1
|
Tomaziu-Todosia Anton E, Anton GI, Scripcariu IS, Dumitrașcu I, Scripcariu DV, Balmus IM, Ionescu C, Visternicu M, Socolov DG. Oxidative Stress, Inflammation, and Antioxidant Strategies in Cervical Cancer-A Narrative Review. Int J Mol Sci 2025; 26:4961. [PMID: 40430101 PMCID: PMC12111834 DOI: 10.3390/ijms26104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/14/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Cervical cancer ranks third among malignant diseases of the female reproductive system and progressively develops through a series of pathological changes known as cervical intraepithelial neoplasia (CIN). Despite being extremely aggressive and causing increased mortality, the main treatment options include surgery or a combination of chemotherapy and radiotherapy, often based on cisplatin-based chemotherapy and external beam radiotherapy or brachytherapy. Cervical dysplasia is an abnormal growth of cells on the surface of the cervix that could lead to cervical cancer. CIN most commonly occurs at the squamocolumnar junction of the cervix, a transitional zone between the squamous epithelium of the vagina and the columnar epithelium of the endocervix. The primary cause of CIN is chronic infection of the cervix with Human Papillomavirus (HPV). Oxidative stress (OS) and chronic inflammation are associated with HPV-induced cervical dysplasia. Reactive oxygen species (ROS) facilitate the progression of CIN through DNA damage, immune evasion, and cellular mutations. Thus, the inflammatory environment, characterized by increased expression of proinflammatory cytokines, contributes to epithelial transformation. Given these mechanisms, antioxidants, including vitamins A, C, D, E, polyphenols, and carotenoids, are being investigated for their potential as adjunctive therapies in CIN management. This review aims to provide a comprehensive analysis of the influence of oxidative stress, antioxidants, and inflammation on cervical cancer.
Collapse
Affiliation(s)
- Ecaterina Tomaziu-Todosia Anton
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
- Department of Obstetrics and Gynecology, Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania
| | - Gabriel-Ioan Anton
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
- Department of Obstetrics and Gynecology, Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania
| | - Ioana-Sadiye Scripcariu
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
- Department of Obstetrics and Gynecology, Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania
| | - Irina Dumitrașcu
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
- Department of Obstetrics and Gynecology, Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania
| | - Dragos Viorel Scripcariu
- Department of Surgical Specialties I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
- Department of Surgery, Regional Institute of Oncology Iasi, General Henri Mathias Berthelot Street, No. 2-4, 700483 Iasi, Romania
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Alexandru Lapusneanu Street, No. 26, 700506 Iasi, Romania
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
| | - Cătălina Ionescu
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700506 Iasi, Romania
| | - Mălina Visternicu
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700506 Iasi, Romania
| | - Demetra Gabriela Socolov
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
- Department of Obstetrics and Gynecology, Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania
| |
Collapse
|
2
|
El Rhabori S, El Aissouq A, Daoui O, Elkhattabi S, Chtita S, Khalil F. Design of new molecules against cervical cancer using DFT, theoretical spectroscopy, 2D/3D-QSAR, molecular docking, pharmacophore and ADMET investigations. Heliyon 2024; 10:e24551. [PMID: 38318045 PMCID: PMC10839811 DOI: 10.1016/j.heliyon.2024.e24551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Cervical cancer is a major health problem of women. Hormone therapy, via aromatase inhibition, has been proposed as a promising way of blocking estrogen production as well as treating the progression of estrogen-dependent cancer. To overcome the challenging complexities of costly drug design, in-silico strategy, integrating Structure-Based Drug Design (SBDD) and Ligand-Based Drug Design (LBDD), was applied to large representative databases of 39 quinazoline and thioquinazolinone compound derivatives. Quantum chemical and physicochemical descriptors have been investigated using density functional theory (DFT) and MM2 force fields, respectively, to develop 2D-QSAR models, while CoMSIA and CoMFA descriptors were used to build 3D-QSAR models. The robustness and predictive power of the reliable models were verified, via several validation methods, leading to the design of 6 new drug-candidates. Afterwards, 2 ligands were carefully selected using virtual screening methods, taking into account the applicability domain, synthetic accessibility, and Lipinski's criteria. Molecular docking and pharmacophore modelling studies were performed to examine potential interactions with aromatase (PDB ID: 3EQM). Finally, the ADMET properties were investigated in order to select potential drug-candidates against cervical cancer for experimental in vitro and in vivo testing.
Collapse
Affiliation(s)
- Said El Rhabori
- Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco
| | - Abdellah El Aissouq
- Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco
| | - Ossama Daoui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Morocco
| | - Fouad Khalil
- Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco
| |
Collapse
|
3
|
Jaberian Asl B, Afarin R, Hatami M, Dehghani Madiseh A, Roshanazadeh M, Rashidi M. Curcumin-Etoposide Synergy: Unveiling the Molecular Mechanisms of Enhanced Apoptosis and Chemoresistance Attenuation in Breast Cancer. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e150978. [PMID: 39834345 PMCID: PMC11742740 DOI: 10.5812/ijpr-150978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 01/22/2025]
Abstract
Background Combining natural compounds with chemotherapeutic agents has emerged as a promising approach for cancer treatment. Curcumin (Cur), a natural polyphenol, is known for its anti-cancer properties, including the ability to induce apoptosis and arrest cell cycle progression. Objectives This study aimed to evaluate the effects of Cur and etoposide (ETO), both individually and in combination, on the induction of apoptosis in breast cancer (BC) cell lines. Methods The impact of Cur and ETO on cell proliferation was assessed using MTT viability assays. Apoptosis induction by these drugs was evaluated through Annexin V flow cytometry and caspase-3 and caspase-9 activity assays. Quantitative real-time PCR was employed to measure Bax and Bcl-2 gene expression levels. Western blotting was conducted to determine protein levels of p53, p21, Bax, and Bcl-2. Results A non-significant dose of ETO was selected based on MTT assay results and combined with 75 µM of Cur. Curcumin enhanced ETO's pro-apoptotic effect by increasing caspase activities. The combination of Cur and ETO significantly reduced Bcl-2 gene expression while upregulating Bax expression. Furthermore, treatment with this combination elevated the protein levels of p53, p21, and Bax, compared to ETO or Cur alone, while significantly decreasing Bcl-2 protein levels. Conclusions Cur has the potential to amplify ETO-induced apoptosis in BC cells. This combination may offer a promising therapeutic approach for BC.
Collapse
Affiliation(s)
- Bahar Jaberian Asl
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Afarin
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Hatami
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amineh Dehghani Madiseh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Roshanazadeh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Stryjecka M, Krochmal-Marczak B, Cebulak T, Kiełtyka-Dadasiewicz A. Assessment of Phenolic Acid Content and Antioxidant Properties of the Pulp of Five Pumpkin Species Cultivated in Southeastern Poland. Int J Mol Sci 2023; 24:ijms24108621. [PMID: 37239966 DOI: 10.3390/ijms24108621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Antioxidant properties and phenolic acid content in the pulp of five pumpkin species were evaluated. The following species cultivated in Poland were included: Cucurbita maxima 'Bambino', Cucurbita pepo 'Kamo Kamo', Cucurbita moschata 'Butternut', Cucurbita ficifolia 'Chilacayote Squash', and Cucurbita argyrosperma 'Chinese Alphabet'. The content of polyphenolic compounds was determined by ultra-high performance liquid chromatography coupled with HPLC, while the total content of phenols and flavonoids and antioxidant properties were determined by spectrophotometric methods. Ten phenolic compounds (protocatechuic acid, p-hydroxybenzoic acid, catechin, chlorogenic acid, caffeic acid, p-coumaric acid, syringic acid, ferulic acid, salicylic acid, kaempferol) were identified. Phenolic acids were the most abundant compounds; the amount of syringic acid was found to be the highest, ranging from 0.44 (C. ficifolia) to 6.61 mg∙100 g-1 FW (C. moschata). Moreover, two flavonoids were detected: catechin and kaempferol. They were found at their highest level of content in C. moschata pulp (catechins: 0.31 mg∙100 g-1 FW; kaempferol: 0.06 mg∙100 g-1 FW), with the lowest amount detected in C. ficifolia (catechins: 0.15 mg∙100 g-1 FW; kaempferol below the limit of detection). Analysis of antioxidant potential showed significant differences depending on the species and the test used. The DPPH radical scavenging activity of C. maxima was 1.03 times higher than C. ficiofilia pulp and 11.60 times higher than C. pepo. In the case of the FRAP assay, the multiplicity of FRAP radical activity in C. maxima pulp was 4.65 times higher than C. Pepo pulp and only 1.08 times higher compared to C. ficifolia pulp. The study findings show the high health-promoting value of pumpkin pulp; however, the content of phenolic acids and antioxidant properties are species dependent.
