1
|
Hicks SM, Frias JA, Mishra SK, Scotti M, Muscato DR, Valero MC, Adams LM, Cleary JD, Nakamori M, Wang E, Berglund JA. Alternative splicing dysregulation across tissue and therapeutic approaches in a mouse model of myotonic dystrophy type 1. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102338. [PMID: 39391766 PMCID: PMC11465180 DOI: 10.1016/j.omtn.2024.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
Myotonic dystrophy type 1 (DM1), the leading cause of adult-onset muscular dystrophy, is caused by a CTG repeat expansion. Expression of the repeat causes widespread alternative splicing (AS) defects and downstream pathogenesis, including significant skeletal muscle impacts. The HSA LR mouse model plays a significant role in therapeutic development. This mouse model features a transgene composed of approximately 220 interrupted CTG repeats, which results in skeletal muscle pathology that mirrors DM1. To better understand this model and the growing number of therapeutic approaches developed with it, we performed a meta-analysis of publicly available RNA sequencing data for AS changes across three widely examined skeletal muscles: quadriceps, gastrocnemius, and tibialis anterior. Our analysis demonstrated that transgene expression correlated with the extent of splicing dysregulation across these muscles from gastrocnemius (highest), quadriceps (medium), to tibialis anterior (lowest). We identified 95 splicing events consistently dysregulated across all examined datasets. Comparison of splicing rescue across seven therapeutic approaches showed a range of rescue across the 95 splicing events from the three muscle groups. This analysis contributes to our understanding of the HSA LR model and the growing number of therapeutic approaches currently in preclinical development for DM1.
Collapse
Affiliation(s)
- Sawyer M. Hicks
- Department of Biological Sciences, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| | - Jesus A. Frias
- Department of Biological Sciences, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| | - Subodh K. Mishra
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| | - Marina Scotti
- Center for NeuroGenetics and Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - Derek R. Muscato
- Center for NeuroGenetics and Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - M. Carmen Valero
- Center for NeuroGenetics and Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - Leanne M. Adams
- Center for NeuroGenetics and Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - John D. Cleary
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Eric Wang
- Center for NeuroGenetics and Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - J. Andrew Berglund
- Department of Biological Sciences, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| |
Collapse
|
2
|
Dastidar S, Majumdar D, Tipanee J, Singh K, Klein AF, Furling D, Chuah MK, VandenDriessche T. Comprehensive transcriptome-wide analysis of spliceopathy correction of myotonic dystrophy using CRISPR-Cas9 in iPSCs-derived cardiomyocytes. Mol Ther 2022; 30:75-91. [PMID: 34371182 PMCID: PMC8753376 DOI: 10.1016/j.ymthe.2021.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023] Open
Abstract
CTG repeat expansion (CTGexp) is associated with aberrant alternate splicing that contributes to cardiac dysfunction in myotonic dystrophy type 1 (DM1). Excision of this CTGexp repeat using CRISPR-Cas resulted in the disappearance of punctate ribonuclear foci in cardiomyocyte-like cells derived from DM1-induced pluripotent stem cells (iPSCs). This was associated with correction of the underlying spliceopathy as determined by RNA sequencing and alternate splicing analysis. Certain genes were of particular interest due to their role in cardiac development, maturation, and function (TPM4, CYP2J2, DMD, MBNL3, CACNA1H, ROCK2, ACTB) or their association with splicing (SMN2, GCFC2, MBNL3). Moreover, while comparing isogenic CRISPR-Cas9-corrected versus non-corrected DM1 cardiomyocytes, a prominent difference in the splicing pattern for a number of candidate genes was apparent pertaining to genes that are associated with cardiac function (TNNT, TNNT2, TTN, TPM1, SYNE1, CACNA1A, MTMR1, NEBL, TPM1), cellular signaling (NCOR2, CLIP1, LRRFIP2, CLASP1, CAMK2G), and other DM1-related genes (i.e., NUMA1, MBNL2, LDB3) in addition to the disease-causing DMPK gene itself. Subsequent validation using a selected gene subset, including MBNL1, MBNL2, INSR, ADD3, and CRTC2, further confirmed correction of the spliceopathy following CTGexp repeat excision. To our knowledge, the present study provides the first comprehensive unbiased transcriptome-wide analysis of the differential splicing landscape in DM1 patient-derived cardiac cells after excision of the CTGexp repeat using CRISPR-Cas9, showing reversal of the abnormal cardiac spliceopathy in DM1.
Collapse
Affiliation(s)
- Sumitava Dastidar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Debanjana Majumdar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Kshitiz Singh
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Arnaud F. Klein
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Denis Furling
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium,Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium,Corresponding author: Marinee K. Chuah, Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium,Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium,Corresponding author: Thierry VandenDriessche, Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| |
Collapse
|
3
|
Andreana I, Repellin M, Carton F, Kryza D, Briançon S, Chazaud B, Mounier R, Arpicco S, Malatesta M, Stella B, Lollo G. Nanomedicine for Gene Delivery and Drug Repurposing in the Treatment of Muscular Dystrophies. Pharmaceutics 2021; 13:278. [PMID: 33669654 PMCID: PMC7922331 DOI: 10.3390/pharmaceutics13020278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Muscular Dystrophies (MDs) are a group of rare inherited genetic muscular pathologies encompassing a variety of clinical phenotypes, gene mutations and mechanisms of disease. MDs undergo progressive skeletal muscle degeneration causing severe health problems that lead to poor life quality, disability and premature death. There are no available therapies to counteract the causes of these diseases and conventional treatments are administered only to mitigate symptoms. Recent understanding on the pathogenetic mechanisms allowed the development of novel therapeutic strategies based on gene therapy, genome editing CRISPR/Cas9 and drug repurposing approaches. Despite the therapeutic potential of these treatments, once the actives are administered, their instability, susceptibility to degradation and toxicity limit their applications. In this frame, the design of delivery strategies based on nanomedicines holds great promise for MD treatments. This review focuses on nanomedicine approaches able to encapsulate therapeutic agents such as small chemical molecules and oligonucleotides to target the most common MDs such as Duchenne Muscular Dystrophy and the Myotonic Dystrophies. The challenge related to in vitro and in vivo testing of nanosystems in appropriate animal models is also addressed. Finally, the most promising nanomedicine-based strategies are highlighted and a critical view in future developments of nanomedicine for neuromuscular diseases is provided.
