1
|
Xie D, Sun Y, Li X, Ren S. Effect of calcium levels on structure and function of mitochondria in yeast under high glucose fermentation. FOOD SCI TECHNOL INT 2025; 31:11-22. [PMID: 37089015 DOI: 10.1177/10820132231170409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In this study, the effects of calcium levels on structure and function of mitochondria under high glucose environment were studied. In the high glucose environment, yeast growth capacity was inhibited, and intracellular reactive oxygen species (ROS) content was increased from 6 h to 12 h, while ROS content was reduced in group with 1 × 10-1 and 1 g/L CaCl2 level from 24 h to 36 h. Exogenous calcium addition had a significant effect on the elevation of intracellular Ca2+ and cytochrome C content in yeast from 6 h to 12 h; mitochondrial membrane potential decreased with the increase of CaCl2 level under high glucose levels. Mitochondrial swelling of yeast was influenced by high glucose levels and showed a regulatory dynamic change by Ca2+ levels. Isocitrate dehydrogenase activity increased in 1 × 10-3 g/L CaCl2 level from 6 h to 12 h, α-ketoglutarate dehydrogenase activity increased with an increase in CaCl2 level from 6 h to 24 h. Calcium affected the structure and function of mitochondria by regulating the intracellular signal, enzymes in tricarboxylic acid cycle, and cytochrome system of yeast under high glucose stress.
Collapse
Affiliation(s)
- Dongdong Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yingqi Sun
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xing Li
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Shuncheng Ren
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
2
|
Lenaz G, Nesci S, Genova ML. Understanding differential aspects of microdiffusion (channeling) in the Coenzyme Q and Cytochrome c regions of the mitochondrial respiratory system. Mitochondrion 2024; 74:101822. [PMID: 38040170 DOI: 10.1016/j.mito.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Over the past decades, models of the organization of mitochondrial respiratory system have been controversial. The goal of this perspective is to assess this "conflict of models" by focusing on specific kinetic evidence in the two distinct segments of Coenzyme Q- and Cytochrome c-mediated electron transfer. Respiratory supercomplexes provide kinetic advantage by allowing a restricted diffusion of Coenzyme Q and Cytochrome c, and short-range interaction with their partner enzymes. In particular, electron transfer from NADH is compartmentalized by channeling of Coenzyme Q within supercomplexes, whereas succinate oxidation proceeds separately using the free Coenzyme Q pool. Previous evidence favoring Coenzyme Q random diffusion in the NADH-dependent electron transfer is due to downstream flux interference and misinterpretation of results. Indeed, electron transfer by complexes III and IV via Cytochrome c is less strictly dependent on substrate channeling in mammalian mitochondria. We briefly describe these differences and their physiological implications.
Collapse
Affiliation(s)
- Giorgio Lenaz
- University of Bologna, Via Zamboni 33, 40126 Bologna, Italy.
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy.
| | - Maria Luisa Genova
- Department of Biomedical and Neuromotor Sciences, O.U. Biochemistry, University of Bologna, Via Irnerio 48, 40126 Bologna, BO, Italy.
| |
Collapse
|
3
|
Nesci S. Proton leak through the UCPs and ANT carriers and beyond: A breath for the electron transport chain. Biochimie 2023; 214:77-85. [PMID: 37336388 DOI: 10.1016/j.biochi.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Mitochondria produce heat as a result of an ineffective H+ cycling of mitochondria respiration across the inner mitochondrial membrane (IMM). This event present in all mitochondria, known as proton leak, can decrease protonmotive force (Δp) and restore mitochondrial respiration by partially uncoupling the substrate oxidation from the ADP phosphorylation. During impaired conditions of ATP generation with F1FO-ATPase, the Δp increases and IMM is hyperpolarized. In this bioenergetic state, the respiratory complexes support H+ transport until the membrane potential stops the H+ pump activity. Consequently, the electron transfer is stalled and the reduced form of electron carriers of the respiratory chain can generate O2∙¯ triggering the cascade of ROS formation and oxidative stress. The physiological function to attenuate the production of O2∙¯ by Δp dissipation can be attributed to the proton leak supported by the translocases of IMM.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, BO, Italy.