Collapse
Affiliation(s)
- Małgorzata Stryjecka
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, 22-100 Chełm, Poland
| | - Barbara Krochmal-Marczak
- Department of Plant Production and Food Safety, The University College of Applied Sciences in Krosno, 38-400 Krosno, Poland
| | - Tomasz Cebulak
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 35-601 Rzeszów, Poland
| | - Anna Kiełtyka-Dadasiewicz
- Department of Plant Production Technology and Commodity Sciences, University of Life Sciences, 20-950 Lublin, Poland
| |
Collapse
|
5
|
Kharaeva Z, Trakhtman P, Trakhtman I, De Luca C, Mayer W, Chung J, Ibragimova G, Korkina L. Fermented Mangosteen (Garcinia mangostana L.) Supplementation in the Prevention of HPV-Induced Cervical Cancer: From Mechanisms to Clinical Outcomes. Cancers (Basel) 2022; 14:cancers14194707. [PMID: 36230630 PMCID: PMC9564137 DOI: 10.3390/cancers14194707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Human papillomavirus (HPV) is connected with virtually all cases of cervical cancer. The viral infection-associated chronic inflammation, oxidative stress, and alterations in apoptosis have been considered as leading risk factors for carcinogenesis in humans. In an observational clinical study, we identified oxidative markers and the cervical/circulating ligands of TNF-alpha-induced apoptosis involved in HPV-associated cervical carcinogenesis. In the following clinical trial, 250 females infected with high-cancer-risk HPV16/18 (healthy and pre-cancerous) were recruited into a placebo-controlled clinical study of supplementation with fermented mangosteen (FM, 28g/day, daily) for three months. Our findings indicate that FM, and not a placebo, in combination with routine anti-viral therapy, could prevent, slow down, or even interrupt HPV-associated cervical carcinogenesis, mainly through the suppression of leukocyte recruitment into infected tissue, through anti-inflammatory effects, and through the restoration of nitric oxide metabolite-initiated TRAIL-dependent apoptosis. Abstract In the observational clinical study, we identified the oxidative markers of HPV-associated cervical carcinogenesis and the local/circulating ligands of TNF-alpha-induced apoptosis. Cervical biopsies of 196 females infected with low-cancer-risk HPV10/13 or high-cancer-risk HPV16/18 (healthy, pre-cancerous CIN I and CIN II, and CIN III carcinoma) were analysed for OH radical scavenging, catalase, GSH-peroxidase, myeloperoxidase (MPO), nitrate/nitrite, nitrotyrosine, and isoprostane. Ligands of TNF-alpha-dependent apoptosis (TNF-alpha, TRAIL, IL-2, and sFAS) were determined in cervical fluid, biopsies, and serum. Cervical MPO was highly enhanced, while nitrotyrosine decreased in CIN III. Local/circulating TRAIL was remarkably decreased, and higher-than-control serum TNF-alpha and IL-2 levels were found in the CIN I and CIN III groups. Then, 250 females infected with HPV16/18 (healthy and with CIN I and CIN II) were recruited into a placebo-controlled clinical study of supplementation with fermented mangosteen (FM, 28g/day, daily) for three months. Post-trial colposcopy revealed normal patterns in 100% of the FM group versus 62% of the placebo group. Inflammatory cells in cervical fluid were found in 21% of the FM group versus 40% of the placebo group. Locally, FM drastically diminished MPO and NO2/NO3, while it remarkably increased TRAIL. Additionally, FM supplementation normalised serum TRAIL, TNF-alpha, and IL-2.
Collapse
Affiliation(s)
- Zaira Kharaeva
- Microbiology, Immunology, and Virology Department, Berbekov’s Kabardino-Balkar State Medical University, Chernishevskiy Str. 176, 360000 Nalchik, Russia
| | - Pavel Trakhtman
- Blood Bank, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Mashela Str. 1, 117988 Moscow, Russia
| | - Ilya Trakhtman
- R&D Department, Swiss Dekotra GmbH, Badenerstrasse 549, CH-8048 Zurich, Switzerland
| | - Chiara De Luca
- R&D Department, Medena AG, Industriestrasse 16, CH-8910 Affoltern-am-Albis, Switzerland
| | - Wolfgang Mayer
- R&D Department, Medena AG, Industriestrasse 16, CH-8910 Affoltern-am-Albis, Switzerland
| | - Jessie Chung
- Natural Health Farm Ltd., 39 Jalan Pengacara U1/48, Temasya Industrial Park, Shah Alam 40150, Selangor, Malaysia
| | - Galina Ibragimova
- Centre for Innovative Biotechnological Investigations Nanolab (CIBI-NANOLAB), Vernadskiy Pr. 97, 117437 Moscow, Russia
| | - Liudmila Korkina
- R&D Department, Swiss Dekotra GmbH, Badenerstrasse 549, CH-8048 Zurich, Switzerland
- Centre for Innovative Biotechnological Investigations Nanolab (CIBI-NANOLAB), Vernadskiy Pr. 97, 117437 Moscow, Russia
- Correspondence: or ; Tel.: +39-3497364787
| |
Collapse
|
6
|
Combination Therapy Using Polyphenols: An Efficient Way to Improve Antitumoral Activity and Reduce Resistance. Int J Mol Sci 2022; 23:ijms231810244. [PMID: 36142147 PMCID: PMC9499610 DOI: 10.3390/ijms231810244] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Polyphenols represent a structural class of mainly natural organic chemicals that contain multiple phenol structural units. The beneficial properties of polyphenols have been extensively studied for their antitumor, anti-inflammatory, and antibacterial effects, but nowadays, their medical applications are starting to be extended to many other applications due to their prebiotic role and their impact on the microbiota. This review focused on the use of polyphenols in cancer treatment. Their antineoplastic effects have been demonstrated in various studies when they were tested on numerous cancer lines and some in in vivo models. A431 and SCC13 human skin cancer cell lines treated with EGCG presented a reduced cell viability and enhanced cell death due to the inactivation of β-catenin signaling. Additionally, resveratrol showed a great potential against breast cancer mainly due to its ability to exert both anti-estrogenic and estrogenic effects (based on the concentration) and because it has a high affinity for estrogen receptors ERα and Erβ. Polyphenols can be combined with different classical cytostatic agents to enhance their therapeutic effects on cancer cells and to also protect healthy cells from the aggressiveness of antitumor drugs due to their anti-inflammatory properties. For instance, curcumin has been reported to reduce the gastrointestinal toxicity associated with chemotherapy. In the case of 5-FU-induced, it reduced the gastrointestinal toxicity by increasing the intestinal permeability and inhibiting mucosal damage. Co-administration of EGCG and doxorubicin induced the death of liver cancer cells. EGCG has the ability to inhibit autophagic activity and stop hepatoma Hep3B cell proliferation This symbiotic approach is well-known in medical practice including in multiple chemotherapy.
