synthetic 5-nitrofurans such as furazolidone, nitrofurantoin, and nitrofurazone are such a class of antimicrobial drugs. Recent epidemiological data showed a very low prevalence of resistance to this antimicrobial class among clinical Escherichia coli isolates in various parts of the world, forecasting the increasing importance of its uses to battle antibiotic-resistant enterobacteria. However, although they have had a long history of clinical use, a detailed understanding of the 5-nitrofurans' mechanisms of action remains limited. Nitrofurans are known as prodrugs that are activated in E. coli by reduction catalyzed by two redundant nitroreductases, NfsA and NfsB. Furazolidone, nevertheless, retains relatively significant antibacterial activity in the nitroreductase-deficient ΔnfsA ΔnfsB E. coli strain, indicating the presence of additional activating enzymes and/or antibacterial activity of the unreduced form. Using genome sequencing, genetic, biochemical, and bioinformatic approaches, we discovered a novel 5-nitrofuran-activating enzyme, AhpF, in E. coli The discovery of a new nitrofuran-reducing enzyme opens new avenues for overcoming 5-nitrofuran resistance, such as designing nitrofuran analogues with higher affinity for AhpF or screening for adjuvants that enhance AhpF expression.
Collapse
|
8
|
Toh YK, Shin J, Balakrishna AM, Kamariah N, Grüber A, Eisenhaber F, Eisenhaber B, Grüber G. Effect of the additional cysteine 503 of vancomycin-resistant Enterococcus faecalis (V583) alkylhydroperoxide reductase subunit F (AhpF) and the mechanism of AhpF and subunit C assembling. Free Radic Biol Med 2019; 138:10-22. [PMID: 31047989 DOI: 10.1016/j.freeradbiomed.2019.04.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 01/31/2023]
Abstract
The vancomycin-resistant Enterococcus faecalis alkyl hydroperoxide reductase complex (AhpR) with its subunits AhpC (EfAhpC) and AhpF (EfAhpF) is of paramount importance to restore redox homeostasis. Therefore, knowledge about this defense system is essential to understand its antibiotic-resistance and survival in hosts. Recently, we described the crystallographic structures of EfAhpC, the two-fold thioredoxin-like domain of EfAhpF, the novel phenomenon of swapping of the catalytic domains of EfAhpF as well as the unique linker length, connecting the catalytically active N-and C-terminal domains of EfAhpF. Here, using mutagenesis and enzymatic studies, we reveal the effect of an additional third cysteine (C503) in EfAhpF, which might optimize the functional adaptation of the E. faecalis enzyme under various physiological conditions. The crystal structure and solution NMR data of the engineered C503A mutant of the thioredoxin-like domain of EfAhpF were used to describe alterations in the environment of the additional cysteine residue during modulation of the redox-state. To glean insight into the epitope and mechanism of EfAhpF and -AhpC interaction as well as the electron transfer from the thioredoxin-like domain of EfAhpF to AhpC, NMR-titration experiments were performed, showing a coordinated disappearance of peaks in the thioredoxin-like domain of EfAhpF in the presence of full length EfAhpC, and indicating a stable EfAhpF-AhpC-complex. Combined with docking studies, the interacting residues of EfAhpF were identified and a mechanism of electron transfer of the EfAhpF donor to the electron acceptor EfAhpC is described.
Collapse
Affiliation(s)
- Yew Kwang Toh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Joon Shin
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Asha Manikkoth Balakrishna
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Neelagandan Kamariah
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Ardina Grüber
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore; School of Computer Science Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Republic of Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Gerhard Grüber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore; Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
9
|
Hong EJ, Jeong H, Lee DS, Kim Y, Lee HS. TheahpDgene ofCorynebacterium glutamicumplays an important role in hydrogen peroxide-induced oxidative stress response. J Biochem 2018; 165:197-204. [DOI: 10.1093/jb/mvy097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Eun-Ji Hong
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si, Korea
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si, Korea
| | - Dong-Seok Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si, Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, 65 Semyeong-ro, Jecheon-si, Chungbuk, Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si, Korea
| |
Collapse
|
10
|
Molecular mechanism of the Escherichia coli AhpC in the function of a chaperone under heat-shock conditions. Sci Rep 2018; 8:14151. [PMID: 30237544 PMCID: PMC6147784 DOI: 10.1038/s41598-018-32527-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/05/2018] [Indexed: 01/24/2023] Open
Abstract
Peroxiredoxins (Prxs) are ubiquitous antioxidants utilizing a reactive cysteine for peroxide reduction and acting as a molecular chaperone under various stress conditions. Besides other stimulating factors, oxidative- and heat stress conditions trigger their ATP-independent chaperoning function. So far, many studies were intended to reveal the chaperoning mechanisms of the so-called sensitive Prxs of eukaryotes, which are susceptible to inactivation by over-oxidation of its reactive cysteine during H2O2 reduction. In contrast, the chaperone mechanisms of bacterial Prxs, which are mostly robust against inactivation by over-oxidation, are not well understood. Herein, comprehensive biochemical and biophysical studies demonstrate that the Escherichia coli alkyl hydroperoxide reductase subunit C (EcAhpC) acquires chaperone activity under heat stress. Interestingly, their chaperoning activity is independent of its redox-states but is regulated in a temperature-dependent manner. Data are presented, showing that oxidized EcAhpC, which forms dimers at 25 °C, self-assembled into high molecular weight (HMW) oligomers at higher temperatures and supressed aggregation of client proteins at heat-shock conditions. In addition, we unravelled the essential role of the C-terminal tail of EcAhpC on heat-induced HMW oligomer formation and chaperoning activity. Our findings suggest a novel molecular mechanism for bacterial Prxs to function as chaperone at heat-shock conditions.