Collapse
Affiliation(s)
- Ilaria Andreana
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Mathieu Repellin
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
| | - Flavia Carton
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
- Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy
| | - David Kryza
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Hospices Civils de Lyon, 69437 Lyon, France
| | - Stéphanie Briançon
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, University of Lyon, INSERM U1217, CNRS UMR 5310, 8 Avenue Rockefeller, 69008 Lyon, France; (B.C.); (R.M.)
| | - Rémi Mounier
- Institut NeuroMyoGène, University of Lyon, INSERM U1217, CNRS UMR 5310, 8 Avenue Rockefeller, 69008 Lyon, France; (B.C.); (R.M.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
| | - Barbara Stella
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Giovanna Lollo
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
| |
Collapse
|
4
|
Nieuwenhuis S, Okkersen K, Widomska J, Blom P, 't Hoen PAC, van Engelen B, Glennon JC. Insulin Signaling as a Key Moderator in Myotonic Dystrophy Type 1. Front Neurol 2019; 10:1229. [PMID: 31849810 PMCID: PMC6901991 DOI: 10.3389/fneur.2019.01229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease characterized by multi-system involvement. Affected organ system includes skeletal muscle, heart, gastro-intestinal system and the brain. In this review, we evaluate the evidence for alterations in insulin signaling and their relation to clinical DM1 features. We start by summarizing the molecular pathophysiology of DM1. Next, an overview of normal insulin signaling physiology is given, and evidence for alterations herein in DM1 is presented. Clinically, evidence for involvement of insulin signaling pathways in DM1 is based on the increased incidence of insulin resistance seen in clinical practice and recent trial evidence of beneficial effects of metformin on muscle function. Indirectly, further support may be derived from certain CNS derived symptoms characteristic of DM1, such as obsessive-compulsive behavior features, for which links with altered insulin signaling has been demonstrated in other diseases. At the basic scientific level, several pathophysiological mechanisms that operate in DM1 may compromise normal insulin signaling physiology. The evidence presented here reflects the importance of insulin signaling in relation to clinical features of DM1 and justifies further basic scientific and clinical, therapeutically oriented research.
Collapse
Affiliation(s)
- Sylvia Nieuwenhuis
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Kees Okkersen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Paul Blom
- VDL Enabling Technologies Group B.V., Eindhoven, Netherlands
| | - Peter A C 't Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
5
|
DMPK is a New Candidate Mediator of Tumor Suppressor p53-Dependent Cell Death. Molecules 2019; 24:molecules24173175. [PMID: 31480541 PMCID: PMC6749264 DOI: 10.3390/molecules24173175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 12/23/2022] Open
Abstract
Tumor suppressor p53 plays an integral role in DNA-damage induced apoptosis, a biological process that protects against tumor progression. Cell shape dramatically changes when cells undergo apoptosis, which is associated with actomyosin contraction; however, it remains entirely elusive how p53 regulates actomyosin contraction in response to DNA-damaging agents. To identify a novel p53 regulating gene encoding the modulator of myosin, we conducted DNA microarray analysis. We found that, in response to DNA-damaging agent doxorubicin, expression of myotonic dystrophy protein kinase (DMPK), which is known to upregulate actomyosin contraction, was increased in a p53-dependent manner. The promoter region of DMPK gene contained potential p53-binding sequences and its promoter activity was increased by overexpression of the p53 family protein p73, but, unexpectedly, not of p53. Furthermore, we found that doxorubicin treatment induced p73 expression, which was significantly attenuated by downregulation of p53. These data suggest that p53 induces expression of DMPK through upregulating p73 expression. Overexpression of DMPK promotes contraction of the actomyosin cortex, which leads to formation of membrane blebs, loss of cell adhesion, and concomitant caspase activation. Taken together, our results suggest the existence of p53-p73-DMPK axis which mediates DNA-damage induced actomyosin contraction at the cortex and concomitant cell death.
Collapse
|
6
|
Zhang Y, Long C, Bassel-Duby R, Olson EN. Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev 2018; 98:1205-1240. [PMID: 29717930 PMCID: PMC6335101 DOI: 10.1152/physrev.00046.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Muscular dystrophies represent a large group of genetic disorders that significantly impair quality of life and often progress to premature death. There is no effective treatment for these debilitating diseases. Most therapies, developed to date, focus on alleviating the symptoms or targeting the secondary effects, while the underlying gene mutation is still present in the human genome. The discovery and application of programmable nucleases for site-specific DNA double-stranded breaks provides a powerful tool for precise genome engineering. In particular, the CRISPR/Cas system has revolutionized the genome editing field and is providing a new path for disease treatment by targeting the disease-causing genetic mutations. In this review, we provide a historical overview of genome-editing technologies, summarize the most recent advances, and discuss potential strategies and challenges for permanently correcting genetic mutations that cause muscular dystrophies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Chengzu Long
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Eric N Olson
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
7
|
Sulek A, Lusakowska A, Krysa W, Rajkiewicz M, Kaminska A, Nojszewska M, Kostera-Pruszczyk A, Zdzienicka E, Kubalska J, Rakowicz M, Szirkowiec W, Kwiecinski H, Zaremba J. WITHDRAWN: Evidence for a relatively high proportion of DM2 mutations in a large group of Polish patients. Neurol Neurochir Pol 2018:S0028-3843(18)30152-X. [PMID: 29880430 DOI: 10.1016/j.pjnns.2018.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 11/24/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, 10.1016/j.pjnns.2018.02.008. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | | | - Wioletta Krysa
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marta Rajkiewicz
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Kaminska
- Department of Neurology, Medical University, Warsaw, Poland
| | | | | | - Elzbieta Zdzienicka
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jolanta Kubalska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Maria Rakowicz
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | | | - Jacek Zaremba
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
8
|
Sulek A, Lusakowska A, Krysa W, Rajkiewicz M, Kaminska A, Nojszewska M, Kostera-Pruszczyk A, Zdzienicka E, Kubalska J, Rakowicz M, Szirkowiec W, Kwiecinski H, Zaremba J. Evidence for a relatively high proportion of DM2 mutations in a large group of Polish patients. Neurol Neurochir Pol 2018; 52:736-742. [PMID: 29588063 DOI: 10.1016/j.pjnns.2018.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/16/2018] [Accepted: 02/26/2018] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Myotonic dystrophies (DMs) type 1 (DM1) and type 2 (DM2) are autosomal dominant, multisystem disorders, considered the most common dystrophies in adults. DM1 and DM2 are caused by dynamic mutations in the DMPK and CNBP genes, respectively. METHODS Molecular analyses were performed by PCR and the modified RP-PCR in patients, in their at-risk relatives and prenatal cases. RESULTS The analysis of Polish controls revealed the range of 5-31 CTG repeats for DM1 and 110-228 bp alleles for DM2. Among 318 confirmed probands - 196 (62%) were DM1 and 122 (38%) - DM2. Within DM1families, 10 subjects carried a low expanded CTG tract (< 100 repeats), which resulted in a full mutation in subsequent generations. Two related individuals had unstable alleles-188 bp and 196 bp without common interruptions. CONCLUSION The relative frequencies of DM1/DM2 among Polish patients were 68% and 32%, respectively, with a relatively high proportion of DM2 mutations (1.6:1).