Collapse
|
7
|
The Use of Ellagic Acid and Annona Muricata Improves Semen Quality in Men with High-Risk Papillomavirus Infection. J Clin Med 2022; 11:jcm11164691. [PMID: 36012935 PMCID: PMC9409659 DOI: 10.3390/jcm11164691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Few data are currently available on the treatment of patients with HPV infection. In particular, there is no agreement on the use of antioxidants in these patients. Ellagic acid and annona muricata appear to improve HPV clearance in infected women. However, it is presently unknown whether they could enhance the clearance of HPV infection in infertile male patients. Aim: To evaluate the effects of a commercially available combined compound containing ellagic acid and annona muricata on semen quality in patients with documented papillomavirus (HPV) infection, and on the frequency of HPV DNA detection in seminal fluid after treatment. In addition, anti-sperm antibodies and the percentage of spermatozoa with fragmented DNA were evaluated. Materials and methods: This was a retrospective case-control study including patients attending our center for infertility. Fifty selected patients who were positive for high risk (HR)-HPV with available semen analysis results were consecutively enrolled. Patients were classified into two groups, according to the clinician’s decision to either administer ellagic acid 100 mg and annona muricata 100 mg (combined tablet formulation) for a period of three months (Group A; 25 patients), or to re-evaluate HPV DNA after a period of active surveillance only (protected sexual intercourse) (Group B; 25 patients). Results: Group A patients had a mean age of 31.0 ± 11.0 years, while Group B was 33.0 ± 8.0 years old (p > 0.05). After three months of treatment with ellagic acid and annona muricata, all conventional seminal parameters improved more significantly in Group A than in Group B patients: sperm concentration = 45 mil/mL vs. 20 mil/mL (p < 0.05); sperm progressive motility = 45% vs. 18% (p < 0.05); and normal sperm morphology = 18% vs. 6% (p < 0.05). After the treatment, the frequency of persistence of HPV DNA in the seminal fluid was significantly lower in Group A patients compared to those in Group B (12/25 = 48% vs. 22/25 = 88%; p < 0.05). Finally, after 3 months, Group A showed a significant reduction in anti-sperm antibodies and in the percentage of spermatozoa with fragmented DNA. Conclusion: The results of this study demonstrate, for the first time, the effects of a commercially available combined compound containing ellagic acid and annona muricata on semen quality in patients with HR-HPV infection, and that this therapy is also associated with a significant reduction in the persistence of HPV DNA in the seminal fluid.
Collapse
|
8
|
Antioxidant and inflammatory potential of diet among women at risk of cervical cancer: findings from a cross-sectional study in Italy. Public Health Nutr 2022; 25:1577-1585. [PMID: 33958013 PMCID: PMC9991670 DOI: 10.1017/s1368980021001944] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
OBJECTIVE To evaluate the association of Composite Dietary Antioxidant Index (CDAI) and Dietary Inflammatory Index (DII) with the prevalence of high-grade cervical intraepithelial neoplasia (CIN). DESIGN A cross-sectional study was conducted on women with abnormal Papanicolaou test, who underwent high-risk human papillomavirus (HPV) screening and histological test through colposcopy. Dietary data were collected using a FFQ and used to assess both CDAI and DII. SETTING Women were recruited from 2012 to 2015 at the Cervical Cancer Screening Unit of the 'Azienda Sanitaria Provinciale' of Catania (Italy). PARTICIPANTS The study included 539 women with a mean age of 40·2 years, who were classified as cases (n 127 with CIN2 or more severe lesions) and controls (n 412 with normal cervical epithelium or CIN1). RESULTS Although we observed a lower proportion of HPV-positive women among those with higher CDAI (P < 0·001), the index was not associated with the diagnosis of CIN2 or more severe lesions. By contrast, women with medium or high DII showed higher odds to be diagnosed with CIN2 or more severe lesions than those with low DII (OR = 2·15; 95 % CI 1·11, 4·17; P = 0·024 and OR = 3·14; 95 % CI 1·50, 6·56; P = 0·002, respectively), after adjusting for age, HPV status, educational level, BMI, smoking status, parity, use of oral contraceptives and supplements. CONCLUSIONS Our findings suggested that a pro-inflammatory diet might be associated with an increased risk of CIN2 and more severe lesions. However, further prospective studies should be encouraged to support this evidence.
Collapse
|
9
|
Ozkur M, Benlier N, Takan I, Vasileiou C, Georgakilas AG, Pavlopoulou A, Cetin Z, Saygili EI. Ginger for Healthy Ageing: A Systematic Review on Current Evidence of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4748447. [PMID: 35585878 PMCID: PMC9110206 DOI: 10.1155/2022/4748447] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022]
Abstract
The world's population is ageing at an accelerated pace. Ageing is a natural, physiological but highly complex and multifactorial process that all species in the Tree of Life experience over time. Physical and mental disabilities, and age-related diseases, would increase along with the increasing life expectancy. Ginger (Zingiber officinale) is a plant that belongs to the Zingiberaceae family, native to Southeast Asia. For hundreds of years, ginger has been consumed in various ways by the natives of Asian countries, both as culinary and medicinal herb for the treatment of many diseases. Mounting evidence suggests that ginger can promote healthy ageing, reduce morbidity, and prolong healthy lifespan. Ginger, a well-known natural product, has been demonstrated to possess antioxidant, anti-inflammatory, anticancer, and antimicrobial properties, as well as an outstanding antiviral activity due to a high concentration of antiviral compounds. In this review, the current evidence on the potential role of ginger and its active compounds in the prevention of ageing is discussed.
Collapse
Affiliation(s)
- Mehtap Ozkur
- Department of Medical Pharmacology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - Necla Benlier
- Department of Medical Pharmacology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - Işıl Takan
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35220, Turkey
| | - Christina Vasileiou
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 157 80 Athens, Greece
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 157 80 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35220, Turkey
| | - Zafer Cetin
- Department of Medical Biology, School of Medicine, SANKO University, Gaziantep, Turkey
- Department of Biological and Biomedical Sciences, Graduate Education Institute, SANKO University, Gaziantep, Turkey
| | - Eyup Ilker Saygili
- Department of Medical Biochemistry, School of Medicine, SANKO University, Gaziantep, Turkey
- Department of Molecular Medicine, Graduate Education Institute, SANKO University, Gaziantep, Turkey
| |
Collapse
|
10
|
Massa S, Pagliarello R, Paolini F, Venuti A. Natural Bioactives: Back to the Future in the Fight against Human Papillomavirus? A Narrative Review. J Clin Med 2022; 11:jcm11051465. [PMID: 35268556 PMCID: PMC8911515 DOI: 10.3390/jcm11051465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) still represents an important threat to health worldwide. Better therapy in terms of further improvement of outcomes and attenuation of related side-effects is desirable. The pharmaceutical industry has always targeted natural substances-phytochemicals in particular-to identify lead compounds to be clinically validated and industrially produced as antiviral and anticancer drugs. In the field of HPV, numerous naturally occurring bioactives and dietary phytochemicals have been investigated as potentially valuable in vitro and in vivo. Interference with several pathways and improvement of the efficacy of chemotherapeutic agents have been demonstrated. Notably, some clinical trials have been conducted. Despite being endowed with general safety, these natural substances are in urgent need of further assessment to foresee their clinical exploitation. This review summarizes the basic research efforts conducted so far in the study of anti-HPV properties of bio-actives with insights into their mechanisms of action and highlights the variety of their natural origin in order to provide comprehensive mapping throughout the different sources. The clinical studies available are reported, as well, to highlight the need of uniformity and consistency of studies in the future to select those natural compounds that may be suited to clinical application.