Collapse
|
11
|
Toh YK, Balakrishna AM, Manimekalai MSS, Chionh BB, Seetharaman RRC, Eisenhaber F, Eisenhaber B, Grüber G. Novel insights into the vancomycin-resistant Enterococcus faecalis (V583) alkylhydroperoxide reductase subunit F. Biochim Biophys Acta Gen Subj 2017; 1861:3201-3214. [DOI: 10.1016/j.bbagen.2017.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
|
12
|
Kamariah N, Eisenhaber B, Eisenhaber F, Grüber G. Essential role of the flexible linker on the conformational equilibrium of bacterial peroxiredoxin reductase for effective regeneration of peroxiredoxin. J Biol Chem 2017; 292:6667-6679. [PMID: 28270505 DOI: 10.1074/jbc.m117.775858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) can damage DNA, proteins, and lipids, so cells have antioxidant systems that regulate ROS. In many bacteria, a dedicated peroxiredoxin reductase, alkyl hydroperoxide reductase subunit F (AhpF), catalyzes the rapid reduction of the redox-active disulfide center of the antioxidant protein peroxiredoxin (AhpC) to detoxify ROS such as hydrogen peroxide, organic hydroperoxide, and peroxynitrite. AhpF is a flexible multidomain protein that enables a series of electron transfers among the redox centers by accepting reducing equivalents from NADH. A flexible linker connecting the N-terminal domain (NTD) and C-terminal domain (CTD) of AhpF suggests that the enzyme adopts a large-scale domain motion that alternates between the closed and open states to shuttle electrons from the CTD via the NTD to AhpC. Here, we conducted comprehensive mutational, biochemical, and biophysical analyses to gain insights into the role of the flexible linker and the residues critical for the domain motions of Escherichia coli AhpF (EcAhpF) during electron transfer. Small-angle X-ray scattering studies of linker mutants revealed that a group of charged residues, 200EKR202, is crucial for the swiveling motion of the NTD. Moreover, NADH binding significantly affected EcAhpF flexibility and the movement of the NTD relative to the CTD. The mutants also exhibited a decrease in H2O2 reduction by the AhpF-AhpC ensemble. We propose that a concerted movement involving the NTD, C-terminal NADH, and FAD domains, and the flexible linker between them is essential for optimal intra-domain cross-talk and for efficient electron transfer to the redox partner AhpC required for peroxidation.
Collapse
Affiliation(s)
- Neelagandan Kamariah
- From the Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671
| | - Birgit Eisenhaber
- From the Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671
| | - Frank Eisenhaber
- From the Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671.,the School of Computer Engineering, Nanyang Technological University, Singapore 637553, Republic of Singapore
| | - Gerhard Grüber
- From the Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, .,the School of Biological Sciences, Nanyang Technological University, Singapore 637551, and
| |
Collapse
|
13
|
Kamariah N, Sek MF, Eisenhaber B, Eisenhaber F, Grüber G. Transition steps in peroxide reduction and a molecular switch for peroxide robustness of prokaryotic peroxiredoxins. Sci Rep 2016; 6:37610. [PMID: 27892488 PMCID: PMC5124861 DOI: 10.1038/srep37610] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/31/2016] [Indexed: 12/26/2022] Open
Abstract
In addition to their antioxidant function, the eukaryotic peroxiredoxins (Prxs) facilitate peroxide-mediated signaling by undergoing controlled inactivation by peroxide-driven over-oxidation. In general, the bacterial enzyme lacks this controlled inactivation mechanism, making it more resistant to high H2O2 concentrations. During peroxide reduction, the active site alternates between reduced, fully folded (FF), and oxidized, locally unfolded (LU) conformations. Here we present novel insights into the divergence of bacterial and human Prxs in robustness and sensitivity to inactivation, respectively. Structural details provide new insights into sub-steps during the catalysis of peroxide reduction, enabling the transition from an FF to a LU conformation. Complementary to mutational and enzymatic results, these data unravel the essential role of the C-terminal tail of bacterial Prxs to act as a molecular switch, mediating the transition from an FF to a LU state. In addition, we propose that the C-terminal tail has influence on the propensity of the disulphide bond formation, indicating that as a consequence on the robustness and sensitivity to over-oxidation. Finally, a physical linkage between the catalytic site, the C-terminal tail and the oligomer interface is described.
