1
|
Goel RK, Bithi N, Emili A. Trends in co-fractionation mass spectrometry: A new gold-standard in global protein interaction network discovery. Curr Opin Struct Biol 2024; 88:102880. [PMID: 38996623 DOI: 10.1016/j.sbi.2024.102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Co-fractionation mass spectrometry (CF-MS) uses biochemical fractionation to isolate and characterize macromolecular complexes from cellular lysates without the need for affinity tagging or capture. In recent years, this has emerged as a powerful technique for elucidating global protein-protein interaction networks in a wide variety of biospecimens. This review highlights the latest advancements in CF-MS experimental workflows including machine learning-guided analyses, for uncovering dynamic and high-resolution protein interaction landscapes with enhanced sensitivity, accuracy and throughput, enabling better biophysical characterization of endogenous protein complexes. By addressing challenges and emergent opportunities in the field, this review underscores the transformative potential of CF-MS in advancing our understanding of functional protein interaction networks in health and disease.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Division of Oncology, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University (OHSU), Portland, OR, USA.
| | - Nazmin Bithi
- Division of Oncology, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Andrew Emili
- Division of Oncology, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
2
|
Yin Z, Liu Y, Li Y, Yuan C, Tian Y. Mitochondria of Live Mizuhopecten yessoensis Scallops Can Sensitively Respond to Quality Changes during Dry/Reimmersed Storage as Determined by TMT-Labeled Proteomic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12609-12617. [PMID: 37566884 DOI: 10.1021/acs.jafc.3c02364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Dry/reimmersed storage is often used in the transportation of live scallops. In this study, tandem mass tag (TMT)-labeled protein omics were used to quantitatively analyze the protein changes in scallops during dry/reimmersed stress. The results showed that during dry storage, scallops maintained cellular redox homeostasis through the upregulation of SCO1-like protein and thioredoxin domain-containing protein and reduced organic acids from the ATP synthetic process by the downregulation of NADH dehydrogenase, thereby reducing the damage caused during dry storage. During reimmersed storage, mitochondrial proteins underwent very sensitive changes. By upregulating aerobic respiration-related proteins (including proteins involved in glucose phosphate metabolism, glyceraldehyde 3-phosphate metabolism, etc.), the ATP synthesis ability was improved. However, the damage to the mitochondrial structure by dry storage could not be completely recovered, even by reimmersion. This included some apoptosis-related proteins that were obviously upregulated. In summary, compared with ATP-related indexes, mitochondria can respond more sensitively to dry storage stress.
Collapse
Affiliation(s)
- Zhongzhuan Yin
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, Liaoning, China
| | - Yang Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, Liaoning, China
| | - Yaxuan Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, Liaoning, China
| | - Chunhong Yuan
- United Graduate School of Agricultural Sciences, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-88550, Japan
| | - Yuanyong Tian
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, Liaoning, China
| |
Collapse
|
3
|
An G, Jing Y, Zhao T, Zhang W, Guo L, Guo J, Miao X, Xing J, Li J, Liu J, Ding G. Quantitative proteomics reveals effects of environmental radiofrequency electromagnetic fields on embryonic neural stem cells. Electromagn Biol Med 2023; 42:41-50. [PMID: 37549098 DOI: 10.1080/15368378.2023.2243980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/22/2023] [Indexed: 08/09/2023]
Abstract
The effects of environmental radiofrequency electromagnetic fields (RF-EMF) on embryonic neural stem cells have not been determined, particularly at the proteomic level. This study aims to elucidate the effects of environmental levels of RF-EMF radiation on embryonic neural stem cells. Neuroectodermal stem cells (NE-4C cells) were randomly divided into a sham group and an RF group, which were sham-exposed and continuously exposed to a 1950 MHz RF-EMF at 2 W/kg for 48 h. After exposure, cell proliferation was determined by a Cell Counting Kit-8 (CCK8) assay, the cell cycle distribution and apoptosis were measured by flow cytometry, protein abundance was detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and mRNA expression was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). We did not detect differences in cell proliferation, cell cycle distribution, and apoptosis between the two groups. However, we detected differences in the abundance of 23 proteins between the two groups, and some of these differences were consistent with alterations in transcript levels determined by qRT-PCR (P < 0.05). A bioinformatics analysis indicated that the differentially regulated proteins were mainly enriched in 'localization' in the cellular process category; however, no significant pathway alterations in NE-4C cells were detected. We conclude that under the experimental conditions, low-level RF-EMF exposure was not neurotoxic but could induce minor changes in the abundance of some proteins involved in neurodevelopment or brain function.