Collapse
Affiliation(s)
- Silvia Massa
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Correspondence:
| | - Riccardo Pagliarello
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Paolini
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Aldo Venuti
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
11
|
Shoaib S, Islam N, Yusuf N. Phytocompounds from the medicinal and dietary plants: Multi-target agents for cancer prevention and therapy. Curr Med Chem 2022; 29:4481-4506. [PMID: 35232338 DOI: 10.2174/0929867329666220301114251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
Cervical cancer is the fourth leading cause of cancer death among women worldwide. Due to cervical cancer's high incidence and mortality, there is an unmet demand for effective diagnostic, therapeutic, and preventive agents. At present, the preferred treatment strategies for advanced metastatic cervical cancer include surgery, radiotherapy, and chemotherapy. However, cervical cancer is gradually developing resistance to chemotherapy, thereby reducing its efficacy. Over the last several decades, phytochemicals, a general term for compounds produced from plants, have gained attention for their role in preventing cervical cancer. This role in cervical cancer prevention has garnered attention on the medicinal properties of fruits and vegetables. Phytochemicals are currently being evaluated for their ability to block proteins involved in carcinogenesis and chemoresistance against cervical cancer. Chemoresistance to cancer drugs like cisplatin, doxorubicin, and 5-fluorouracil has become a significant limitation of drug-based chemotherapy. However, the combination of cisplatin with other phytochemicals has been identified as a promising alternative to subjugate cisplatin resistance. Phytochemicals are promising chemo-preventive and chemotherapeutic agents as they possess antioxidant, anti-inflammatory, and anti-proliferative potential against many cancers, including cervical cancer. Furthermore, the ability of the phytochemicals to modulate cellular signaling pathways through up and down regulation of various proteins has been claimed for their therapeutic potential. Phytochemicals also display a wide range of biological functions, including cell cycle arrest, apoptosis induction, inhibition of invasion, and migration in cervical cancer cells. Numerous studies have revealed the critical role of different signaling proteins and their signaling pathways in the pathogenesis of cervical cancer. Here, we review the ability of several dietary phytochemicals to alter carcinogenesis by modulating various molecular targets.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Najmul Islam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham AL 35294, United States
| |
Collapse
|
12
|
Paradkar PH, Juvekar AS, Barkume MS, Amonkar AJ, Joshi JV, Soman G, Vaidya ADB. In vitro and in vivo evaluation of a standardized haridra (Curcuma longa Linn) formulation in cervical cancer. J Ayurveda Integr Med 2021; 12:616-622. [PMID: 34531090 PMCID: PMC8642669 DOI: 10.1016/j.jaim.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/09/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background The anti-cancer activity of phytomolecules present in turmeric or haridra (Curcuma longa Linn) extracts against cancer has been described in various ‘in vitro and in vivo’ studies. Objective In the present study, in vitro and in vivo anti-cancer and chemo-preventive activity of a new standardized Supercritical Turmeric Oil Extract (SCTOE) NBFR-03 was evaluated in cervical cancer models. Methods and materials In vitro cytotoxicity of this formulation was assessed at 10, 20, 40, and 80 μg/ml concentrations, in three cervical cancer cell lines (HeLa, SiHa, ME180) using Sulforhodamine B assay. The in vivo anti-cancer activity was evaluated in two groups of female nude mice; the first one was with tumor xenograft implants and at the same time treatment was started with 96 μl/kg/day p.o. and 192 μl/kg/day p.o. NBFR-03 for three months. The second group was kept as chemoprevention group where mice were pre-treated with the formulation (96 μl/kg/day p.o.) for two weeks and injected with cancer cell suspension with continued treatment for three months. Results No cytotoxicity was seen in any cell line with the extract when compared to positive control (Adriamycin 10 μg/ml). In mice the first treatment group with tumor xenograft implants did not show any significant anti-tumor activity but showed a trend where higher dose group had smaller tumor volumes as compared to lower dose group and controls (p = 0.37 and p = 0.34 respectively). The chemopreventive group with pre-treated mice also showed smaller tumor size as compared to controls (p = 0.163). Conclusion NBFR-03 turmeric oil extract showed a promising trend in mice pre-treated with NBFR-03. There is a scope for further studying the potential of this extract as complementary therapy and as a chemopreventive.
Collapse
Affiliation(s)
- P H Paradkar
- Kasturba Health Society- Medical Research Center, Vile Parle West, Mumbai, India.
| | - A S Juvekar
- Anticancer Drug Screening Facility, ACTREC, Kharghar, Navi Mumbai, India
| | - M S Barkume
- Anticancer Drug Screening Facility, ACTREC, Kharghar, Navi Mumbai, India
| | - A J Amonkar
- Kasturba Health Society- Medical Research Center, Vile Parle West, Mumbai, India
| | - J V Joshi
- Kasturba Health Society- Medical Research Center, Vile Parle West, Mumbai, India
| | - G Soman
- Nisarga Biotech Pvt Ltd., Satara, India
| | - A D B Vaidya
- Kasturba Health Society- Medical Research Center, Vile Parle West, Mumbai, India
| |
Collapse
|
13
|
Musarra-Pizzo M, Pennisi R, Ben-Amor I, Mandalari G, Sciortino MT. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses 2021; 13:v13050828. [PMID: 34064347 PMCID: PMC8147851 DOI: 10.3390/v13050828] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections are responsible for several chronic and acute diseases in both humans and animals. Despite the incredible progress in human medicine, several viral diseases, such as acquired immunodeficiency syndrome, respiratory syndromes, and hepatitis, are still associated with high morbidity and mortality rates in humans. Natural products from plants or other organisms are a rich source of structurally novel chemical compounds including antivirals. Indeed, in traditional medicine, many pathological conditions have been treated using plant-derived medicines. Thus, the identification of novel alternative antiviral agents is of critical importance. In this review, we summarize novel phytochemicals with antiviral activity against human viruses and their potential application in treating or preventing viral disease.
Collapse
Affiliation(s)
- Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Shenzhen International Institute for Biomedical Research, 1301 Guanguang Rd. 3F Building 1-B, Silver Star Hi-Tech Park Longhua District, Shenzhen 518116, China
| | - Ichrak Ben-Amor
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Unit of Biotechnology and Pathologies, Higher Institute of Biotechnology of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| |
Collapse
|
14
|
Gao YH, Yu L, Liu ZS, Li YF. Aristocratic human papillomavirus drove cervical cancer: a study of the therapeutic potential of the combination of interferon with zinc. Mol Cell Biochem 2021; 476:757-765. [PMID: 33099745 DOI: 10.1007/s11010-020-03941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
Human papillomavirus (HPV) infection is related to cancer growth of vaginal, cervical, vulva, penile, anogenital, and non-genital oropharyngeal sites. HPV, as a sexually transmitted virus, infects all sexes similarly but with more significant pathological risks in women. This accounts for high mortality due to late detection and poor prognosis. The initial development and eventual progress of this cancer type depend entirely on three main oncogenes E5, E6 and E7, constitutively expressed to lead to carcinogenesis. Despite an opportunity for pharmacological therapy, there is still a shortage of medical treatment that may remove HPV from infected lesions. This study offers a concise summary of the nature of the issue and the current status of work on potential lead molecules and therapeutic approaches that show the capacity of HPV therapies to counteract the roles of deregulation of E5, E6, and E7.
Collapse
Affiliation(s)
- Yun-He Gao
- Department of Pathology, Second Hospital of Jilin University, Changchun, 130022, Jilin, China
| | - Lei Yu
- Department of Radiation Oncology, Second Hospital of Jilin University, Changchun, 130022, Jilin, China
| | - Zhong-Shan Liu
- Department of Radiation Oncology, Second Hospital of Jilin University, Changchun, 130022, Jilin, China
| | - Yun-Feng Li
- Department of Radiation Oncology, Second Hospital of Jilin University, Changchun, 130022, Jilin, China.
| |
Collapse
|
15
|
Evaluation of Dimer of Epicatechin from an Endophytic Fungus Curvularia australiensis FC2AP on Acute Toxicity Levels, Anti-Inflammatory and Anti-Cervical Cancer Activity in Animal Models. Molecules 2021; 26:molecules26030654. [PMID: 33513835 PMCID: PMC7866062 DOI: 10.3390/molecules26030654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/20/2022] Open
Abstract
Cervical cancer, as the most frequent cancer in women globally and accounts almost 14% in India. It can be prevented or treated with vaccines, radiation, chemotherapy, and brachytherapy. The chemotherapeutic agents cause adverse post effects by the destruction of the neighboring normal cells or altering the properties of the cells. In order to reduce the severity of the side effects caused by the chemically synthesized therapeutic agents, the current research developed an anti-cancer agent dimer of epicatechin (DoE), a natural bioactive secondary metabolite (BSM) mediated from an endophytic fungus Curvularia australiensis FC2AP. The investigation has initiated with the evaluation of inhibiting the angiogenesis which is a main activity in metastasis, and it was assessed through Hen’s Egg Test on Chorio Allantoic Membrane (HET-CAM) test; the BSM inhibited the growth of blood vessels in the developing chick embryo. Further the DoE was evaluated for its acute toxicity levels in albino mice, whereas the survival dose was found to be 1250 mg/kg and the lethal dose was 1500 mg/kg body weight of albino mice; hematological, biochemical, and histopathological analyses were assessed. The anti-inflammatory responses of the DoE were evaluated in carrageenan induced Wistar rats and the reduction of inflammation occurred in a dose-dependent manner. By fixing the effective dose for anti-inflammation analysis, the DoE was taken for the anti-cervical cancer analysis in benzo (a) pyrene induced female Sprague-Dawley rats for 60 days trial. After the stipulated days, the rats were taken for hematological antioxidants, lipid peroxidation (LPO), member bound enzymes, cervical histopathological and carcinogenic markers analyses. The results specified that the DoE has the capability of reducing the tumor in an efficient way. This is the first report of flavonoid-DoE production from an endophytic fungus C. australiensis has the anticancer potentiality and it can be stated as anti-cancer drug.