Collapse
Affiliation(s)
- Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - Anna Lusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Wioletta Krysa
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marta Rajkiewicz
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Kaminska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Monika Nojszewska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | - Elzbieta Zdzienicka
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jolanta Kubalska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Maria Rakowicz
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Hubert Kwiecinski
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Zaremba
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
9
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
10
|
Castets P, Frank S, Sinnreich M, Rüegg MA. "Get the Balance Right": Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders. J Neuromuscul Dis 2018; 3:127-155. [PMID: 27854220 PMCID: PMC5271579 DOI: 10.3233/jnd-160153] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent research has revealed that autophagy, a major catabolic process in cells, is dysregulated in several neuromuscular diseases and contributes to the muscle wasting caused by non-muscle disorders (e.g. cancer cachexia) or during aging (i.e. sarcopenia). From there, the idea arose to interfere with autophagy or manipulate its regulatory signalling to help restore muscle homeostasis and attenuate disease progression. The major difficulty for the development of therapeutic strategies is to restore a balanced autophagic flux, due to the dynamic nature of autophagy. Thus, it is essential to better understand the mechanisms and identify the signalling pathways at play in the control of autophagy in skeletal muscle. A comprehensive analysis of the autophagic flux and of the causes of its dysregulation is required to assess the pathogenic role of autophagy in diseased muscle. Furthermore, it is essential that experiments distinguish between primary dysregulation of autophagy (prior to disease onset) and impairments as a consequence of the pathology. Of note, in most muscle disorders, autophagy perturbation is not caused by genetic modification of an autophagy-related protein, but rather through indirect alteration of regulatory signalling or lysosomal function. In this review, we will present the mechanisms involved in autophagy, and those ensuring its tight regulation in skeletal muscle. We will then discuss as to how autophagy dysregulation contributes to the pathogenesis of neuromuscular disorders and possible ways to interfere with this process to limit disease progression.
Collapse
Affiliation(s)
| | - Stephan Frank
- Institute of Pathology, Division of Neuropathology Basel University Hospital, Basel, Switzerland
| | - Michael Sinnreich
- Neuromuscular Research Center, Departments of Neurology and Biomedicine, Pharmazentrum, Basel, Switzerland
| | | |
Collapse
|
11
|
Meola G, Cardani R. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta Mol Basis Dis 2014; 1852:594-606. [PMID: 24882752 DOI: 10.1016/j.bbadis.2014.05.019] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/18/2023]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in ZNF9/CNBP. When transcribed into CUG/CCUG-containing RNA, mutant transcripts aggregate as nuclear foci that sequester RNA-binding proteins, resulting in spliceopathy of downstream effector genes. However, it is now clear that additional pathogenic mechanism like changes in gene expression, protein translation and micro-RNA metabolism may also contribute to disease pathology. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders requiring different diagnostic and management strategies. This review is an update on the recent advances in the understanding of the molecular mechanisms behind myotonic dystrophies. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Neurology, IRCCS Policlinico San Donato, University of Milan, San Donato Milanese, Milan, Italy; Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| |
Collapse
|
12
|
Abstract
Myotonic dystrophy (DM) encompasses two gene defects, DM1 (myotonic dystrophy type 1) being currently the sole disorder leading to a childhood form of the disease. As consequence of the non coding unstable CTG repeat expansion mutation, DM1 presents as an extremely wide and diverse clinical continuum ranging from antenatal to late adult forms, the complexity of the disease being reinforced by multisystemic involvement. The congenital form appears as the most severe end of the phenotypic spectrum and may include marked neonatal hypotonia, respiratory failure, facial diplegia, contractures, and mental retardation. Brain involvement is the hallmark of childhood-onset DM1, distinguished by a normal neonatal period, with learning difficulties as the main presenting symptom, resulting from various degrees of mental delay, psychopathological manifestations, speech defects, hypersomnolence, and fatigue. In contrast, muscle weakness remains usually moderate in childhood, limited to facial weakness, ptosis, and dysarthria, until a decline from the second decade. Orthopedic manifestations including kyphoscoliosis and equinovarus may require surgery. Other organs involvement includes frequent abdominal symptoms, whereas endocrine disturbance is rare. Symptomatic cardiac arrhythmia, mainly exercise-induced, can be observed. While current treatment is mainly symptomatic, future clinical trials are expected following significant progress in pathophysiology and the recent development of molecular therapy approaches.
Collapse
|
13
|
Brouwer JR, Foiry L, Gourdon G. Cell recovery from DM1 transgenic mouse tissue to study (CTG) n instability and DM1 pathogenesis. Methods Mol Biol 2014; 1010:253-64. [PMID: 23754230 DOI: 10.1007/978-1-62703-411-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Myotonic dystrophy type 1 results from an unstable expanded CTG repeat ((CTG) n ) in the 3' UTR of the DMPK gene. Transgenic mouse models have been developed to reproduce the (CTG) n instability seen in DM1 patients. These transgenic mice provide an excellent tool to study the disease mechanism as well as the molecular mechanisms underlying trinucleotide repeat instability. The propensity for somatic instability differs per tissue and cell type. Expansion of the (CTG) n over time in certain tissues is thought to underlie progression of the clinical picture. It is therefore crucial to understand what causes the (CTG) n to expand in certain cells and not in others, as well as to see possibly distinct downstream cellular effects of different (CTG) n lengths in different cell populations. We describe here an updated method to determine the genotype (homozygous, hemizygous, or non-transgenic) of the transgene, as well as length of the very long (CTG) n tracts now commonly obtained in our mouse model. Furthermore, in order to facilitate research into cell populations that show different degrees of instability, we present here a fast technique to recover cells from mouse tissues, which can serve as a basis for multiple downstream applications, including cell culture and biochemical or molecular studies.