| |
Collapse
|
4
|
Brischigliaro M, Cabrera-Orefice A, Arnold S, Viscomi C, Zeviani M, Fernández-Vizarra E. Structural rather than catalytic role for mitochondrial respiratory chain supercomplexes. eLife 2023; 12:RP88084. [PMID: 37823874 PMCID: PMC10569793 DOI: 10.7554/elife.88084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Mammalian mitochondrial respiratory chain (MRC) complexes are able to associate into quaternary structures named supercomplexes (SCs), which normally coexist with non-bound individual complexes. The functional significance of SCs has not been fully clarified and the debate has been centered on whether or not they confer catalytic advantages compared with the non-bound individual complexes. Mitochondrial respiratory chain organization does not seem to be conserved in all organisms. In fact, and differently from mammalian species, mitochondria from Drosophila melanogaster tissues are characterized by low amounts of SCs, despite the high metabolic demands and MRC activity shown by these mitochondria. Here, we show that attenuating the biogenesis of individual respiratory chain complexes was accompanied by increased formation of stable SCs, which are missing in Drosophila melanogaster in physiological conditions. This phenomenon was not accompanied by an increase in mitochondrial respiratory activity. Therefore, we conclude that SC formation is necessary to stabilize the complexes in suboptimal biogenesis conditions, but not for the enhancement of respiratory chain catalysis.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterNijmegenNetherlands
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterNijmegenNetherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of CologneCologneGermany
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| | - Massimo Zeviani
- Department of Neurosciences, University of PadovaPadovaItaly
| | - Erika Fernández-Vizarra
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| |
Collapse
|
5
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
6
|
Nesci S, Algieri C, Trombetti F, Fabbri M, Lenaz G. Two separate pathways underlie NADH and succinate oxidation in swine heart mitochondria: Kinetic evidence on the mobile electron carriers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148977. [PMID: 37059413 DOI: 10.1016/j.bbabio.2023.148977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
We have investigated NADH and succinate aerobic oxidation in frozen and thawed swine heart mitochondria. Simultaneous oxidation of NADH and succinate showed complete additivity under a variety of experimental conditions, suggesting that the electron fluxes originating from NADH and succinate are completely independent and do not mix at the level of the so-called mobile diffusible components. We ascribe the results to mixing of the fluxes at the level of cytochrome c in bovine mitochondria: the Complex IV flux control coefficient in NADH oxidation was high in swine mitochondria but very low in bovine mitochondria, suggesting a stronger interaction of cytochrome c with the supercomplex in the former. This was not the case in succinate oxidation, in which Complex IV exerted little control also in swine mitochondria. We interpret the data in swine mitochondria as restriction of the NADH flux by channelling within the I-III2-IV supercomplex, whereas the flux from succinate shows pool mixing for both Coenzyme Q and probably cytochrome c. The difference between the two types of mitochondria may be ascribed to different lipid composition affecting the cytochrome c binding properties, as suggested by breaks in Arrhenius plots of Complex IV activity occurring at higher temperatures in bovine mitochondria.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy.