Collapse
|
16
|
Redox-dependent mechanisms of carcinogenesis in human papillomavirus infection. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Therapeutic role of curcumin and its novel formulations in gynecological cancers. J Ovarian Res 2020; 13:130. [PMID: 33148295 PMCID: PMC7643381 DOI: 10.1186/s13048-020-00731-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Gynecological cancers are among the leading causes of cancer-associated mortality worldwide. While the number of cases are rising, current therapeutic approaches are not efficient enough. There are considerable side-effects as well as treatment resistant types. In addition, which all make the treatment complicated for afflicted cases. Therefore, in order to improve efficacy of the treatment process and patients’ quality of life, searching for novel adjuvant treatments is highly warranted. Curcumin, a promising natural compound, is endowed with numerous therapeutic potentials including significant anticancer effects. Recently, various investigations have demonstrated the anticancer effects of curcumin and its novel analogues on gynecological cancers. Moreover, novel formulations of curcumin have resulted in further propitious effects. This review discusses these studies and highlights the possible underlying mechanisms of the observed effects.
Collapse
|
18
|
Yuan Y, Cai X, Shen F, Ma F. HPV post-infection microenvironment and cervical cancer. Cancer Lett 2020; 497:243-254. [PMID: 33122098 DOI: 10.1016/j.canlet.2020.10.034] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted virus worldwide. More than 99% of cervical cancer cases are associated with certain types of HPVs, termed high-risk types. In addition to the well-known transformative properties, HPVs-infected cells actively instruct the local milieu and create a supportive post-infection microenvironment (PIM), which is becoming recognized as a key factor for the viral persistence, propagation, and malignant progression. The PIM is initiated and established via a complex interplay among virus-infected cells, immune cells, and host stroma, as well as their derived components including chemokines, cytokines, extracellular vesicles, and metabolites. In this review, we summarize the current understanding of these key components, characteristics, and effects of the PIM, and highlights the prospect of targeting the PIM as a potential strategy to improve therapeutic outcomes for cervical cancer.
Collapse
Affiliation(s)
- Yi Yuan
- Suzhou Institute of Systems Medicine, Suzhou, 215123, China; Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine of Tongji University, Shanghai, 200065, China
| | - Xushan Cai
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Jiading District, Shanghai, 201821, China
| | - Fangrong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215001, China.
| | - Feng Ma
- Suzhou Institute of Systems Medicine, Suzhou, 215123, China.
| |
Collapse
|
19
|
Garzón-Castaño SC, Jiménez-González FJ, Veloza LA, Sepúlveda-Arias JC. Activation of the Keap1-Nrf2 pathway by specioside and the n-butanol extract from the inner bark of Tabebuia rosea (Bertol) DC. F1000Res 2020; 9:1262. [PMID: 33214880 PMCID: PMC7653643 DOI: 10.12688/f1000research.26901.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 11/11/2023] Open
Abstract
Background: A large number of chemical compounds exert their antioxidant effects by activation of key transcriptional regulatory mechanisms, such as the transcription factor Nrf2. The aim of this study was to evaluate the activation of the Keap1-Nrf2 pathway by both the n-butanol extract obtained from the inner bark of Tabebuia rosea (Bertol) DC and specioside isolated from this extract. Methods: The antioxidant activity of the extract and specioside isolated from the inner bark of T. rosea were evaluated using the oxygen radical absorbance capacity (ORAC) and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH) techniques, whereas their effects on the viability of HepG2 cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The effects of the compound and the extract on activating the Keap1-Nrf2 pathway were evaluated using a Nrf2 Transcription Factor Assay kit. Induction of the Nrf2-mediated antioxidant response genes HMOX-1 and NQO1 was evaluated by real-time PCR. The protective effects against H 2O 2-induced oxidative stress in HepG2 cells was determined as the percent protection using the MTT method. Results: Both the n-butanol extract and specioside exhibited activity at low concentrations without affecting cellular viability, since the cell viability was greater than 80% after 24 hours of exposure at each tested concentration. In addition, Nrf2 dissociated from Keap1 after treatment with the n-butanol extract at a concentration of 0.25 µg/mL after 4 hours of exposure. An increase in the Nrf2 level in the cytoplasm after 4 hours of exposure to 2 μM specioside was observed. Nrf2 levels stabilized in the nucleus 12 hours after stimulation with both specioside and the extract. After 6 hours of stimulation, both the extract and specioside induced the expression of HMOX-1 and NQO1. Conclusion: The n-butanol extract from the inner bark of T. rosea and specioside produced protective effects against H 2O 2-induced oxidative stress in HepG2 cells.
Collapse
Affiliation(s)
- Sandra Catalina Garzón-Castaño
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
- Grupo de Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | | | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnologías, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| |
Collapse
|
20
|
Garzón-Castaño SC, Jiménez-González FJ, Veloza LA, Sepúlveda-Arias JC. Activation of the Keap1-Nrf2 pathway by specioside and the n-butanol extract from the inner bark of Tabebuia rosea (Bertol) DC. F1000Res 2020; 9:1262. [PMID: 33214880 PMCID: PMC7653643 DOI: 10.12688/f1000research.26901.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2020] [Indexed: 11/20/2022] Open
Abstract
Background: A large number of chemical compounds exert their antioxidant effects by activation of key transcriptional regulatory mechanisms, such as the transcription factor Nrf2. The aim of this study was to evaluate the activation of the Keap1-Nrf2 pathway by both the n-butanol extract obtained from the inner bark of Tabebuia rosea (Bertol) DC and specioside isolated from this extract. Methods: The antioxidant activity of the extract and specioside isolated from the inner bark of T. rosea were evaluated using the oxygen radical absorbance capacity (ORAC) and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH) techniques, whereas their effects on the viability of HepG2 cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The effects of the compound and the extract on activating the Keap1-Nrf2 pathway were evaluated using a Nrf2 Transcription Factor Assay kit. Induction of the Nrf2-mediated antioxidant response genes HMOX-1 and NQO1 was evaluated by real-time PCR. The protective effects against H 2O 2-induced oxidative stress in HepG2 cells was determined as the percent protection using the MTT method. Results: Both the n-butanol extract and specioside exhibited activity at low concentrations without affecting cellular viability, since the cell viability was greater than 80% after 24 hours of exposure at each tested concentration. In addition, Nrf2 dissociated from Keap1 after treatment with the n-butanol extract at a concentration of 0.25 µg/mL after 4 hours of exposure. An increase in the Nrf2 level in the cytoplasm after 4 hours of exposure to 2 μM specioside was observed. Nrf2 levels stabilized in the nucleus 12 hours after stimulation with both specioside and the extract. After 6 hours of stimulation, both the extract and specioside induced the expression of HMOX-1 and NQO1. Conclusion: The n-butanol extract from the inner bark of T. rosea and specioside produced protective effects against H 2O 2-induced oxidative stress in HepG2 cells.
Collapse
Affiliation(s)
- Sandra Catalina Garzón-Castaño
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
- Grupo de Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | | | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnologías, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| |
Collapse
|
21
|
Garzón-Castaño SC, Jiménez-González FJ, Veloza LA, Sepúlveda-Arias JC. Activation of the Keap1-Nrf2 pathway by specioside and the n-butanol extract from the inner bark of Tabebuia rosea (Bertol) DC. F1000Res 2020; 9:1262. [PMID: 33214880 PMCID: PMC7653643 DOI: 10.12688/f1000research.26901.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 11/11/2023] Open
Abstract
Background: A large number of chemical compounds exert their antioxidant effects by activation of key transcriptional regulatory mechanisms, such as the transcription factor Nrf2. The aim of this study was to evaluate the activation of the Keap1-Nrf2 pathway by both the n-butanol extract obtained from the inner bark of Tabebuia rosea (Bertol) DC and specioside isolated from this extract. Methods: The antioxidant activity of the extract and specioside isolated from the inner bark of T. rosea were evaluated using the oxygen radical absorbance capacity (ORAC) and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH) techniques, whereas their effects on the viability of HepG2 cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The effects of the compound and the extract on activating the Keap1-Nrf2 pathway were evaluated using a Nrf2 Transcription Factor Assay kit. Induction of the Nrf2-mediated antioxidant response genes HMOX-1 and NQO1 was evaluated by real-time PCR. The protective effects against H 2O 2-induced oxidative stress in HepG2 cells was determined as the percent protection using the MTT method. Results: Both the n-butanol extract and specioside exhibited activity at low concentrations without affecting cellular viability, since the cell viability was greater than 80% after 24 hours of exposure at each tested concentration. In addition, Nrf2 dissociated from Keap1 after treatment with the n-butanol extract at a concentration of 0.25 µg/mL after 4 hours of exposure. An increase in the Nrf2 level in the cytoplasm after 4 hours of exposure to 2 μM specioside was observed. Nrf2 levels stabilized in the nucleus 12 hours after stimulation with both specioside and the extract. After 6 hours of stimulation, both the extract and specioside induced the expression of HMOX-1 and NQO1. Conclusion: The n-butanol extract from the inner bark of T. rosea and specioside produced protective effects against H 2O 2-induced oxidative stress in HepG2 cells.