Collapse
|
14
|
Transcriptionally Repressive Chromatin Remodelling and CpG Methylation in the Presence of Expanded CTG-Repeats at the DM1 Locus. J Nucleic Acids 2013; 2013:567435. [PMID: 24455202 PMCID: PMC3884603 DOI: 10.1155/2013/567435] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/22/2013] [Indexed: 12/21/2022] Open
Abstract
An expanded CTG-repeat in the 3′ UTR of the DMPK gene is responsible for myotonic dystrophy type I (DM1). Somatic and intergenerational instability cause the disease to become more severe during life and in subsequent generations. Evidence is accumulating that trinucleotide repeat instability and disease progression involve aberrant chromatin dynamics. We explored the chromatin environment in relation to expanded CTG-repeat tracts in hearts from transgenic mice carrying the DM1 locus with different repeat lengths. Using bisulfite sequencing we detected abundant CpG methylation in the regions flanking the expanded CTG-repeat. CpG methylation was postulated to affect CTCF binding but we found that CTCF binding is not affected by CTG-repeat length in our transgenic mice. We detected significantly decreased DMPK sense and SIX5 transcript expression levels in mice with expanded CTG-repeats. Expression of the DM1 antisense transcript was barely affected by CTG-repeat expansion. In line with altered gene expression, ChIP studies revealed a locally less active chromatin conformation around the expanded CTG-repeat, namely, decreased enrichment of active histone mark H3K9/14Ac and increased H3K9Me3 enrichment (repressive chromatin mark). We also observed binding of PCNA around the repeats, a candidate that could launch chromatin remodelling cascades at expanded repeats, ultimately affecting gene transcription and repeat instability.
Collapse
|
15
|
Sicot G, Gomes-Pereira M. RNA toxicity in human disease and animal models: from the uncovering of a new mechanism to the development of promising therapies. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1390-409. [PMID: 23500957 DOI: 10.1016/j.bbadis.2013.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 01/06/2023]
Abstract
Mutant ribonucleic acid (RNA) molecules can be toxic to the cell, causing human disease through trans-acting dominant mechanisms. RNA toxicity was first described in myotonic dystrophy type 1, a multisystemic disorder caused by the abnormal expansion of a non-coding trinucleotide repeat sequence. The development of multiple and complementary animal models of disease has greatly contributed to clarifying the complex disease pathways mediated by toxic RNA molecules. RNA toxicity is not limited to myotonic dystrophy and spreads to an increasing number of human conditions, which share some unifying pathogenic events mediated by toxic RNA accumulation and disruption of RNA-binding proteins. The remarkable progress in the dissection of disease pathobiology resulted in the rational design of molecular therapies, which have been successfully tested in animal models. Toxic RNA diseases, and in particular myotonic dystrophy, clearly illustrate the critical contribution of animal models of disease in translational research: from gene mutation to disease mechanisms, and ultimately to therapy development. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
|
16
|
Hernández-Hernández O, Guiraud-Dogan C, Sicot G, Huguet A, Luilier S, Steidl E, Saenger S, Marciniak E, Obriot H, Chevarin C, Nicole A, Revillod L, Charizanis K, Lee KY, Suzuki Y, Kimura T, Matsuura T, Cisneros B, Swanson MS, Trovero F, Buisson B, Bizot JC, Hamon M, Humez S, Bassez G, Metzger F, Buée L, Munnich A, Sergeant N, Gourdon G, Gomes-Pereira M. Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmission and mouse behaviour. Brain 2013; 136:957-70. [PMID: 23404338 DOI: 10.1093/brain/aws367] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Myotonic dystrophy type 1 is a complex multisystemic inherited disorder, which displays multiple debilitating neurological manifestations. Despite recent progress in the understanding of the molecular pathogenesis of myotonic dystrophy type 1 in skeletal muscle and heart, the pathways affected in the central nervous system are largely unknown. To address this question, we studied the only transgenic mouse line expressing CTG trinucleotide repeats in the central nervous system. These mice recreate molecular features of RNA toxicity, such as RNA foci accumulation and missplicing. They exhibit relevant behavioural and cognitive phenotypes, deficits in short-term synaptic plasticity, as well as changes in neurochemical levels. In the search for disease intermediates affected by disease mutation, a global proteomics approach revealed RAB3A upregulation and synapsin I hyperphosphorylation in the central nervous system of transgenic mice, transfected cells and post-mortem brains of patients with myotonic dystrophy type 1. These protein defects were associated with electrophysiological and behavioural deficits in mice and altered spontaneous neurosecretion in cell culture. Taking advantage of a relevant transgenic mouse of a complex human disease, we found a novel connection between physiological phenotypes and synaptic protein dysregulation, indicative of synaptic dysfunction in myotonic dystrophy type 1 brain pathology.
Collapse
Affiliation(s)
- Oscar Hernández-Hernández
- Inserm U781, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, 75015 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Huguet A, Medja F, Nicole A, Vignaud A, Guiraud-Dogan C, Ferry A, Decostre V, Hogrel JY, Metzger F, Hoeflich A, Baraibar M, Gomes-Pereira M, Puymirat J, Bassez G, Furling D, Munnich A, Gourdon G. Molecular, physiological, and motor performance defects in DMSXL mice carrying >1,000 CTG repeats from the human DM1 locus. PLoS Genet 2012; 8:e1003043. [PMID: 23209425 PMCID: PMC3510028 DOI: 10.1371/journal.pgen.1003043] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by an unstable CTG repeat expansion in the 3′UTR of the DM protein kinase (DMPK) gene. DMPK transcripts carrying CUG expansions form nuclear foci and affect splicing regulation of various RNA transcripts. Furthermore, bidirectional transcription over the DMPK gene and non-conventional RNA translation of repeated transcripts have been described in DM1. It is clear now that this disease may involve multiple pathogenic pathways including changes in gene expression, RNA stability and splicing regulation, protein translation, and micro–RNA metabolism. We previously generated transgenic mice with 45-kb of the DM1 locus and >300 CTG repeats (DM300 mice). After successive breeding and a high level of CTG repeat instability, we obtained transgenic mice carrying >1,000 CTG (DMSXL mice). Here we described for the first time the expression pattern of the DMPK sense transcripts in DMSXL and human tissues. Interestingly, we also demonstrate that DMPK antisense transcripts are expressed in various DMSXL and human tissues, and that both sense and antisense transcripts accumulate in independent nuclear foci that do not co-localize together. Molecular features of DM1-associated RNA toxicity in DMSXL mice (such as foci accumulation and mild missplicing), were associated with high mortality, growth retardation, and muscle defects (abnormal histopathology, reduced muscle strength, and lower motor performances). We have found that lower levels of IGFBP-3 may contribute to DMSXL growth retardation, while increased proteasome activity may affect muscle function. These data demonstrate that the human DM1 locus carrying very large expansions induced a variety of molecular and physiological defects in transgenic mice, reflecting DM1 to a certain extent. As a result, DMSXL mice provide an animal tool to decipher various aspects of the disease mechanisms. In addition, these mice can be used to test the preclinical impact of systemic therapeutic strategies on molecular and physiological phenotypes. Myotonic dystrophy type 1 (DM1) is caused by the abnormal expansion of a CTG repeat located in the DM protein kinase (DMPK) gene. DMPK transcripts carrying CUG expansions form toxic nuclear foci that affect other RNAs. DM1 involve multiple pathogenic pathways including changes in gene expression, RNA stability and splicing regulation, protein translation, and micro–RNA metabolism. We previously generated transgenic mice carrying the human DM1 locus and very large expansions >1,000 CTG (DMSXL mice). Here we described for the first time, the expression pattern of the DMPK sense transcripts in DMSXL and human tissues. We also demonstrate that DMPK antisense transcripts are expressed in various tissues from DMSXL mice and human. Both sense and antisense transcripts form nuclear foci. DMSXL mice showed molecular DM1 features such as foci and mild splicing defects as well as muscles defects, reduced muscle strength, and lower motor performances. These mice recapitulate some molecular features of DM1 leading to physiological abnormalities. DMSXL are not only a tool to decipher various mechanisms involved in DM1 but also to test the preclinical impact of systemic therapeutic strategies.
