1
|
Hellwig P. The electrochemical properties of the highly diverse terminal oxidases from different organisms. Bioelectrochemistry 2025; 165:108946. [PMID: 40020283 DOI: 10.1016/j.bioelechem.2025.108946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
Terminal oxidases are critical for aerobic respiratory chains of prokaryotes and eukaryotes, responsible for the final step in the electron transport chain. These enzymes catalyze the transfer of electrons from reduced electron carriers (such as cytochrome c or quinols) to the terminal electron acceptor, molecular oxygen (O₂), thereby reducing it to water. They play a pivotal role in aerobic respiration and energy metabolism, adapting to diverse environmental and physiological needs across different organisms. This review summarizes the electrochemical properties of terminal oxidases from different organisms and reveals their high degree of adaptivity with redox potentials spanning more than 500 mV. The electrocatalytic response in direct electrochemical approaches is described giving insight into the rich and complex electron and proton transfer catalysed by these essential enzymes.
Collapse
Affiliation(s)
- Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioélectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France, Institut Universitaire de France (IUF).
| |
Collapse
|
2
|
Zhong F, Reik ME, Ragusa MJ, Pletneva EV. The structure of the diheme cytochrome c 4 from Neisseria gonorrhoeae reveals multiple contributors to tuning reduction potentials. J Inorg Biochem 2024; 253:112496. [PMID: 38330683 PMCID: PMC11034767 DOI: 10.1016/j.jinorgbio.2024.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Cytochrome c4 (c4) is a diheme protein implicated as an electron donor to cbb3 oxidases in multiple pathogenic bacteria. Despite its prevalence, understanding of how specific structural features of c4 optimize its function is lacking. The human pathogen Neisseria gonorrhoeae (Ng) thrives in low oxygen environments owing to the activity of its cbb3 oxidase. Herein, we report characterization of Ng c4. Spectroelectrochemistry experiments of the wild-type (WT) protein have shown that the two Met/His-ligated hemes differ in potentials by ∼100 mV, and studies of the two His/His-ligated variants provided unambiguous assignment of heme A from the N-terminal domain of the protein as the high-potential heme. The crystal structure of the WT protein at 2.45 Å resolution has revealed that the two hemes differ in their solvent accessibility. In particular, interactions made by residues His57 and Ser59 in Loop1 near the axial ligand Met63 contribute to the tight enclosure of heme A, working together with the surface charge, to raise the reduction potential of the heme iron in this domain. The structure reveals a prominent positively-charged patch, which encompasses surfaces of both domains. In contrast to prior findings with c4 from Pseudomonas stutzeri, the interdomain interface of Ng c4 contributes minimally to the values of the heme iron potentials in the two domains. Analyses of the heme solvent accessibility, interface properties, and surface charges offer insights into the interplay of these structural elements in tuning redox properties of c4 and other multiheme proteins.
Collapse
Affiliation(s)
- Fangfang Zhong
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Morgan E Reik
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Michael J Ragusa
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | | |
Collapse
|
3
|
Makarchuk I, Gerasimova T, Kägi J, Wohlwend D, Melin F, Friedrich T, Hellwig P. Mutating the environment of heme b 595 of E. coli cytochrome bd-I oxidase shifts its redox potential by 200 mV without inactivating the enzyme. Bioelectrochemistry 2023; 151:108379. [PMID: 36736178 DOI: 10.1016/j.bioelechem.2023.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Cytochrome bd-I catalyzes the reduction of oxygen to water with the aid of hemes b558, b595 and d. Here, effects of a mutation of E445, a ligand of heme b595 and of R448, hydrogen bonded to E445 are studied electrochemically in the E. coli enzyme. The equilibrium potential of the three hemes are shifted by up to 200 mV in these mutants. Strikingly the E445D and the R448N mutants show a turnover of 41 ± 2 % and 20 ± 4 %, respectively. Electrocatalytic studies confirm that the mutants react with oxygen and bind and release NO. These results point towards the ability of cytochrome bd to react even if the electron transfer is less favorable.
Collapse
Affiliation(s)
- Iryna Makarchuk
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Tatjana Gerasimova
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Jan Kägi
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Daniel Wohlwend
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Thorsten Friedrich
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany.