Collapse
Affiliation(s)
- Sandra Catalina Garzón-Castaño
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
- Grupo de Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | | | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnologías, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| |
Collapse
|
22
|
Aarthy M, Panwar U, Singh SK. Structural dynamic studies on identification of EGCG analogues for the inhibition of Human Papillomavirus E7. Sci Rep 2020; 10:8661. [PMID: 32457393 PMCID: PMC7250877 DOI: 10.1038/s41598-020-65446-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/04/2020] [Indexed: 02/04/2023] Open
Abstract
High risk human papillomaviruses are highly associated with the cervical carcinoma and the other genital tumors. Development of cervical cancer passes through the multistep process initiated from benign cyst to increasingly severe premalignant dysplastic lesions in an epithelium. Replication of this virus occurs in the fatal differentiating epithelium and involves in the activation of cellular DNA replication proteins. The oncoprotein E7 of human papillomavirus expressed in the lower epithelial layers constrains the cells into S-phase constructing an environment favorable for genome replication and cell proliferation. To date, no suitable drug molecules exist to treat HPV infection whereas anticipation of novel anti-HPV chemotherapies with distinctive mode of actions and identification of potential drugs are crucial to a greater extent. Hence, our present study focused on identification of compounds analogue to EGCG, a green tea molecule which is considered to be safe to use for mammalian systems towards treatment of cancer. A three dimensional similarity search on the small molecule library from natural product database using EGCG identified 11 potential small molecules based on their structural similarity. The docking strategies were implemented with acquired small molecules and identification of the key interactions between protein and compounds were carried out through binding free energy calculations. The conformational changes between the apoprotein and complexes were analyzed through simulation performed thrice demonstrating the dynamical and structural effects of the protein induced by the compounds signifying the domination. The analysis of the conformational stability provoked us to describe the features of the best identified small molecules through electronic structure calculations. Overall, our study provides the basis for structural insights of the identified potential identified small molecules and EGCG. Hence, the identified analogue of EGCG can be potent inhibitors against the HPV 16 E7 oncoprotein.
Collapse
Affiliation(s)
- Murali Aarthy
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630004, India
| | - Umesh Panwar
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630004, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630004, India.
| |
Collapse
|
23
|
Aliyazıcıoğlu Y, Demir S, Özer Yaman S, Şener SÖ, Ayazoğlu Demir E, Aliyazıcıoğlu R, Turan İ. Dorycnium pentaphyllum'un Fitokimyasal Analizi ve Serviks Kanseri Hücreleri Üzerindeki Antiproliferatif Etkisi. ACTA ACUST UNITED AC 2019. [DOI: 10.18016/ksutarimdoga.vi.579938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Xia X, Xia J, Yang H, Li Y, Liu S, Cao Y, Tang L, Yu X. Baicalein blocked cervical carcinoma cell proliferation by targeting CCND1 via Wnt/β-catenin signaling pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2729-2736. [PMID: 31284780 DOI: 10.1080/21691401.2019.1636055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to investigate the inhibitory effect of baicalein on the proliferation of cervical carcinoma cells and stimulate cervical carcinoma cells with baicalein. MTT method was used to observe cell proliferation. Flow cytometry was used to observe cell cycle, and gene technology was used to observe the expression of corresponding genes at the level of gene and protein. β-catenin activity was assessed using Western blot and ChIP. Baicalein suppressed cervical carcinoma cell HeLa proliferation by enhancing the activity of caspase-3. Baicalein blocked cell cycle at G0/G1 stage by inhibiting the expression of some genes. At the same time, it can prevent the nuclear translocation of β-catenin and inhibit the activity of Wnt. When the Wnt signaling pathway is increased, the proliferation of HeLa cells is inhibited, and apoptosis is promoted in this way. In conclusion, it indicated that baicalein inhibits cervical carcinoma progression by targeting CCND1 via Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiulian Xia
- a Department of Obstetrics and Gynecology, The Affiliated TCM Hospital of South West Medical University , Luzhou , China
| | - Jiyi Xia
- b School of Medical Information and Engineering, Southwest Medical University , Luzhou , China
| | - Hai Yang
- a Department of Obstetrics and Gynecology, The Affiliated TCM Hospital of South West Medical University , Luzhou , China
| | - Yan Li
- c Medicine Experimental Center, The Affiliated Hospital of Southwest Medical University , Luzhou , China
| | - Shengyue Liu
- a Department of Obstetrics and Gynecology, The Affiliated TCM Hospital of South West Medical University , Luzhou , China
| | - Yong Cao
- c Medicine Experimental Center, The Affiliated Hospital of Southwest Medical University , Luzhou , China
| | - Li Tang
- c Medicine Experimental Center, The Affiliated Hospital of Southwest Medical University , Luzhou , China
| | - Xiaolan Yu
- a Department of Obstetrics and Gynecology, The Affiliated TCM Hospital of South West Medical University , Luzhou , China
| |
Collapse
|
25
|
Shareef MA, Khan I, Babu BN, Kamal A. A Comprehensive Review on the Therapeutic Versatility of Imidazo [2,1-b]thiazoles. Curr Med Chem 2019; 27:6864-6887. [PMID: 31362648 DOI: 10.2174/0929867326666190729152440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/08/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Imidazo[2,1-b]thiazole, a well-known fused five-membered hetrocycle is one of the most promising and versatile moieties in the area of medicinal chemistry. Derivatives of imidazo[2,1-b]thiazole have been investigated for the development of new derivatives that exhibit diverse pharmacological activities. This fused heterocycle is also a part of a number of therapeutic agents. OBJECTIVE To review the extensive pharmacological activities of imidazo[2,1-b]thiazole derivatives and the new molecules developed between 2000-2018 and their usefulness. METHOD Thorough literature review of all relevant papers and patents was conducted. CONCLUSION The present review, covering a number of aspects, is expected to provide useful insights in the design of imidazo[2,1-b]thiazole-based compounds and would inspire the medicinal chemists for a comprehensive and target-oriented information to achieve a major breakthrough in the development of clinically viable candidates.
Collapse
Affiliation(s)
- Mohd Adil Shareef
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad,
500007 India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Irfan Khan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India,Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Bathini Nagendra Babu
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad,
500007 India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ahmed Kamal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India,Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India,School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi
110062, India
| |
Collapse
|
26
|
Demir S, Yaman SO, Sener SO, Ayazoglu Demir E, Aliyazicioglu R, Ozgen U, Mentese A, Deger O, Aliyazicioglu Y. Dorycnium pentaphyllum Extract Has Antiproliferative Effect on Human Cervix and Colon Cancer Cells. Nutr Cancer 2019; 72:504-512. [PMID: 31290695 DOI: 10.1080/01635581.2019.1636100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
Although several studies have investigated the cytotoxic effects of different Fabaceae species, limited researches have been conducted on the cytotoxic effect of Dorycnium pentaphyllum. The aim of this study was to evaluate the phenolic characterization and the cytotoxic effect of D. pentaphyllum on human cervix (HeLa) and colon (WiDr) cancer cells and the possible mechanisms involved. Total phenolic content (TPC) and phenolic characterization of the extract were investigated using the Folin-Cioceltau method and RP-HPLC, respectively. The cytotoxic effect of the extract was evaluated using the MTT assay. The mechanism involved in the extract's cytotoxic effect was then evaluated in terms of apoptosis and the cell cycle using flow cytometry, while mitochondrial membrane potential (MMP) was investigated using the fluorometric method. The TPC value of the extract was 141.2 ± 0.8 mg gallic acid equivalent per g sample, and quercetin was detected as major phenolics. D. pentaphyllum extract exhibited a selective cytotoxic effect on HeLa and WiDr cells compared to normal fibroblast and colon cells, respectively. The extract induced cell cycle arrest at the S phase and apoptosis via reduced MMP in these cells. Further studies may be useful in developing a natural product based new generation pharmacological agent.