Collapse
Affiliation(s)
- Aline Huguet
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Fadia Medja
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Annie Nicole
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Alban Vignaud
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
- Généthon, Evry, France
| | - Céline Guiraud-Dogan
- Inserm U955, Département de Neurosciences, Faculté de Médecine, Université Paris XII, Créteil, France
| | - Arnaud Ferry
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Valérie Decostre
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Jean-Yves Hogrel
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Friedrich Metzger
- F. Hoffmann-La Roche, CNS Pharma Research and Development, Basel, Switzerland
| | - Andreas Hoeflich
- Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Martin Baraibar
- UPMC Univ Paris 06, UM 76, Institut de Myologie and Inserm, U974 and CNRS, UMR7215, Paris, France
| | - Mário Gomes-Pereira
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Jack Puymirat
- Human Genetics Research Unit, Laval University, Québec City, Québec, Canada
| | - Guillaume Bassez
- Inserm U955, Département de Neurosciences, Faculté de Médecine, Université Paris XII, Créteil, France
| | - Denis Furling
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Arnold Munnich
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Geneviève Gourdon
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
- * E-mail:
| |
Collapse
|
18
|
Panaite PA, Kuntzer T, Gourdon G, Lobrinus JA, Barakat-Walter I. Functional and histopathological identification of the respiratory failure in a DMSXL transgenic mouse model of myotonic dystrophy. Dis Model Mech 2012. [PMID: 23180777 PMCID: PMC3634646 DOI: 10.1242/dmm.010512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.
Collapse
|
19
|
Jones K, Timchenko L, Timchenko NA. The role of CUGBP1 in age-dependent changes of liver functions. Ageing Res Rev 2012; 11:442-9. [PMID: 22446383 DOI: 10.1016/j.arr.2012.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 12/14/2022]
Abstract
Aging liver is characterized by alterations of liver biology and by a reduction of many functions which are important for the maintenance of body homeostasis. The main dysfunctions include appearance of enlarged hepatocytes, impaired liver regeneration after partial hepatectomy (PH), development of hepatic steatosis, reduction of secretion of proteins and alterations in the hepatic sinusoid. RNA binding proteins are involved in the regulation of gene expression in all tissues including regulation of biological processes in the liver. This review is focused on the role of a conserved, multi-functional RNA-binding protein, CUGBP1, in the development of aging phenotype in the liver. CUGBP1 has been identified as a protein which binds to RNA CUG repeats expanded in Myotonic Dystrophy type 1 (DM1). CUGBP1 is highly expressed in the liver and regulates translation of proteins which are critical for maintenance of liver functions. In livers of young mice, CUGBP1 forms complexes with eukaryotic translation initiation factor eIF2 and supports translation of C/EBPβ and HDAC1 proteins, which are involved in liver growth, differentiation and liver cancer. Aging changes several signaling pathways which lead to the elevation of the CUGBP1-eIF2α complex and to an increase of translation of C/EBPβ and HDAC1. These proteins form multi-protein complexes with additional transcription factors and with chromatin remodeling proteins causing epigenetic alterations of gene expression in livers of old mice. It appears that CUGBP1-mediated translational elevation of HDAC1 is one of the key events in the epigenetic changes in livers of old mice, leading to the development of age-associated dysfunctions of the liver. This review will also discuss a possible role of CUGBP1 in liver dysfunction in patients affected with DM1.
Collapse
|
20
|
Lukáš Z, Falk M, Feit J, Souček O, Falková I, Štefančíková L, Janoušová E, Fajkusová L, Zaorálková J, Hrabálková R. Sequestration of MBNL1 in tissues of patients with myotonic dystrophy type 2. Neuromuscul Disord 2012; 22:604-16. [DOI: 10.1016/j.nmd.2012.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 12/20/2022]
|
21
|
Kaminsky P, Pruna L. [A genetic systemic disease: clinical description of type 1 myotonic dystrophy in adults]. Rev Med Interne 2012; 33:514-8. [PMID: 22572587 DOI: 10.1016/j.revmed.2012.03.355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 03/31/2012] [Indexed: 01/06/2023]
Abstract
Type 1 myotonic dystrophy is an autosomal dominant inherited disorder related to the expansion of a trinucleotide (CTG) repeat in the exon 15 in the 3'-untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. Mutant transcripts containing an expanded CUG repeat are retained in nuclear foci and cause numerous dysfunctions by interfering with biogenesis of other mRNAs. Prominent clinical features are progressive muscular weakness and myotonia, which affect skeletal muscles but also white muscles leading to digestive, urinary and obstetrical disorders. Functional prognosis correlates with motor handicap and vital prognosis is linked to cardiac rhythm disturbances and conduction defects due to progressive subendocardial fibrosis, and to complex respiratory dysfunctions, which associate restrictive lung disease, involvement of the central inspiratory pathway, and sleep apnea. Other clinical features are lens opacity, glucose intolerance, metabolic syndrome, several endocrine disorders (gonadal deficiency, hyperparathydoidism), or immunoglobulin deficiency due to immunoglobulin G hypercatabolism. Life expectancy is reduced in myotonic dystrophy, and death is mainly caused by respiratory complications, but also by cardiac arrhythmias. Moreover, an abnormal incidence of tumors has been reported. Therefore, myotonic dystrophy does not only concern neurologists but a multidisciplinary approach is necessary, including at least pneumologist, cardiologist, and physiotherapist. General internists should also be implicated, not only in the initial diagnosis step, but also in the diagnosis of complications and their treatments.