Collapse
Affiliation(s)
- Guangzhou An
- Department of Radiation Protection Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Faculty of Preventive Medicine, Air Force Medical University, Xi'an City, Shannxi Province, China
| | - Yuntao Jing
- Department of Radiation Protection Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Faculty of Preventive Medicine, Air Force Medical University, Xi'an City, Shannxi Province, China
| | - Tao Zhao
- Medical College, Xijing University, Xi an City, Shannxi Province, China
| | - Wei Zhang
- Department of Radiation Protection Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Faculty of Preventive Medicine, Air Force Medical University, Xi'an City, Shannxi Province, China
| | - Ling Guo
- Department of Radiation Protection Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Faculty of Preventive Medicine, Air Force Medical University, Xi'an City, Shannxi Province, China
| | - Juan Guo
- Department of Radiation Protection Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Faculty of Preventive Medicine, Air Force Medical University, Xi'an City, Shannxi Province, China
| | - Xia Miao
- Department of Radiation Protection Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Faculty of Preventive Medicine, Air Force Medical University, Xi'an City, Shannxi Province, China
| | - Junling Xing
- Department of Radiation Protection Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Faculty of Preventive Medicine, Air Force Medical University, Xi'an City, Shannxi Province, China
| | - Jing Li
- Department of Radiation Protection Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Faculty of Preventive Medicine, Air Force Medical University, Xi'an City, Shannxi Province, China
| | - Junye Liu
- Department of Radiation Protection Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Faculty of Preventive Medicine, Air Force Medical University, Xi'an City, Shannxi Province, China
| | - Guirong Ding
- Department of Radiation Protection Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Faculty of Preventive Medicine, Air Force Medical University, Xi'an City, Shannxi Province, China
| |
Collapse
|
4
|
Huang Z, Dong W, Fan J, Tian Y, Huang A, Wang X. Tandem mass tag-based proteomics technology provides insights into multi-targeted mechanism of peptide MOp2 from Moringa oleifera seeds against Staphylococcus aureus. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
5
|
Arnold S, Braun HP. The complexome profiling approach for direct biochemical analysis of multiprotein assemblies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148522. [PMID: 34902309 DOI: 10.1016/j.bbabio.2021.148522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| | - Hans-Peter Braun
- Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| |
Collapse
|
6
|
Cabrera-Orefice A, Potter A, Evers F, Hevler JF, Guerrero-Castillo S. Complexome Profiling-Exploring Mitochondrial Protein Complexes in Health and Disease. Front Cell Dev Biol 2022; 9:796128. [PMID: 35096826 PMCID: PMC8790184 DOI: 10.3389/fcell.2021.796128] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Complexome profiling (CP) is a state-of-the-art approach that combines separation of native proteins by electrophoresis, size exclusion chromatography or density gradient centrifugation with tandem mass spectrometry identification and quantification. Resulting data are computationally clustered to visualize the inventory, abundance and arrangement of multiprotein complexes in a biological sample. Since its formal introduction a decade ago, this method has been mostly applied to explore not only the composition and abundance of mitochondrial oxidative phosphorylation (OXPHOS) complexes in several species but also to identify novel protein interactors involved in their assembly, maintenance and functions. Besides, complexome profiling has been utilized to study the dynamics of OXPHOS complexes, as well as the impact of an increasing number of mutations leading to mitochondrial disorders or rearrangements of the whole mitochondrial complexome. Here, we summarize the major findings obtained by this approach; emphasize its advantages and current limitations; discuss multiple examples on how this tool could be applied to further investigate pathophysiological mechanisms and comment on the latest advances and opportunity areas to keep developing this methodology.
Collapse
Affiliation(s)
- Alfredo Cabrera-Orefice
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alisa Potter
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Felix Evers
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht, Utrecht, Netherlands.,Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, Netherlands.,Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Sergio Guerrero-Castillo
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Complexome Profiling: Assembly and Remodeling of Protein Complexes. Int J Mol Sci 2021; 22:ijms22157809. [PMID: 34360575 PMCID: PMC8346016 DOI: 10.3390/ijms22157809] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Many proteins have been found to operate in a complex with various biomolecules such as proteins, nucleic acids, carbohydrates, or lipids. Protein complexes can be transient, stable or dynamic and their association is controlled under variable cellular conditions. Complexome profiling is a recently developed mass spectrometry-based method that combines mild separation techniques, native gel electrophoresis, and density gradient centrifugation with quantitative mass spectrometry to generate inventories of protein assemblies within a cell or subcellular fraction. This review summarizes applications of complexome profiling with respect to assembly ranging from single subunits to large macromolecular complexes, as well as their stability, and remodeling in health and disease.
Collapse
|