| |
Collapse
|
4
|
Gemünde A, Lai B, Pause L, Krömer J, Holtmann D. Redox mediators in microbial electrochemical systems. ChemElectroChem 2022. [DOI: 10.1002/celc.202200216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- André Gemünde
- Technische Hochschule Mittelhessen Institute of Bioprocess Engineering and Pharmaceutical Technology Wiesenstraße 14 35390 Gießen GERMANY
| | - Bin Lai
- Helmholtz Centre for Environmental Research UFZ Department of Environmental Microbiology: Helmholtz-Zentrum fur Umweltforschung UFZ Abteilung Umweltmikrobiologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Laura Pause
- Helmholtz Centre for Environmental Research UFZ Environmental Engineering and Biotechnology Research Unit: Helmholtz-Zentrum fur Umweltforschung UFZ Themenbereich Umwelt- und Biotechnologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Jens Krömer
- Helmholtz Centre for Environmental Research UFZ Environmental Engineering and Biotechnology Research Unit: Helmholtz-Zentrum fur Umweltforschung UFZ Themenbereich Umwelt- und Biotechnologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Dirk Holtmann
- Technische Hochschule Mittelhessen IBPT Wiesenstrasse 14 35390 Giessen GERMANY
| |
Collapse
|
5
|
Enhanced Phenazine-1-Carboxamide Production in Pseudomonas chlororaphis H5△fleQ△relA through Fermentation Optimization. FERMENTATION 2022. [DOI: 10.3390/fermentation8040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phenazine-1-carboxamide (PCN) is effective to control many plant pathogens, and improving PCN production would be of great significance in promoting its development as a biopesticide. This study was conducted to improve the PCN production of Pseudomonas chlororaphis H5△fleQ△relA through fermentation optimization in both shake flask and bioreactor. The PCN production of H5△fleQ△relA was improved from 2.75 ± 0.23 g/L to 5.51 ± 0.17 g/L by medium optimization in shake flask using Plackett-Burman design, the path of steepest ascent experiment and central composite design. Then, PCN production reached 8.58 ± 0.25 g/L through optimizing pH in 1 L bioreactor. After pH optimization, the transcriptional levels of ccoO_2 and ccoQ_2 genes related to microbial aerobic respiration were significantly upregulated, and the relative abundance of 3-oxo-C14-HSL was significantly enhanced 15-fold, and these changes were vital for cell activity and metabolites production. Furthermore, the PCN production reached 9.58 ± 0.57 g/L after optimization of the fed-batch fermentation strategy in 1 L bioreactor. Finally, the fermentation scale-up of the optimal medium and optimal feeding strategy were conducted in 30 L bioreactor at the optimal pH, and their PCN production reached 9.17 g/L and 9.62 g/L respectively, which were comparable to that in 1 L bioreactor. In this study, the high PCN production was achieved from the shake-flask fermentation to 30 L bioreactor, and the optimal feeding strategy improved PCN production in bioreactor without increasing total glycerol compared with in shake flask. It provides promising pathways for the optimization of processes for the production of other phenazines.
Collapse
|
6
|
Silveira CM, Zuccarello L, Barbosa C, Caserta G, Zebger I, Hildebrandt P, Todorovic S. Molecular Details on Multiple Cofactor Containing Redox Metalloproteins Revealed by Infrared and Resonance Raman Spectroscopies. Molecules 2021; 26:4852. [PMID: 34443440 PMCID: PMC8398457 DOI: 10.3390/molecules26164852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Vibrational spectroscopy and in particular, resonance Raman (RR) spectroscopy, can provide molecular details on metalloproteins containing multiple cofactors, which are often challenging for other spectroscopies. Due to distinct spectroscopic fingerprints, RR spectroscopy has a unique capacity to monitor simultaneously and independently different metal cofactors that can have particular roles in metalloproteins. These include e.g., (i) different types of hemes, for instance hemes c, a and a3 in caa3-type oxygen reductases, (ii) distinct spin populations, such as electron transfer (ET) low-spin (LS) and catalytic high-spin (HS) hemes in nitrite reductases, (iii) different types of Fe-S clusters, such as 3Fe-4S and 4Fe-4S centers in di-cluster ferredoxins, and (iv) bi-metallic center and ET Fe-S clusters in hydrogenases. IR spectroscopy can provide unmatched molecular details on specific enzymes like hydrogenases that possess catalytic centers coordinated by CO and CN- ligands, which exhibit spectrally well separated IR bands. This article reviews the work on metalloproteins for which vibrational spectroscopy has ensured advances in understanding structural and mechanistic properties, including multiple heme-containing proteins, such as nitrite reductases that house a notable total of 28 hemes in a functional unit, respiratory chain complexes, and hydrogenases that carry out the most fundamental functions in cells.
Collapse
Affiliation(s)
- Célia M. Silveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (C.M.S.); (L.Z.); (C.B.)
| | - Lidia Zuccarello
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (C.M.S.); (L.Z.); (C.B.)
| | - Catarina Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (C.M.S.); (L.Z.); (C.B.)
| | - Giorgio Caserta
- Institut fur Chemie, Sekr. PC14, Technische Universitat Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany; (G.C.); (I.Z.); (P.H.)
| | - Ingo Zebger
- Institut fur Chemie, Sekr. PC14, Technische Universitat Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany; (G.C.); (I.Z.); (P.H.)
| | - Peter Hildebrandt
- Institut fur Chemie, Sekr. PC14, Technische Universitat Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany; (G.C.); (I.Z.); (P.H.)