Collapse
Affiliation(s)
- P Kaminsky
- Service de médecine interne orientée vers les maladies orphelines et systémiques, pôle des spécialités médicales, centre de référence des maladies neuromusculaires de Nancy, centre hospitalier universitaire de Nancy, hôpitaux de Brabois, rue du Morvan, 54511 Vandœuvre cedex, France
| | | |
Collapse
|
22
|
Altered replication in human cells promotes DMPK (CTG)(n) · (CAG)(n) repeat instability. Mol Cell Biol 2012; 32:1618-32. [PMID: 22354993 DOI: 10.1128/mcb.06727-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is associated with expansion of (CTG)(n) · (CAG)(n) trinucleotide repeats (TNRs) in the 3' untranslated region (UTR) of the DMPK gene. Replication origins are cis-acting elements that potentiate TNR instability; therefore, we mapped replication initiation sites and prereplication complex protein binding within the ~10-kb DMPK/SIX5 locus in non-DM1 and DM1 cells. Two origins, IS(DMPK) and IS(SIX5), flanked the (CTG)(n) · (CAG)(n) TNRs in control cells and in DM1 cells. Orc2 and Mcm4 bound near each of the replication initiation sites, but a dramatic change in (CTG)(n) · (CAG)(n) replication polarity was not correlated with TNR expansion. To test whether (CTG)(n) · (CAG)(n) TNRs are cis-acting elements of instability in human cells, model cell lines were created by integration of cassettes containing the c-myc replication origin and (CTG)(n) · (CAG)(n) TNRs in HeLa cells. Replication forks were slowed by (CTG)(n) · (CAG)(n) TNRs in a length-dependent manner independent of replication polarity, implying that expanded (CTG)(n) · (CAG)(n) TNRs lead to replication stress. Consistent with this prediction, TNR instability increased in the HeLa model cells and DM1 cells upon small interfering RNA (siRNA) knockdown of the fork stabilization protein Claspin, Timeless, or Tipin. These results suggest that aberrant DNA replication and TNR instability are linked in DM1 cells.
Collapse
|
23
|
Functional characterization and expression analysis of novel alternative splicing isoforms of Olr1 gene during mouse embryogenesis. Gene 2011; 491:5-12. [PMID: 22001547 DOI: 10.1016/j.gene.2011.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/21/2011] [Accepted: 09/26/2011] [Indexed: 12/18/2022]
Abstract
LOX-1 (Lectin-like oxidized low-density lipoprotein receptor-1) is the primary endothelial receptor of oxidized LDL (oxLDL). Both in vitro and in vivo experiments have shown this protein to be important in the initiation of atherosclerosis and to be up-regulated by pro-atherogenic factors. Recently, it has been demonstrated that Olr1, the gene encoding Lox-1, is important for tumor growth and for maintaining the transformed state in different cancer cell lines, suggesting that it acts in a molecular pathway connecting cancer and atherosclerosis. Both diseases in humans are characterized by uncontrolled regulation of cellular growth and differentiation. We present evidence that Olr1 is expressed during mouse embryogenesis in developmental stages (from 7.5 to 9.5 dpc) in which cardiogenesis occurs. In addition, we identify two novel Olr1 isoform (hereafter referred to as D3D5Olr1 and D2D5Olr1) whose spatio-temporal expression pattern overlaps with Olr1 in vivo. In vitro, D3D5Olr1 localizes to the cell surface membrane as Olr1, in contrast with D2D5Olr1; these data suggest that D2D5Olr1 isoform translates a receptor that does not reach the plasma membrane. Accordingly, in silico transmembrane protein topology prediction analyses, show that D2D5Olr1 does not contain any transmembrane region. Finally, both isoforms can activate the same genetic pathways underlying Olr1 expression, such as, hypoxia and inflammation, even if with a different efficiency. All these data suggest a new functional involvement of Olr1, and probably of its spliceforms, in murine cardiogenesis and angiogenesis.
Collapse
|
24
|
Gomes-Pereira M, Cooper TA, Gourdon G. Myotonic dystrophy mouse models: towards rational therapy development. Trends Mol Med 2011; 17:506-17. [PMID: 21724467 DOI: 10.1016/j.molmed.2011.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/04/2011] [Accepted: 05/17/2011] [Indexed: 01/26/2023]
Abstract
DNA repeat expansions can result in the production of toxic RNA. RNA toxicity has been best characterised in the context of myotonic dystrophy. Nearly 20 mouse models have contributed significant and complementary insights into specific aspects of this novel disease mechanism. These models provide a unique resource to test pharmacological, anti-sense, and gene-therapy therapeutic strategies that target specific events of the pathobiological cascade. Further proof-of-principle concept studies and preclinical experiments require critical and thorough analysis of the multiple myotonic dystrophy transgenic lines available. This review provides in-depth assessment of the molecular and phenotypic features of these models and their contribution towards the dissection of disease mechanisms, and compares them with the human condition. More importantly, it provides critical assessment of their suitability and limitations for preclinical testing of emerging therapeutic strategies.
Collapse
Affiliation(s)
- Mário Gomes-Pereira
- Inserm U781, Université Paris Descartes, Faculté de Medicine Necker Enfants Malades, Paris, France.
| | | | | |
Collapse
|
25
|
Moyer M, Berger DS, Ladd AN, Van Lunteren E. Differential susceptibility of muscles to myotonia and force impairment in a mouse model of myotonic dystrophy. Muscle Nerve 2011; 43:818-27. [PMID: 21404300 DOI: 10.1002/mus.21988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2010] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Myotonic dystrophy, or dystrophia myotonica (DM), is characterized by prominent muscle wasting and weakness as well as delayed muscle relaxation resulting from persistent electrical discharges. METHODS We hypothesized heterogeneity among muscles in degree of weakness and myotonia in an expanded [(CUG)(250)] repeats transgenic (HSA(LR)) mouse DM model. Muscle contraction was compared among diaphragm, extensor digitorum longus (EDL), and soleus muscles. RESULTS Myotonia was found only in EDL, as manifested by longer late-relaxation time and elevated myotonic index. EDL, but not the other two muscles, had impaired force over a wide range of stimulation frequencies. During fatigue-inducing stimulation, DM EDL muscle force per cross-sectional area was significantly impaired during 25-Hz stimulation, whereas there were no differences in fatigue response for DM diaphragm or soleus. CONCLUSION In an expanded repeats model of DM the EDL is more susceptible to myotonia and force impairment than muscles with lower proportions of fast-twitch fibers.