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - Micaela Fabbri
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - Giorgio Lenaz
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, Pad 11, 40138 Bologna, BO, Italy
| |
Collapse
|
7
|
Miniero DV, Gambacorta N, Spagnoletta A, Tragni V, Loizzo S, Nicolotti O, Pierri CL, De Palma A. New Insights Regarding Hemin Inhibition of the Purified Rat Brain 2-Oxoglutarate Carrier and Relationships with Mitochondrial Dysfunction. J Clin Med 2022; 11:7519. [PMID: 36556135 PMCID: PMC9785169 DOI: 10.3390/jcm11247519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
A kinetic analysis of the transport assays on the purified rat brain 2-oxoglutarate/malate carrier (OGC) was performed starting from our recent results reporting about a competitive inhibitory behavior of hemin, a physiological porphyrin derivative, on the OGC reconstituted in an active form into proteoliposomes. The newly provided transport data and the elaboration of the kinetic equations show evidence that hemin exerts a mechanism of partially competitive inhibition, coupled with the formation of a ternary complex hemin-carrier substrate, when hemin targets the OGC from the matrix face. A possible interpretation of the provided kinetic analysis, which is supported by computational studies, could indicate the existence of a binding region responsible for the inhibition of the OGC and supposedly involved in the regulation of OGC activity. The proposed regulatory binding site is located on OGC mitochondrial matrix loops, where hemin could establish specific interactions with residues involved in the substrate recognition and/or conformational changes responsible for the translocation of mitochondrial carrier substrates. The regulatory binding site would be placed about 6 Å below the substrate binding site of the OGC, facing the mitochondrial matrix, and would allow the simultaneous binding of hemin and 2-oxoglutarate or malate to different regions of the carrier. Overall, the presented experimental and computational analyses help to shed light on the possible existence of the hemin-carrier substrate ternary complex, confirming the ability of the OGC to bind porphyrin derivatives, and in particular hemin, with possible consequences for the mitochondrial redox state mediated by the malate/aspartate shuttle led by the mitochondrial carriers OGC and AGC.
Collapse
Affiliation(s)
- Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Environment, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Nicola Gambacorta
- Department of Pharmacy-Pharmaceutical Sciences, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Anna Spagnoletta
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Centre, S.S. 106 Jonica, Km 419,500, 75026 Rotondella (MT), Italy
| | - Vincenzo Tragni
- Department of Pharmacy-Pharmaceutical Sciences, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Stefano Loizzo
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Roma, Italy
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies and Environment, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
8
|
Ramasubramanian A, Arumugam P, Ramani P, Kannan BC, Murugan MS. Identification of Novel Cytochrome C1 (CYC1) Gene Expression in Oral Squamous Cell Carcinoma- An Evaluative Study. Ann Maxillofac Surg 2022; 12:144-150. [PMID: 36874769 PMCID: PMC9976869 DOI: 10.4103/ams.ams_26_22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Cytochrome C1 (CYC1) is an important subunit of mitochondrial complex III and plays a vital role in oxidative phosphorylation (OXPHOS) and reactive oxygen species generation. Overexpression of the CYC1 gene has been implicated in cancer development and its prognosis previously, but unexplored in head-and-neck squamous cell carcinomas (HNSCC), especially oral squamous cell carcinoma (OSCC). Materials and Methods CYC1 m-RNA expression and gene alterations were assessed using the Cancer Genome Atlas dataset in HNSCC and validated in OSCC tissues using real-time polymerase chain reaction (RT-PCR). The protein-protein interaction (PPI) network and functional enrichment pathways were also analysed. Results A thorough analysis of the TCGA (The Cancer Genome Atlas) database revealed that CYC1 was overexpressed in the HNSCC cases and the increased expression correlated with several parameters which involve the prediction of advanced diseases such as histopathological grade, tumour-node-metastasis staging, and nodal metastases (P < 0.05). The expression of CYC1 was validated using RT-PCR showing significant upregulation (P < 0.05) in OSCC tissue samples compared to the normal tissue counterparts. PPI network and functional analysis show the prominent role of CYC1 in OXPHOS, especially in electron transport chain III complex regulation. Discussion The study revealed that CYC1 is highly expressed in HNSCC, and is validated in the OSCC patient tissue samples compared to the normal counterparts and associated with advanced disease stages and grade of the tumour. CYC1 could be a novel promising therapeutic and prognostic marker in HNSCC, especially in OSCC.