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (C.M.S.); (L.Z.); (C.B.)
| |
Collapse
|
7
|
Blomberg MRA. Activation of O 2 and NO in heme-copper oxidases - mechanistic insights from computational modelling. Chem Soc Rev 2021; 49:7301-7330. [PMID: 33006348 DOI: 10.1039/d0cs00877j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heme-copper oxidases are transmembrane enzymes involved in aerobic and anaerobic respiration. The largest subgroup contains the cytochrome c oxidases (CcO), which reduce molecular oxygen to water. A significant part of the free energy released in this exergonic process is conserved as an electrochemical gradient across the membrane, via two processes, electrogenic chemistry and proton pumping. A deviant subgroup is the cytochrome c dependent NO reductases (cNOR), which reduce nitric oxide to nitrous oxide and water. This is also an exergonic reaction, but in this case none of the released free energy is conserved. Computational studies applying hybrid density functional theory to cluster models of the bimetallic active sites in the heme-copper oxidases are reviewed. To obtain a reliable description of the reaction mechanisms, energy profiles of the entire catalytic cycles, including the reduction steps have to be constructed. This requires a careful combination of computational results with certain experimental data. Computational studies have elucidated mechanistic details of the chemical parts of the reactions, involving cleavage and formation of covalent bonds, which have not been obtainable from pure experimental investigations. Important insights regarding the mechanisms of energy conservation have also been gained. The computational studies show that the reduction potentials of the active site cofactors in the CcOs are large enough to afford electrogenic chemistry and proton pumping, i.e. efficient energy conservation. These results solve a conflict between different types of experimental data. A mechanism for the proton pumping, involving a specific and crucial role for the active site tyrosine, conserved in all CcOs, is suggested. For the cNORs, the calculations show that the low reduction potentials of the active site cofactors are optimized for fast elimination of the toxic NO molecules. At the same time, the low reduction potentials lead to endergonic reduction steps with high barriers. To prevent even higher barriers, which would lead to a too slow reaction, when the electrochemical gradient across the membrane is present, the chemistry must occur in a non-electrogenic manner. This explains why there is no energy conservation in cNOR.
Collapse
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
8
|
Nikolaev A, Safarian S, Thesseling A, Wohlwend D, Friedrich T, Michel H, Kusumoto T, Sakamoto J, Melin F, Hellwig P. Electrocatalytic evidence of the diversity of the oxygen reaction in the bacterial bd oxidase from different organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148436. [PMID: 33940039 DOI: 10.1016/j.bbabio.2021.148436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Cytochrome bd oxidase is a bacterial terminal oxygen reductase that was suggested to enable adaptation to different environments and to confer resistance to stress conditions. An electrocatalytic study of the cyt bd oxidases from Escherichia coli, Corynebacterium glutamicum and Geobacillus thermodenitrificans gives evidence for a different reactivity towards oxygen. An inversion of the redox potential values of the three hemes is found when comparing the enzymes from different bacteria. This inversion can be correlated with different protonated glutamic acids as evidenced by reaction induced FTIR spectroscopy. The influence of the microenvironment of the hemes on the reactivity towards oxygen is discussed.
Collapse
Affiliation(s)
- Anton Nikolaev
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg - CNRS 4, rue Blaise Pascal, 67081 Strasborg, France
| | - Schara Safarian
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Hartmut Michel
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Tomoichirou Kusumoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Fukuoka, Japan
| | - Junshi Sakamoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Fukuoka, Japan
| | - Frederic Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg - CNRS 4, rue Blaise Pascal, 67081 Strasborg, France.
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg - CNRS 4, rue Blaise Pascal, 67081 Strasborg, France; USIAS, University of Strasbourg Institute for Advanced Studies, Strasbourg, France.
| |
Collapse
|
9
|
Sun C, Yang L, Ortuño MA, Wright AM, Chen T, Head AR, López N, Dincă M. Spectroscopic Evidence of Hyponitrite Radical Intermediate in NO Disproportionation at a MOF-Supported Mononuclear Copper Site. Angew Chem Int Ed Engl 2021; 60:7845-7850. [PMID: 33645907 DOI: 10.1002/anie.202015359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Dianionic hyponitrite (N2 O2 2- ) is often proposed, based on model complexes, as the key intermediate in reductive coupling of nitric oxide to nitrous oxide at the bimetallic active sites of heme-copper oxidases and nitric oxide reductases. In this work, we examine the gas-solid reaction of nitric oxide with the metal-organic framework CuI -ZrTpmC* with a suite of in situ spectroscopies and density functional theory simulations, and identify an unusual chelating N2 O2 .- intermediate. These results highlight the advantage provided by site-isolation in metal-organic frameworks (MOFs) for studying important reaction intermediates, and provide a mechanistic scenario compatible with the proposed one-electron couple in these enzymes.