Collapse
Affiliation(s)
- Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkiye
| | - Serap Ozer Yaman
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Sila Ozlem Sener
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye
| | - Elif Ayazoglu Demir
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkiye
| | - Rezzan Aliyazicioglu
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye
| | - Ufuk Ozgen
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye
| | - Ahmet Mentese
- Program of Medical Laboratory Techniques, Vocational School of Health Sciences, Karadeniz Technical, University, Trabzon, Turkiye
| | - Orhan Deger
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| |
Collapse
|
27
|
Corso CR, Stipp MC, Adami ER, da Silva LM, Mariott M, de Andrade SF, de Souza Ramos EA, Klassen G, Beltrame OC, Queiroz-Telles JE, de Oliveira CS, Stefanello MÉA, Acco A. Salvia lachnostachys Benth has antitumor and chemopreventive effects against solid Ehrlich carcinoma. Mol Biol Rep 2019; 46:4827-4841. [PMID: 31270760 DOI: 10.1007/s11033-019-04931-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022]
Abstract
Salvia lachnostachys is an herbaceous plant with anti-inflammatory, analgesic and cytotoxic properties. This study investigated the antitumor effect of an ethanolic extract of Salvia lachnostachys leaves (EES) in a solid Ehrlich carcinoma model. Ehrlich cells were inoculated subcutaneously in the right pelvic member (2 × 106 cells) in female Swiss mice. The animals were treated with vehicle (10 mL kg-1, p.o.), EES (30 and 100 mg kg-1, p.o.), or methotrexate (2.5 mg kg-1, i.p.) for 21 days (early treatment) or 14 days (late treatment) after tumor inoculation, or 10 days before tumor inoculation and continued for 21 days after tumor inoculation (chemopreventive treatment). The acute toxicity test was performed according OECD guidelines Late treatment with EES had no antitumor effect. Early treatment with 100 mg kg-1 EES prevented tumor development, increased tumor necrosis factor-α (TNF-α) levels and decreased tumor superoxide dismutase (SOD) activity, interleukin-10 (IL-10) levels and Cyclin D1 expression, and tumor cell necrosis was observed. Chemopreventive treatment with EES for 10 and 31 days prevented tumor development in the same manner. EES treatment for 31 days decreased hepatic and tumor SOD activity, tumor IL-10 levels and Cyclin D1 expression, and increased tumor reduced glutathione, N-acetylglucosaminidase, reactive oxygen species, lipid peroxidation, TNF-α levels and Nrf2 expression. No toxicity was observed in the acute toxicity assay. In conclusion, EES had an antitumor effect by inhibiting Cyclin D1 expression and increasing inflammation with early and chemopreventive treatment. Modulation of the antioxidant system also contribute for the antitumor effects of EES.
Collapse
Affiliation(s)
- Claudia Rita Corso
- Pharmacology Department, Biological Sciences Sector, Federal University of Parana, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Maria Carolina Stipp
- Pharmacology Department, Biological Sciences Sector, Federal University of Parana, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Eliana Rezende Adami
- Pharmacology Department, Biological Sciences Sector, Federal University of Parana, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, University Vale of Itajaí, Itajaí, SC, Brazil
| | - Marihá Mariott
- Postgraduate Program in Pharmaceutical Sciences, University Vale of Itajaí, Itajaí, SC, Brazil
| | | | | | - Giseli Klassen
- Basic Pathology Department, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | | | | | - Alexandra Acco
- Pharmacology Department, Biological Sciences Sector, Federal University of Parana, PO Box 19031, Curitiba, PR, 81531-980, Brazil.
| |
Collapse
|
28
|
Abstract
The effects of the added β-cyclodextrin (β-CD) in the tea infusion extraction on color quality of green tea (Camellia sinensis) infusion have been investigated in detail. Due to the added β-CD, the color of the tea infusion can be brightened effectively, and meanwhile, compared to conventional extraction, the retentions of tea polyphenols, catechins, and chlorophyll have also been proved to be increased greatly. Furthermore, the additive β-CD can also increase the viscosity of the tea infusion. In addition, the existing β-CD can lower the oxygen solubility ratio in tea infusions effectively, from which a high-quality tea infusion can be prepared ready for further processing.
Collapse
|
29
|
Phenolic Compounds from Butia odorata (Barb. Rodr.) Noblick Fruit and Its Antioxidant and Antitumor Activities. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01515-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, Zoumpourlis V, Amery T, Galanis A, Pappa A, Panayiotidis MI. The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants (Basel) 2019; 8:E106. [PMID: 31003534 PMCID: PMC6523696 DOI: 10.3390/antiox8040106] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown evidence in support of the beneficial effects of phytochemicals in preventing chronic diseases, including cancer. Among such phytochemicals, sulphur-containing compounds (e.g., isothiocyanates (ITCs)) have raised scientific interest by exerting unique chemo-preventive properties against cancer pathogenesis. ITCs are the major biologically active compounds capable of mediating the anticancer effect of cruciferous vegetables. Recently, many studies have shown that a higher intake of cruciferous vegetables is associated with reduced risk of developing various forms of cancers primarily due to a plurality of effects, including (i) metabolic activation and detoxification, (ii) inflammation, (iii) angiogenesis, (iv) metastasis and (v) regulation of the epigenetic machinery. In the context of human malignant melanoma, a number of studies suggest that ITCs can cause cell cycle growth arrest and also induce apoptosis in human malignant melanoma cells. On such basis, ITCs could serve as promising chemo-therapeutic agents that could be used in the clinical setting to potentiate the efficacy of existing therapies.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Georgios Koutsidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Nikos Mavroudis
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK.
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Unit of Clinical Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Sotiris Botaitis
- Second Department of Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Tom Amery
- The Watrercress Company / The Wasabi Company, Waddock, Dorchester, Dorset DT2 8QY, UK.
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
31
|
Natural Compound Modulates the Cervical Cancer Microenvironment-A Pharmacophore Guided Molecular Modelling Approaches. J Clin Med 2018; 7:jcm7120551. [PMID: 30558287 PMCID: PMC6306730 DOI: 10.3390/jcm7120551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is regarded as one of the major burdens noticed in women next to breast cancer. Although, human papilloma viruses (HPVs) are regarded as the principal causative agents, they require certain other factors such as oestrogen hormone to induce cervical cancer. Aromatase is an enzyme that converts androgens into oestrogens and hindering this enzyme could subsequently hamper the formation of oestrogen thereby alleviating the disease. Accordingly, in the current investigation, a structure based pharmacophore was generated considering two proteins bearing the Protein Data Bank (PDB) codes 3EQM (pharm 1) and 3S7S (pharm 2), respectively. The two models were employed as the 3D query to screen the in-house built natural compounds database. The obtained 51 compounds were escalated to molecular docking studies to decipher on the binding affinities and to predict the quintessential binding modes which were affirmed by molecular dynamics (MD) simulations. The compound has induced dose-dependent down regulation of PP2B, Nitric oxide synthase-2 (NOS2), and Interleukin 6 (IL-6) genes in the HeLa cells and has modulated the expression of apoptotic genes such as Bax, Bcl2, and caspases-3 at different concentrations. These results guide us to comprehend that the identified aromatase inhibitor was effective against the cervical cancer cells and additionally could server as scaffolds in designing new drugs.