Collapse
Affiliation(s)
- Abilasha Ramasubramanian
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, India
| | - Paramasivam Arumugam
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, India
| | - Pratibha Ramani
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, India
| | - Bala Chander Kannan
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, India
| | - M. Senthil Murugan
- Department of Molecular Biology, Centre for Cellular and Molecular Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, India
| |
Collapse
|
9
|
Algieri C, Bernardini C, Oppedisano F, La Mantia D, Trombetti F, Palma E, Forni M, Mollace V, Romeo G, Nesci S. Mitochondria Bioenergetic Functions and Cell Metabolism Are Modulated by the Bergamot Polyphenolic Fraction. Cells 2022; 11:1401. [PMID: 35563707 PMCID: PMC9099917 DOI: 10.3390/cells11091401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
The bergamot polyphenolic fraction (BPF) was evaluated in the F1FO-ATPase activity of swine heart mitochondria. In the presence of a concentration higher than 50 µg/mL BPF, the ATPase activity of F1FO-ATPase, dependent on the natural cofactor Mg2+, increased by 15%, whereas the enzyme activity in the presence of Ca2+ was inhibited by 10%. By considering this opposite BPF effect, the F1FO-ATPase activity involved in providing ATP synthesis in oxidative phosphorylation and triggering mitochondrial permeability transition pore (mPTP) formation has been evaluated. The BPF improved the catalytic coupling of oxidative phosphorylation in the presence of a substrate at the first phosphorylation site, boosting the respiratory control ratios (state 3/state 4) by 25% and 85% with 50 µg/mL and 100 µg/mL BPF, respectively. Conversely, the substrate at the second phosphorylation site led to the improvement of the state 3/state 4 ratios by 15% only with 100 µg/mL BPF. Moreover, the BPF carried out its beneficial effect on the mPTP phenomenon by desensitizing the pore opening. The acute effect of the BPF on the metabolism of porcine aortica endothelial cells (pAECs) showed an ATP rate index greater than one, which points out a prevailing mitochondrial oxidative metabolism with respect to the glycolytic pathway, and this ratio rose by about three times with 100 µg/mL BPF. Consistently, the mitochondrial ATP turnover, in addition to the basal and maximal respiration, were higher in the presence of the BPF than in the controls, and the MTT test revealed an increase in cell viability with a BPF concentration above 200 µg/mL. Therefore, the molecule mixture of the BPF aims to ensure good performance of the mitochondrial bioenergetic parameters.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Giovanni Romeo
- Department Gynecological, Obstetrical and Pediatric Sciences, Medical Genetics Unit, Sant’Orsola-Malpighi University Hospital, 40126 Bologna, Italy;
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.A.); (C.B.); (D.L.M.); (F.T.); (M.F.); (S.N.)
| |
Collapse
|
10
|
Pérez-Mejías G, Díaz-Quintana A, Guerra-Castellano A, Díaz-Moreno I, De la Rosa MA. Novel insights into the mechanism of electron transfer in mitochondrial cytochrome c. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Bernardini C, Algieri C, La Mantia D, Trombetti F, Pagliarani A, Forni M, Nesci S. Vitamin K Vitamers Differently Affect Energy Metabolism in IPEC-J2 Cells. Front Mol Biosci 2021; 8:682191. [PMID: 34109217 PMCID: PMC8184094 DOI: 10.3389/fmolb.2021.682191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/16/2021] [Indexed: 12/30/2022] Open
Abstract
The fat-soluble vitamin K (VK) has long been known as a requirement for blood coagulation, but like other vitamins, has been recently recognized to play further physiological roles, particularly in cell development and homeostasis. Vertebrates cannot de novo synthesize VK, which is essential, and it can only be obtained from the diet or by the activity of the gut microbiota. The IPEC-J2 cell line, obtained from porcine small intestine, which shows strong similarities to the human one, represents an excellent functional model to in vitro study the effect of compounds at the intestinal level. The acute VK treatments on the bioenergetic features of IPEC-J2 cells were evaluated by Seahorse XP Agilent technology. VK exists in different structurally related forms (vitamers), all featured by a naphtoquinone moiety, but with distinct effects on IPEC-J2 energy metabolism. The VK1, which has a long hydrocarbon chain, at both