Collapse
Affiliation(s)
- Chenyue Sun
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Luming Yang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Manuel A Ortuño
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Ashley M Wright
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Tianyang Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Ashley R Head
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Núria López
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
10
|
Sun C, Yang L, Ortuño MA, Wright AM, Chen T, Head AR, López N, Dincă M. Spectroscopic Evidence of Hyponitrite Radical Intermediate in NO Disproportionation at a MOF‐Supported Mononuclear Copper Site. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chenyue Sun
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Luming Yang
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Manuel A. Ortuño
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Ashley M. Wright
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Tianyang Chen
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Ashley R. Head
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Núria López
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
11
|
Kato M, Masuda Y, Yoshida N, Tosha T, Shiro Y, Yagi I. Impact of membrane protein-lipid interactions on formation of bilayer lipid membranes on SAM-modified gold electrode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Reed CJ, Lam QN, Mirts EN, Lu Y. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling. Chem Soc Rev 2021; 50:2486-2539. [PMID: 33475096 PMCID: PMC7920998 DOI: 10.1039/d0cs01297a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heme-copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32-, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme-[4Fe-4S] centers, respectively. The complexity of the structures and reactions of these native enzymes, along with their large sizes and/or membrane associations, make it challenging to fully understand the crucial structural features responsible for the catalytic properties of these active sites. In this review, we summarize progress that has been made to better understand these heteronuclear metalloenzymes at the molecular level though study of the native enzymes along with insights gained from biomimetic models comprising either small molecules or proteins. Further understanding the reaction selectivity of these enzymes is discussed through comparisons of their similar heteronuclear active sites, and we offer outlook for further investigations.
Collapse
Affiliation(s)
- Christopher J Reed
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA.
| | - Quan N Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA
| | - Evan N Mirts
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA. and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Nitric Oxide Does Not Inhibit but Is Metabolized by the Cytochrome bcc- aa3 Supercomplex. Int J Mol Sci 2020; 21:ijms21228521. [PMID: 33198276 PMCID: PMC7697965 DOI: 10.3390/ijms21228521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is a well-known active site ligand and inhibitor of respiratory terminal oxidases. Here, we investigated the interaction of NO with a purified chimeric bcc-aa3 supercomplex composed of Mycobacterium tuberculosis cytochrome bcc and Mycobacterium smegmatisaa3-type terminal oxidase. Strikingly, we found that the enzyme in turnover with O2 and reductants is resistant to inhibition by the ligand, being able to metabolize NO at 25 °C with an apparent turnover number as high as ≈303 mol NO (mol enzyme)−1 min−1 at 30 µM NO. The rate of NO consumption proved to be proportional to that of O2 consumption, with 2.65 ± 0.19 molecules of NO being consumed per O2 molecule by the mycobacterial bcc-aa3. The enzyme was found to metabolize the ligand even under anaerobic reducing conditions with a turnover number of 2.8 ± 0.5 mol NO (mol enzyme)−1 min−1 at 25 °C and 8.4 µM NO. These results suggest a protective role of mycobacterial bcc-aa3 supercomplexes against NO stress.
Collapse
|
14
|
Lai B, Bernhardt PV, Krömer JO. Cytochrome c Reductase is a Key Enzyme Involved in the Extracellular Electron Transfer Pathway towards Transition Metal Complexes in Pseudomonas Putida. CHEMSUSCHEM 2020; 13:5308-5317. [PMID: 32678505 PMCID: PMC7589348 DOI: 10.1002/cssc.202001645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/16/2020] [Indexed: 05/06/2023]
Abstract
Mediator-based extracellular electron transfer (EET) pathways can balance the redox metabolism of microbes. However, such electro-biosynthesis processes are constrained by the unknown underlying EET mechanisms. In this paper, Pseudomonas putida was studied to systematically investigate its EET pathway to transition metal complexes (i. e., [Fe(CN)6 ]3-/4- and [Co(bpy)3 ]3+/2+ ; bpy=2,2'-bipyridyl) under anaerobic conditions. Comparative proteomics showed the aerobic respiratory components were upregulated in a bioelectrochemical system without oxygen, suggesting their potential contribution to EET. Further tests found inhibiting cytochrome c oxidase activity by NaN3 and NADH dehydrogenase by rotenone did not significantly change the current output. However, the EET pathway was completely blocked, while cytochrome c reductase activity was inhibited by antimycin A. Although it cannot be excluded that cytochrome c and the periplasmic subunit of cytochrome c oxidase donate electrons to the transition metal complexes, these results strongly demonstrate that cytochrome c reductase is a key complex for the EET pathway.