Collapse
Affiliation(s)
- Michelle Moyer
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, Cleveland VA Medical Center, K201, 10701 East Boulevard, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
26
|
Torres Jiménez R, García García M, García Puig J. Fenotipo variante del síndrome de Lesch-Nyhan. Med Clin (Barc) 2011; 136:63-6. [DOI: 10.1016/j.medcli.2010.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/06/2010] [Accepted: 05/06/2010] [Indexed: 11/28/2022]
|
27
|
López Castel A, Nakamori M, Tomé S, Chitayat D, Gourdon G, Thornton CA, Pearson CE. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum Mol Genet 2010; 20:1-15. [PMID: 21044947 DOI: 10.1093/hmg/ddq427] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myotonic dystrophy (DM1) affects multiple organs, shows age-dependent progression and is caused by CTG expansions at the DM1 locus. We determined the DM1 CpG methylation profile and CTG length in tissues from DM1 foetuses, DM1 adults, non-affected individuals and transgenic DM1 mice. Analysis included CTCF binding sites upstream and downstream of the CTG tract, as methylation-sensitive CTCF binding affects chromatinization and transcription of the DM1 locus. In humans, in a given foetus, expansions were largest in heart and smallest in liver, differing by 40-400 repeats; in adults, the largest expansions were in heart and cerebral cortex and smallest in cerebellum, differing by up to 5770 repeats in the same individual. Abnormal methylation was specific to the mutant allele. In DM1 adults, heart, liver and cortex showed high-to-moderate methylation levels, whereas cerebellum, kidney and skeletal muscle were devoid of methylation. Methylation decreased between foetuses and adults. Contrary to previous findings, methylation was not restricted to individuals with congenital DM1. The expanded repeat demarcates an abrupt boundary of methylation. Upstream sequences, including the CTCF site, were methylated, whereas the repeat itself and downstream sequences were not. In DM1 mice, expansion-, tissue- and age-specific methylation patterns were similar but not identical to those in DM1 individuals; notably in mice, methylation was present up- and downstream of the repeat, but greater upstream. Thus, in humans, the CpG-free expanded CTG repeat appears to maintain a highly polarized pattern of CpG methylation at the DM1 locus, which varies markedly with age and tissues.
Collapse
Affiliation(s)
- Arturo López Castel
- Genetics and Genome Biology, Department of Pediatrics, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Torres RJ, Garcia MG, Puig JG. Partial HPRT deficiency phenotype and incomplete splicing mutation. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:295-300. [PMID: 20544510 DOI: 10.1080/15257771003730250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity is an inborn error of purine metabolism associated with uric acid overproduction and a continuum spectrum of neurological manifestations depending on the degree of enzyme deficiency. The complete deficiency causes Lesch-Nyhan syndrome (LNS). Partial HPRT-deficient patients can show a variable degree of neurological manifestations. Both diseases have been associated with mutations in the HPRT1 gene. Documented mutations in HPRT deficiency show a high degree of heterogeneity in type and location within the gene. In fact, more than 300 disease-associated mutations have been described. Splice mutations accounts for more that 16% of HPRT mutations and in most cases cause a complete LNS phenotype. A 16 year-old boy consulted to La Paz University Hospital because of hyperuricemia (9.4 mg/dL). At age one year he was given a diagnosis of dystonic cerebral palsy. Although he usually employs a wheelchair, under certain circumstances, he is able to stand up and walk by himself. He has never showed self injurious behavior. This patient presented a splice mutation (NM_000194.2: c.552 -2 A > G) causing exon 5 exclusion. An exon-5 specific PCR was designed, and a minor amount of normally spliced HPRT mRNA was found. Normally spliced HPRT mRNA was quantified by real-time PCR in this patient, in control subjects, and in two Lesch Nyhan patient with splice mutations excluding exon 4 (patient B) and exon 8 (patient C) who had clinically a Lesch Nyhan disease phenotype. A minor amount of normally spliced HPRT mRNA was found in all the patients. No correlation was found between the percentage of the normally spliced HPRT mRNA and the phenotype. We conclude that the partial HPRT deficient phenotype of this patient can not be explained by the finding of a minor amount of normally splice HPRT mRNA. It is possible that the amount of normally splice mRNA vary among different tissues.
Collapse
Affiliation(s)
- R J Torres
- Divisions of Clinical Biochemistry and Internal Medicine, La Paz University Hospital, Madrid, Spain.
| | | | | |
Collapse
|
29
|
Cleary JD, Tomé S, López Castel A, Panigrahi GB, Foiry L, Hagerman KA, Sroka H, Chitayat D, Gourdon G, Pearson CE. Tissue- and age-specific DNA replication patterns at the CTG/CAG-expanded human myotonic dystrophy type 1 locus. Nat Struct Mol Biol 2010; 17:1079-87. [DOI: 10.1038/nsmb.1876] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 06/24/2010] [Indexed: 01/30/2023]
|
30
|
Progressive skeletal muscle weakness in transgenic mice expressing CTG expansions is associated with the activation of the ubiquitin–proteasome pathway. Neuromuscul Disord 2010; 20:319-25. [DOI: 10.1016/j.nmd.2010.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/15/2010] [Accepted: 03/03/2010] [Indexed: 01/05/2023]
|
31
|
Bhardwaj RR, Duchini A. Non-Alcoholic Steatohepatitis in Myotonic Dystrophy: DMPK Gene Mutation, Insulin Resistance and Development of Steatohepatitis. Case Rep Gastroenterol 2010; 4:100-103. [PMID: 21103235 PMCID: PMC2988905 DOI: 10.1159/000292093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Myotonic dystrophy is a multisystemic disorder characterized by repeat expansion mutations of the dystrophia myotonica protein kinase (DMPK) gene resulting in a defective muscular insulin receptor and insulin resistance. We describe a patient with myotonic dystrophy who developed biopsy-proven non-alcoholic steatohepatitis. We suggest that patients with myotonic dystrophy are at risk of developing steatohepatitis. The relationship between defective insulin receptor and development of steatohepatitis should be further investigated.
Collapse
Affiliation(s)
- Rishi R Bhardwaj
- Department of Medicine, Weill-Cornell Medical College, The Methodist Hospital, Houston, Tex., USA
| | | |
Collapse
|
32
|
Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc Natl Acad Sci U S A 2009; 106:13915-20. [PMID: 19667189 DOI: 10.1073/pnas.0905780106] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by toxicity of an expanded, noncoding (CUG)n tract in DM protein kinase (DMPK) transcripts. According to current evidence the long (CUG)n segment is involved in entrapment of muscleblind (Mbnl) proteins in ribonuclear aggregates and stabilized expression of CUG binding protein 1 (CUGBP1), causing aberrant premRNA splicing and associated pathogenesis in DM1 patients. Here, we report on the use of antisense oligonucleotides (AONs) in a therapeutic strategy for reversal of RNA-gain-of-function toxicity. Using a previously undescribed mouse DM1 myoblast-myotube cell model and DM1 patient cells as screening tools, we have identified a fully 2'-O-methyl-phosphorothioate-modified (CAG)7 AON that silences mutant DMPK RNA expression and reduces the number of ribonuclear aggregates in a selective and (CUG)n-length-dependent manner. Direct administration of this AON in muscle of DM1 mouse models in vivo caused a significant reduction in the level of toxic (CUG)n RNA and a normalizing effect on aberrant premRNA splicing. Our data demonstrate proof of principle for therapeutic use of simple sequence AONs in DM1 and potentially other unstable microsatellite diseases.