concentrations (5 and 10 μM), increases the cellular ATP production due to oxidative phosphorylation (OXPHOS) by 5% and by 30% through glycolysis. The VK2 at 5 μM only stimulates ATP production by OXPHOS. Conversely, 10 μM VK3, which lacks the long side chain, inhibits OXPHOS by 30% and glycolysis by 45%. However, even if IPEC-J2 cells mainly prefer OXPHOS to glycolysis to produce ATP, the OXPHOS/glycolysis ratio significantly decreases in VK1-treated cells, is unaffected by VK2, and only significantly increased by 10 μM VK3. VK1, at the two concentrations tested, does not affect the mitochondrial bioenergetic parameters, while 5 μM VK2 increases and 5 μM VK3 reduces the mitochondrial respiration (i.e., maximal respiration and spare respiratory capacity). Moreover, 10 μM VK3 impairs OXPHOS, as shown by the increase in the proton leak, namely the proton backward entry to the matrix space, thus pointing out mitochondrial toxicity. Furthermore, in the presence of both VK1 and VK2 concentrations, the glycolytic parameters, namely the glycolytic capacity and the glycolytic reserve, are unaltered. In contrast, the inhibition of glycoATP production by VK3 is linked to the 80% inhibition of glycolysis, resulting in a reduced glycolytic capacity and reserve. These data, which demonstrate the VK ability to differently modulate IPEC-J2 cell energy metabolism according to the different structural features of the vitamers, can mirror VK modulatory effects on the cell membrane features and, as a cascade, on the epithelial cell properties and gut functions: balance of salt and water, macromolecule cleavage, detoxification of harmful compounds, and nitrogen recycling.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Science, University of Bologna, Ozzano Emilia, Italy
| | - Cristina Algieri
- Department of Veterinary Medical Science, University of Bologna, Ozzano Emilia, Italy
| | - Debora La Mantia
- Department of Veterinary Medical Science, University of Bologna, Ozzano Emilia, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Science, University of Bologna, Ozzano Emilia, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Science, University of Bologna, Ozzano Emilia, Italy
| | - Monica Forni
- Department of Veterinary Medical Science, University of Bologna, Ozzano Emilia, Italy
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Science, University of Bologna, Ozzano Emilia, Italy
| |
Collapse
|
12
|
Nesci S, Trombetti F, Pagliarani A, Ventrella V, Algieri C, Tioli G, Lenaz G. Molecular and Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System: Implications for Pathology. Life (Basel) 2021; 11:242. [PMID: 33804034 PMCID: PMC7999509 DOI: 10.3390/life11030242] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Under aerobic conditions, mitochondrial oxidative phosphorylation (OXPHOS) converts the energy released by nutrient oxidation into ATP, the currency of living organisms. The whole biochemical machinery is hosted by the inner mitochondrial membrane (mtIM) where the protonmotive force built by respiratory complexes, dynamically assembled as super-complexes, allows the F1FO-ATP synthase to make ATP from ADP + Pi. Recently mitochondria emerged not only as cell powerhouses, but also as signaling hubs by way of reactive oxygen species (ROS) production. However, when ROS removal systems and/or OXPHOS constituents are defective, the physiological ROS generation can cause ROS imbalance and oxidative stress, which in turn damages cell components. Moreover, the morphology of mitochondria rules cell fate and the formation of the mitochondrial permeability transition pore in the mtIM, which, most likely with the F1FO-ATP synthase contribution, permeabilizes mitochondria and leads to cell death. As the multiple mitochondrial functions are mutually interconnected, changes in protein composition by mutations or in supercomplex assembly and/or in membrane structures often generate a dysfunctional cascade and lead to life-incompatible diseases or severe syndromes. The known structural/functional changes in mitochondrial proteins and structures, which impact mitochondrial bioenergetics because of an impaired or defective energy transduction system, here reviewed, constitute the main biochemical damage in a variety of genetic and age-related diseases.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Gaia Tioli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Giorgio Lenaz
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|