Collapse
Affiliation(s)
- Bin Lai
- Systems Biotechnology group, Department of Solar MaterialsHelmholtz Centre for Environmental Research - UFZLeipzig04318Germany
- Advanced Water Management CentreThe University of QueenslandBrisbane4072Australia
| | - Paul V. Bernhardt
- School of Chemical and Molecular BiosciencesThe University of QueenslandBrisbane4072Australia
| | - Jens O. Krömer
- Systems Biotechnology group, Department of Solar MaterialsHelmholtz Centre for Environmental Research - UFZLeipzig04318Germany
| |
Collapse
|
15
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
16
|
Blomberg MRA. Role of the Two Metals in the Active Sites of Heme Copper Oxidases-A Study of NO Reduction in cbb3 Cytochrome c Oxidase. Inorg Chem 2020; 59:11542-11553. [PMID: 32799475 DOI: 10.1021/acs.inorgchem.0c01351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The superfamily of heme copper oxidases reduces molecular oxygen or nitric oxide, and the active sites comprise a high-spin heme group (a3 or b3) and a non-heme metal (CuB or FeB). The cbb3 C family of cytochrome c oxidases, with the high-spin heme b3 and CuB in the active site, is a subfamily of the heme copper oxidases that can reduce both molecular oxygen, which is the main substrate, and nitric oxide. The mechanism for NO reduction in cbb3 oxidase is studied here using hybrid density functional theory and compared to other cytochrome c oxidases (A and B families), with a high-spin heme a3 and CuB in the active site, and to cytochrome c dependent NO reductase, with a high-spin heme b3 and a non-heme FeB in the active site. It is found that the reaction mechanism and the detailed reaction energetics of the cbb3 oxidases are not similar to those of cytochrome c dependent NO reductase, which has the same type of high-spin heme group but a different non-heme metal. This is in contrast to earlier expectations. Instead, the NO reduction mechanism in cbb3 oxidases is very similar to that in the other cytochrome c oxidases, with the same non-heme metal, CuB, and is independent of the type of high-spin heme group. The conclusion is that the type of non-heme metal (CuB or FeB) in the active site of the heme copper oxidases is more important for the reaction mechanisms than the type of high-spin heme, at least for the NO reduction reaction. The reason is that the proton-coupled reduction potentials of the active site cofactors determine the energetics for the NO reduction reaction, and they depend to a larger extent on the non-heme metal. Observed differences in NO reduction reactivity among the various cytochrome c oxidases may be explained by differences outside the BNC, affecting the rate of proton transfer, rather than in the BNC itself.
Collapse
|
17
|
Blake RC, White RA. In situ absorbance measurements: a new means to study respiratory electron transfer in chemolithotrophic microorganisms. Adv Microb Physiol 2020; 76:81-127. [PMID: 32408948 DOI: 10.1016/bs.ampbs.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Absorbance measurements on intact chemolithotrophic microorganisms that respire aerobically on soluble iron are described that used a novel integrating cavity absorption meter to eliminate the effects of light scattering on the experimental results. Steady state kinetic measurements on ferric iron production by intact cells revealed that the Michaelis Menten equation described the initial rates of product formation for at least 8 different chemolithotrophic microorganisms in 6 phyla distributed equally among the archaea and the Gram negative and Gram positive eubacteria. Cell-monitored turnover measurements during aerobic respiration on soluble iron by the same 12 intact microorganisms revealed six different patterns of iron-dependent absorbance changes, suggesting that there may be at least six different sets of prosthetic groups and biomolecules that can accomplish aerobic respiration on soluble iron. Detailed kinetic studies revealed that the 3-component iron respiratory chain of Acidithiobacillus ferrooxidans functioned as an ensemble with a single macroscopic rate constant when the iron-reduced proteins were oxidized in the presence of excess molecular oxygen. The principal member of this 3-component system was a cupredoxin called rusticyanin that was present in the periplasm of At. ferrooxidans at an approximate concentration of 350 mg/mL, an observation that provides new insights into the crowded environments in the periplasms of Gram negative eubacteria that conduct electrons across their periplasm. The ability to conduct direct spectrophotometric measurements under noninvasive physiological conditions represents a new and powerful approach to examine the rates and extents of biological events in situ without disrupting the complexity of the live cellular environment.