Collapse
|
33
|
Elkins JM, Amos A, Niesen FH, Pike ACW, Fedorov O, Knapp S. Structure of dystrophia myotonica protein kinase. Protein Sci 2009; 18:782-91. [PMID: 19309729 DOI: 10.1002/pro.82] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dystrophia myotonica protein kinase (DMPK) is a serine/threonine kinase composed of a kinase domain and a coiled-coil domain involved in the multimerization. The crystal structure of the kinase domain of DMPK bound to the inhibitor bisindolylmaleimide VIII (BIM-8) revealed a dimeric enzyme associated by a conserved dimerization domain. The affinity of dimerisation suggested that the kinase domain alone is insufficient for dimerisation in vivo and that the coiled-coil domains are required for stable dimer formation. The kinase domain is in an active conformation, with a fully-ordered and correctly positioned alphaC helix, and catalytic residues in a conformation competent for catalysis. The conserved hydrophobic motif at the C-terminal extension of the kinase domain is bound to the N-terminal lobe of the kinase domain, despite being unphosphorylated. Differences in the arrangement of the C-terminal extension compared to the closely related Rho-associated kinases include an altered PXXP motif, a different conformation and binding arrangement for the turn motif, and a different location for the conserved NFD motif. The BIM-8 inhibitor occupies the ATP site and has similar binding mode as observed in PDK1.
Collapse
Affiliation(s)
- Jonathan M Elkins
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Oxford, OX3 7DQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Salvatori S, Furlan S, Fanin M, Picard A, Pastorello E, Romeo V, Trevisan CP, Angelini C. Comparative transcriptional and biochemical studies in muscle of myotonic dystrophies (DM1 and DM2). Neurol Sci 2009; 30:185-92. [PMID: 19326042 DOI: 10.1007/s10072-009-0048-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
Myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (proximal muscular myopaty/DM2) are caused by similar dynamic mutations at two distinct genetic loci. The two diseases also lead to similar phenotypes but different clinical severity. Dysregulation of alternative splicing has been suggested as the common pathogenic mechanism. Here, we investigate the molecular differences between DM1 and DM2 using reverse transcriptase-polymerase chain reaction of troponin T (TnT) and the insulin receptor (IR), as well as immunoblotting of TnT in muscle biopsies from DM1 and DM2 patients. We found that: (a) slow TnT was encoded by two different transcripts in significantly different ratios in DM1 and DM2 muscles; (b) DM2 muscles exhibited a higher degree of alternative splicing dysregulation for fast TnT transcripts when compared to DM1 muscles; (c) the distribution of TnT proteins was significantly skewed towards higher molecular weight species in both diseases; (d) the RNA for the insulin-independent IR-A isoform was significantly increased and appeared related to the fibre-type composition in the majority of the cases examined. On the whole, these data should give a better insight on pathogenesis of DM1 and DM2.
Collapse
Affiliation(s)
- Sergio Salvatori
- Department of Biomedical Sciences, University of Padova, viale G. Colombo 3, Padua, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Matsumura T, Iwahashi H, Funahashi T, Takahashi MP, Saito T, Yasui K, Saito T, Iyama A, Toyooka K, Fujimura H, Shinno S. A cross-sectional study for glucose intolerance of myotonic dystrophy. J Neurol Sci 2008; 276:60-5. [PMID: 18834994 DOI: 10.1016/j.jns.2008.08.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/12/2008] [Accepted: 08/26/2008] [Indexed: 01/31/2023]
Abstract
We made a cross-sectional study to analyze glucose intolerance of myotonic dystrophy type 1 (DM1) with several examination including oral glucose tolerance test (OGTT), insulin tolerance test (ITT) and adiponectin. Ninety-five DM1 patients participated in this study. Health examination data from general people were used as controls. In DM1, homeostasis model assessment-insulin resistance (HOMA-IR) was higher than control even in the lowest fasting blood sugar (FBS) stage (<80 mg/dl) and insulin sensitivity assessed by ITT was low regardless of their FBS. Insulinogenic index of DM1 was positively correlated to HOMA-IR. Insulinogenic index and sum of IRI in OGTT were markedly elevated in the lowest FBS stage and declined along with elevation of FBS. Consequently, as many as 13.3% of DM1 patients with 90-110 mg/dl of FBS exhibited DM pattern, while only 1.9% in control. Adiponectin was higher in DM1 than control. Although age correlated with adiponectin in both control and DM1, its impact was stronger in DM1. DM1 predisposes insulin resistance and compensatory hyperinsulinemia exist even in patients with low FBS. We should pay attention to glucose intolerance of DM1 patients earlier than that of the general population. It seemed that 90 mg/dl of FBS is an important index as an indication of careful managements.
Collapse
Affiliation(s)
- Tsuyoshi Matsumura
- Department of Neurology, National Hospital Organization Toneyama National Hospital, Toyonaka, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Myotonic Dystrophy Transgenic Mice Exhibit Pathologic Abnormalities in Diaphragm Neuromuscular Junctions and Phrenic Nerves. J Neuropathol Exp Neurol 2008; 67:763-72. [DOI: 10.1097/nen.0b013e318180ec64] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
37
|
Kaliman P, Llagostera E. Myotonic dystrophy protein kinase (DMPK) and its role in the pathogenesis of myotonic dystrophy 1. Cell Signal 2008; 20:1935-41. [PMID: 18583094 DOI: 10.1016/j.cellsig.2008.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
Abstract
Myotonic dystrophy 1 (DM1) is an autosomal, dominant inherited, neuromuscular disorder. The DM1 mutation consists in the expansion of an unstable CTG-repeat in the 3'-untranslated region of a gene encoding DMPK (myotonic dystrophy protein kinase). Clinical expression of DM1 is variable, presenting a progressive muscular dystrophy that affects distal muscles more than proximal and is associated with the inability to relax muscles appropriately (myotonia), cataracts, cardiac arrhythmia, testicular atrophy and insulin resistance. DMPK is a Ser/Thr protein kinase homologous to the p21-activated kinases MRCK and ROCK/rho-kinase/ROK. The most abundant isoform of DMPK is an 80 kDa protein mainly expressed in smooth, skeletal and cardiac muscles. Decreased DMPK protein levels may contribute to the pathology of DM1, as revealed by gene target studies. Here we review current understanding of the structural, functional and pathophysiological characteristics of DMPK.
Collapse
Affiliation(s)
- Perla Kaliman
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Universitat de Barcelona, Spain.
| | | |
Collapse
|