Collapse
Affiliation(s)
- Neelagandan Kamariah
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Mun Foong Sek
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore.,School of Computer Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Republic of Singapore
| | - Gerhard Grüber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
14
|
Kamariah N, Nartey W, Eisenhaber B, Eisenhaber F, Grüber G. Low resolution solution structure of an enzymatic active AhpC10:AhpF2 ensemble of the Escherichia coli Alkyl hydroperoxide Reductase. J Struct Biol 2015; 193:13-22. [PMID: 26584540 DOI: 10.1016/j.jsb.2015.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 11/15/2022]
Abstract
The ability of bacteria to combat oxidative stress is imperative for their survival. The Alkyl hydroperoxide Reductase (AhpR) system, composed of the AhpC and AhpF proteins, is one of the dominant antioxidant defense systems required for scavenging hydrogen peroxide and organic peroxide. Therefore, it is necessary to understand the mechanism of the AhpR ensemble formation. In previous studies, we were able to elucidate conformational flexibility of Escherichia coli AhpF during the catalytic cycle and its binding site, the N-terminal domain (NTD), to AhpC. We proposed the novel binding and release mechanism of EcAhpC-AhpF, which is mediated by the well defined redox-state linked conformational changes associated with the C-terminal tail and active site regions of EcAhpC. Here, we have proceeded further to elucidate the solution structure of E. coli AhpC and the stable ensemble formation with EcAhpF using size-exclusion chromatography (SEC), dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) techniques. The EcAhpC-AhpF complex structure with a stoichiometry of AhpC10:AhpF2 reveals that dimeric EcAhpF in its extended conformation enables the NTD disulphide centers to come in close proximity to the redox-active disulphide centers of EcAhpC, and provides an efficient electron transfer. Furthermore, the significance of the C-terminal tail of EcAhpC in ensemble formation is elucidated. SAXS data-based modeling revealed the flexible C-terminal tail of EcAhpC in solution, and its exposed nature, making it possible to contact the NTD of EcAhpF for stable complex formation.
Collapse
Affiliation(s)
- Neelagandan Kamariah
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Wilson Nartey
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore; School of Computer Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Republic of Singapore; Department of Biological Sciences, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore
| | - Gerhard Grüber
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore; Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
15
|
Nartey W, Basak S, Kamariah N, Manimekalai MSS, Robson S, Wagner G, Eisenhaber B, Eisenhaber F, Grüber G. NMR studies reveal a novel grab and release mechanism for efficient catalysis of the bacterial 2-Cys peroxiredoxin machinery. FEBS J 2015; 282:4620-38. [DOI: 10.1111/febs.13522] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/28/2015] [Accepted: 09/21/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Wilson Nartey
- School of Biological Sciences; Nanyang Technological University; Singapore City Singapore
| | - Sandip Basak
- School of Biological Sciences; Nanyang Technological University; Singapore City Singapore
| | - Neelagandan Kamariah
- Bioinformatics Institute; Agency for Science; Technology and Research (A*STAR); Singapore City Singapore
| | | | - Scott Robson
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston MA USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston MA USA
| | - Birgit Eisenhaber
- Bioinformatics Institute; Agency for Science; Technology and Research (A*STAR); Singapore City Singapore
| | - Frank Eisenhaber
- School of Biological Sciences; Nanyang Technological University; Singapore City Singapore
- School of Computer Engineering; Nanyang Technological University (NTU); Singapore City Singapore
- Department of Biological Sciences; National University of Singapore; Singapore
| | - Gerhard Grüber
- School of Biological Sciences; Nanyang Technological University; Singapore City Singapore
- Bioinformatics Institute; Agency for Science; Technology and Research (A*STAR); Singapore City Singapore
| |
Collapse
|