Collapse
Affiliation(s)
- Robert C Blake
- College of Pharmacy, Xavier University of Louisiana, New Orleans, United States
| | - Richard A White
- Department of Plant Pathology, Washington State University, Pullman, WA, United States; RAW Molecular Systems (RMS) LLC, Spokane, WA, United States; Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
18
|
Blomberg MRA. The mechanism for oxygen reduction in the C family cbb 3 cytochrome c oxidases - Implications for the proton pumping stoichiometry. J Inorg Biochem 2019; 203:110866. [PMID: 31706225 DOI: 10.1016/j.jinorgbio.2019.110866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 11/16/2022]
Abstract
Cytochrome c oxidases (CcOs) couple the exergonic reduction of molecular oxygen to proton pumping across the membrane in which they are embedded, thereby conserving a significant part of the free energy. The A family CcOs are known to pump four protons per oxygen molecule, while there is no consensus regarding the proton pumping stoichiometry for the C family cbb3 oxidases. Hybrid density functional theory is used here to investigate the catalytic mechanism for oxygen reduction in cbb3 oxidases. A surprising result is that the barrier for O O bond cleavage at the mixed valence reduction level seems to be too high compared to the overall reaction rate of the enzyme. It is therefore suggested that the O O bond is cleaved only after the first proton coupled reduction step, and that this reduction step most likely is not coupled to proton pumping. Furthermore, since the cbb3 oxidases have only one proton channel leading to the active site, it is proposed that the activated EH intermediate, suggested to be responsible for proton pumping in one of the reduction steps in the A family, cannot be involved in the catalytic cycle for cbb3, which results in the lack of proton pumping also in the E to R reduction step. In summary, the calculations indicate that only two protons are pumped per oxygen molecule in cbb3 oxidases. However, more experimental information on this divergent enzyme is needed, e.g. whether the flow of electrons resembles that in the other more well-studied CcO families.
Collapse
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
19
|
Wang X, Clément R, Roger M, Bauzan M, Mazurenko I, Poulpiquet AD, Ilbert M, Lojou E. Bacterial Respiratory Chain Diversity Reveals a Cytochrome c Oxidase Reducing O 2 at Low Overpotentials. J Am Chem Soc 2019; 141:11093-11102. [PMID: 31274287 DOI: 10.1021/jacs.9b03268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c oxidases (CcOs) are the terminal enzymes in energy-converting chains of microorganisms, where they reduce oxygen into water. Their affinity for O2 makes them attractive biocatalysts for technological devices in which O2 concentration is limited, but the high overpotentials they display on electrodes severely limit their applicative use. Here, the CcO of the acidophilic bacterium Acidithiobacillus ferrooxidans is studied on various carbon materials by direct protein electrochemistry and mediated one with redox mediators either diffusing or co-immobilized at the electrode surface. The entrapment of the CcO in a network of hydrophobic carbon nanofibers permits a direct electrochemical communication between the enzyme and the electrode. We demonstrate that the CcO displays a μM affinity for O2 and reduces O2 at exceptionally high electrode potentials in the range of +700 to +540 mV vs NHE over a pH range of 4-6. The kinetics of interactions between the enzyme and its physiological partners are fully quantified. Based on these results, an electron transfer pathway allowing O2 reduction in the acidic metabolic chain is proposed.
Collapse
Affiliation(s)
- Xie Wang
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| | - Romain Clément
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| | - Magali Roger
- School of Natural and Environmental Sciences , Newcastle University , Devonshire Building , NE1 7RX , Newcastle upon Tyne , England
| | - Marielle Bauzan
- Aix-Marseille Univ , CNRS, IMM FR 3479, 31 Chemin Aiguier , 13009 Marseille , France
| | - Ievgen Mazurenko
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| | - Anne de Poulpiquet
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| | - Marianne Ilbert
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| | - Elisabeth Lojou
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| |
Collapse
|
20
|
Varghese F, Kabasakal BV, Cotton CAR, Schumacher J, Rutherford AW, Fantuzzi A, Murray JW. A low-potential terminal oxidase associated with the iron-only nitrogenase from the nitrogen-fixing bacterium Azotobacter vinelandii. J Biol Chem 2019; 294:9367-9376. [PMID: 31043481 PMCID: PMC6579470 DOI: 10.1074/jbc.ra118.007285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/26/2019] [Indexed: 11/06/2022] Open
Abstract
The biological route for nitrogen gas entering the biosphere is reduction to ammonia by the nitrogenase enzyme, which is inactivated by oxygen. Three types of nitrogenase exist, the least-studied of which is the iron-only nitrogenase. The Anf3 protein in the bacterium Rhodobacter capsulatus is essential for diazotrophic (i.e. nitrogen-fixing) growth with the iron-only nitrogenase, but its enzymatic activity and function are unknown. Here, we biochemically and structurally characterize Anf3 from the model diazotrophic bacterium Azotobacter vinelandii Determining the Anf3 crystal structure to atomic resolution, we observed that it is a dimeric flavocytochrome with an unusually close interaction between the heme and the FAD cofactors. Measuring the reduction potentials by spectroelectrochemical redox titration, we observed values of -420 ± 10 and -330 ± 10 mV for the two FAD potentials and -340 ± 1 mV for the heme. We further show that Anf3 accepts electrons from spinach ferredoxin and that Anf3 consumes oxygen without generating superoxide or hydrogen peroxide. We predict that Anf3 protects the iron-only nitrogenase from oxygen inactivation by functioning as an oxidase in respiratory protection, with flavodoxin or ferredoxin as the physiological electron donors.
Collapse
Affiliation(s)
- Febin Varghese
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Burak Veli Kabasakal
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Charles A R Cotton
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jörg Schumacher
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - A William Rutherford
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrea Fantuzzi
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James W Murray
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
21
|
Blomberg MRA. Active Site Midpoint Potentials in Different Cytochrome c Oxidase Families: A Computational Comparison. Biochemistry 2019; 58:2028-2038. [PMID: 30892888 DOI: 10.1021/acs.biochem.9b00093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c oxidase (C cO) is the terminal enzyme in the respiratory electron transport chain, reducing molecular oxygen to water. The binuclear active site in C cO comprises a high-spin heme associated with a CuB complex and a redox active tyrosine. The electron transport in the respiratory chain is driven by increasing midpoint potentials of the involved cofactors, resulting in a release of free energy, which is stored by coupling the electron transfer to proton translocation across a membrane, building up an electrochemical gradient. In this context, the midpoint potentials of the active site cofactors in the C cOs are of special interest, since they determine the driving forces for the individual oxygen reduction steps and thereby affect the efficiency of the proton pumping. It has been difficult to obtain useful information on some of these midpoint potentials from experiments. However, since each of the reduction steps in the catalytic cycle of oxygen reduction to water corresponds to the formation of an O-H bond, they can be calculated with a reasonably high accuracy using quantum chemical methods. From the calculated O-H bond strengths, the proton-coupled midpoint potentials of the active site cofactors can be estimated. Using models representing the different families of C cO's (A, B, and C), the calculations give midpoint potentials that should be relevant during catalytic turnover. The calculations also suggest possible explanations for why some experimentally measured potentials deviate significantly from the calculated ones, i.e., for CuB in all oxidase families, and for heme b3 in the C family.
Collapse
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , Stockholm SE-106 91 , Sweden
| |
Collapse
|
22
|
Huang L, Huang L, Zhao L, Qin Y, Su Y, Yan Q. The regulation of oxidative phosphorylation pathway on Vibrio alginolyticus adhesion under adversities. Microbiologyopen 2019; 8:e00805. [PMID: 30767412 PMCID: PMC6692554 DOI: 10.1002/mbo3.805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 02/03/2023] Open
Abstract
Vibrio alginolyticus is one of the most important pathogens in mariculture and leading to heavy losses. After treatment with Cu2+, Pb2+, and low pH, the expression of oxidative phosphorylation pathway genes, including coxA, coxB, coxC, ccoN, ccoO, and ccoQ, was found commonly downregulated by RNA‐seq as well as quantitative real‐time PCR. RNAi significantly reduced the expression of coxA, coxB, coxC, ccoN, ccoO, and ccoQ in V. alginolyticus. Compared with the wild‐type strain, the adhesion abilities of RNAi strains of V. alginolyticus were significantly impaired, as well as their cytochrome C oxidase activity. ccoQ appeared to be more important in the regulation of bacterial adhesion in these target genes, while ccoO was relatively weak in the regulation of the adhesion. Meanwhile, the changes of temperature, salinity, pH, and starvation affected coxA, coxB, coxC, ccoN, ccoO, and ccoQ expression remarkably. These findings indicated that: the oxidative phosphorylation pathway is a critical regulator of adhesion in V. alginolyticus; coxA, coxB, coxC, ccoN, ccoO, and ccoQ regulate the bacterial adhesion in response to environmental changes such as temperature, salinity, pH, and starvation.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China
| | - Qingpi Yan
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
23
|
Melin F, Sabuncu S, Choi SK, Leprince A, Gennis RB, Hellwig P. Role of the tightly bound quinone for the oxygen reaction of cytochrome
bo
3
oxidase from
Escherichia coli. FEBS Lett 2018; 592:3380-3387. [DOI: 10.1002/1873-3468.13263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Frédéric Melin
- Chimie de la Matière Complexe UMR 7140 Laboratoire de Bioélectrochimie et Spectroscopie CNRS‐Université de Strasbourg France
| | - Sinan Sabuncu
- Chimie de la Matière Complexe UMR 7140 Laboratoire de Bioélectrochimie et Spectroscopie CNRS‐Université de Strasbourg France
| | - Sylvia K. Choi
- Center for Biophysics and Computational Biology University of Illinois Urbana IL USA
- Department of Biochemistry University of Illinois Urbana IL USA
| | - Agathe Leprince
- Chimie de la Matière Complexe UMR 7140 Laboratoire de Bioélectrochimie et Spectroscopie CNRS‐Université de Strasbourg France
| | | | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140 Laboratoire de Bioélectrochimie et Spectroscopie CNRS‐Université de Strasbourg France
| |
Collapse
|
24
|
Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase. Proc Natl Acad Sci U S A 2018; 115:6195-6200. [PMID: 29802230 DOI: 10.1073/pnas.1720298115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite high structural homology between NO reductases (NORs) and heme-copper oxidases (HCOs), factors governing their reaction specificity remain to be understood. Using a myoglobin-based model of NOR (FeBMb) and tuning its heme redox potentials (E°') to cover the native NOR range, through manipulating hydrogen bonding to the proximal histidine ligand and replacing heme b with monoformyl (MF-) or diformyl (DF-) hemes, we herein demonstrate that the E°' holds the key to reactivity differences between NOR and HCO. Detailed electrochemical, kinetic, and vibrational spectroscopic studies, in tandem with density functional theory calculations, demonstrate a strong influence of heme E°' on NO reduction. Decreasing E°' from +148 to -130 mV significantly impacts electronic properties of the NOR mimics, resulting in 180- and 633-fold enhancements in NO association and heme-nitrosyl decay rates, respectively. Our results indicate that NORs exhibit finely tuned E°' that maximizes their enzymatic efficiency and helps achieve a balance between opposite factors: fast NO binding and decay of dinitrosyl species facilitated by low E°' and fast electron transfer facilitated by high E°'. Only when E°' is optimally tuned in FeBMb(MF-heme) for NO binding, heme-nitrosyl decay, and electron transfer does the protein achieve multiple (>35) turnovers, previously not achieved by synthetic or enzyme-based NOR models. This also explains a long-standing question in bioenergetics of selective cross-reactivity in HCOs. Only HCOs with heme E°' in a similar range as NORs (between -59 and 200 mV) exhibit NOR reactivity. Thus, our work demonstrates efficient tuning of E°' in various metalloproteins for their optimal functionality.
Collapse
|
25
|
Vilhjálmsdóttir J, Gennis RB, Brzezinski P. The electron distribution in the "activated" state of cytochrome c oxidase. Sci Rep 2018; 8:7502. [PMID: 29760451 PMCID: PMC5951807 DOI: 10.1038/s41598-018-25779-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/26/2018] [Indexed: 11/09/2022] Open
Abstract
Cytochrome c oxidase catalyzes reduction of O2 to H2O at a catalytic site that is composed of a copper ion and heme group. The reaction is linked to translocation of four protons across the membrane for each O2 reduced to water. The free energy associated with electron transfer to the catalytic site is unequal for the four electron-transfer events. Most notably, the free energy associated with reduction of the catalytic site in the oxidized cytochrome c oxidase (state O) is not sufficient for proton pumping across the energized membrane. Yet, this electron transfer is mechanistically linked to proton pumping. To resolve this apparent discrepancy, a high-energy oxidized state (denoted OH) was postulated and suggested to be populated only during catalytic turnover. The difference between states O and OH was suggested to be manifested in an elevated midpoint potential of CuB in the latter. This proposal predicts that one-electron reduction of cytochrome c oxidase after its oxidation would yield re-reduction of essentially only CuB. Here, we investigated this process and found ~5% and ~6% reduction of heme a3 and CuB, respectively, i.e. the apparent redox potentials for heme a3 and CuB are lower than that of heme a.
Collapse
Affiliation(s)
- Jóhanna Vilhjálmsdóttir
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801, United States
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
26
|
Carvalheda CA, Pisliakov AV. On the role of subunit M in cytochrome cbb 3 oxidase. Biochem Biophys Res Commun 2017; 491:47-52. [PMID: 28694191 DOI: 10.1016/j.bbrc.2017.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
Cytochrome cbb3 (or C-type) oxidases are a highly divergent group and the least studied members of the heme-copper oxidases (HCOs) superfamily. HCOs couple the reduction of oxygen at the end of the respiratory chain to the active proton translocation across the membrane, contributing to establishment of an electrochemical gradient essential for ATP synthesis. Cbb3 oxidases exhibit unique structural and functional features and have an essential role in the metabolism of many clinically relevant human pathogens. Such characteristics make them a promising therapeutic target. Three subunits, N, O and P, comprise the core cbb3 complex, with N, the catalytic subunit, being highly conserved among all members of the HCO superfamily, including the A-type (aa3, mitochondrial-like) oxidases. An additional fourth subunit containing a single transmembrane (TM) helix was present in the first crystal structure of cbb3. This TM segment was recently proposed to be part of a novel protein CcoM, which was shown to have a putative role in the complex stability and assembly. In this work, we performed large-scale all-atom molecular dynamics simulations of the CcoNOPM complex to further characterize the interactions between subunit M and the core subunits and to determine whether the presence of the fourth subunit influences the water/proton channels previously described for the core complex. The previously proposed putative CcoNOPH complex is also assessed, and the potential functional redundancy of CcoM and CcoQ is discussed.
Collapse
Affiliation(s)
- Catarina A Carvalheda
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom; Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee, DD1 4HN, United Kingdom.
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom; Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee, DD1 4HN, United Kingdom.
| |
Collapse
|