Collapse
|
32
|
Georgescu SR, Mitran CI, Mitran MI, Caruntu C, Sarbu MI, Matei C, Nicolae I, Tocut SM, Popa MI, Tampa M. New Insights in the Pathogenesis of HPV Infection and the Associated Carcinogenic Processes: The Role of Chronic Inflammation and Oxidative Stress. J Immunol Res 2018; 2018:5315816. [PMID: 30225270 PMCID: PMC6129847 DOI: 10.1155/2018/5315816] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/08/2018] [Indexed: 11/17/2022] Open
Abstract
Human papillomavirus (HPV) is a small double-stranded DNA virus with tropism for epithelial cells. To this date, over 150 genotypes are known and are classified into two major groups, low-risk and high-risk strains, depending on the ability of the virus to induce malignant transformation. The host's immunity plays a central role in the course of the infection; therefore, it may not be clinically manifest or may produce various benign or malignant lesions. The pathogenic mechanisms are complex and incompletely elucidated. Recent research suggests the role of chronic inflammation and oxidative stress (OS) in the pathogenesis of HPV infection and the associated carcinogenic processes. Chronic inflammation induces OS, which in turn promotes the perpetuation of the inflammatory process resulting in the release of numerous molecules which cause cell damage. Reactive oxygen species exert a harmful effect on proteins, lipids, and nucleic acids. Viral oncogenes E5, E6, and E7 are involved in the development of chronic inflammation through various mechanisms. In addition, HPV may interfere with redox homeostasis of host cells, inducing OS which may be involved in the persistence of the infection and play a certain role in viral integration and promotion of carcinogenesis. Knowledge regarding the interplay between chronic inflammation and OS in the pathogenesis of HPV infection and HPV-induced carcinogenesis has important consequences on the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Simona Roxana Georgescu
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Cristina Iulia Mitran
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Madalina Irina Mitran
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Constantin Caruntu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 22-24 Gr. Manolescu, Bucharest 011233, Romania
| | - Maria Isabela Sarbu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Clara Matei
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Ilinca Nicolae
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
| | | | - Mircea Ioan Popa
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Cantacuzino” National Medico-Military Institute for Research and Development, 103 Splaiul Independentei, 050096 Bucharest, Romania
| | - Mircea Tampa
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| |
Collapse
|
33
|
Huang Z, Delparastan P, Burch P, Cheng J, Cao Y, Messersmith PB. Injectable dynamic covalent hydrogels of boronic acid polymers cross-linked by bioactive plant-derived polyphenols. Biomater Sci 2018; 6:2487-2495. [PMID: 30069570 PMCID: PMC6107875 DOI: 10.1039/c8bm00453f] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
Abstract
We report here the development of hydrogels formed at physiological conditions using PEG (polyethylene glycol) based polymers modified with boronic acids (BAs) as backbones and the plant derived polyphenols ellagic acid (EA), epigallocatechin gallate (EGCG), tannic acid (TA), nordihydroguaiaretic acid (NDGA), rutin trihydrate (RT), rosmarinic acid (RA) and carminic acid (CA) as linkers. Rheological frequency sweep and single molecule force spectroscopy (SMFS) experiments show that hydrogels linked with EGCG and TA are mechanically stiff, arising from the dynamic covalent bond formed by the polyphenol linker and boronic acid functionalized polymer. Stability tests of the hydrogels in physiological conditions revealed that gels linked with EA, EGCG, and TA are stable. We furthermore showed that EA- and EGCG-linked hydrogels can be formed via in situ gelation in pH 7.4 buffer, and provide long-term steady state release of bioactive EA. In vitro experiments showed that EA-linked hydrogel significantly reduced the viability of CAL-27 human oral cancer cells via gradual release of EA.
Collapse
Affiliation(s)
- Zhuojun Huang
- Department of Materials Science and Engineering
, University of California
, Berkeley
,
Berkeley
, CA
94720-1760
, USA
.
| | - Peyman Delparastan
- Department of Materials Science and Engineering
, University of California
, Berkeley
,
Berkeley
, CA
94720-1760
, USA
.
| | - Patrick Burch
- Department of Bioengineering
, University of California
, Berkeley
,
Berkeley
, CA
94720-1760
, USA
| | - Jing Cheng
- Department of Bioengineering
, University of California
, Berkeley
,
Berkeley
, CA
94720-1760
, USA
| | - Yi Cao
- Department of Physics
, Nanjing University
,
Nanjing
, 210093
, China PR
| | - Phillip B. Messersmith
- Department of Materials Science and Engineering
, University of California
, Berkeley
,
Berkeley
, CA
94720-1760
, USA
.
- Department of Bioengineering
, University of California
, Berkeley
,
Berkeley
, CA
94720-1760
, USA
- Materials Science Division
, Lawrence Berkeley National Laboratory
,
Berkeley
, CA
, USA
| |
Collapse
|
34
|
Yu X, Liu Y, Wang Y, Mao X, Zhang Y, Xia J. Baicalein induces cervical cancer apoptosis through the NF-κB signaling pathway. Mol Med Rep 2018; 17:5088-5094. [PMID: 29393414 PMCID: PMC5865972 DOI: 10.3892/mmr.2018.8493] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/25/2017] [Indexed: 01/03/2023] Open
Abstract
To investigate the mechanism of baicalein in inducing human cervical cancer cell line C33A apoptosis. Baicalein (200 µM) was used to treat C33A cells. Cell proliferation was tested by the MTT assay. Cell apoptosis was detected by the TUNEL assay and caspase‑3 activity measurement. Cell cycle was determined by flow cytometry and associated gene expression at mRNA and protein levels. Nuclear factor (NF)‑κB activity was assessed by luciferase assay and western blotting. Baicalein suppressed cervical cancer cell C33A proliferation and induced cell apoptosis by activating caspase‑3 activity. Baicalein blocked cell cycle in G0/G1 phase through regulating the expression of associated genes. Baicalein inhibited NF‑κB activity by repressing nuclear translocation. Baicalein suppressed C33A proliferation and promoted cellular apoptosis by inhibiting NF‑κB signaling pathway. In conclusion, the results indicate that baicalein can inhibit cervical cancer cell proliferation and promote cell apoptosis by affecting NF-κB activity.
Collapse
Affiliation(s)
- Xiaolan Yu
- Department of Obstetrics and Gynecology, The Affiliated TCM Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuqing Liu
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yongzhou Wang
- Department of Obstetrics and Gynecology, The Affiliated TCM Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiguan Mao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yujiao Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jiyi Xia
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
35
|
Sunil Kumar BV, Singh S, Verma R. Anticancer potential of dietary vitamin D and ascorbic acid: A review. Crit Rev Food Sci Nutr 2018; 57:2623-2635. [PMID: 26479551 DOI: 10.1080/10408398.2015.1064086] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancers have been the leading cause of death worldwide and poor diet and physical inactivity are major risk factors in cancer-related deaths. Micronutrients such as vitamins and minerals appear to have preventive properties against cancer. One important mechanism by which dietary changes can exert preventive effects on cancer is via the modulation of micronutrient concentrations in target tissues. Many of these micronutrients are available in the form of dietary supplements, and the intake of these supplements is prevalent in various parts of the world. However, in most cases, it is not known which micronutrient (or combination of micronutrients) is best when it comes to lowering the risk of cancer. The present review illustrates the effect of vitamin D and ascorbic acid intake on preventing cancer.
Collapse
Affiliation(s)
- B V Sunil Kumar
- a School of Animal Biotechnology , Guru Angad Dev Veterinary and Animal Sciences University , Ludhiana , India
| | - Satparkash Singh
- a School of Animal Biotechnology , Guru Angad Dev Veterinary and Animal Sciences University , Ludhiana , India
| | - Ramneek Verma
- a School of Animal Biotechnology , Guru Angad Dev Veterinary and Animal Sciences University , Ludhiana , India
| |
Collapse
|
36
|
Zhang Y, Chen S, Wei C, Rankin GO, Rojanasakul Y, Ren N, Ye X, Chen YC. Dietary Compound Proanthocyanidins from Chinese bayberry ( Myrica rubra Sieb. et Zucc.) leaves inhibit angiogenesis and regulate cell cycle of cisplatin-resistant ovarian cancer cells via targeting Akt pathway. J Funct Foods 2018; 40:573-581. [PMID: 29576805 PMCID: PMC5863932 DOI: 10.1016/j.jff.2017.11.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ovarian cancer is the leading cause of death from gynecological malignancy and natural products have drawn great attention for cancer treatment. Chinese bayberry leaves proanthocyanidin (BLPs) with epigallocatechin-3-O-gallate (EGCG) as its terminal and major extension units is unusual in the plant kingdom. In the present study, BLPs showed strong growth inhibitory effects on cisplatin-resistant A2780/CP70 cells by inhibiting angiogenesis and inducing G1 cell cycle arrest. BLPs reduced the tube formation in HUVECs and attenuated the wound healing ability in A2780/CP70 cells. BLPs further reduced the level of ROS and targeted Akt/mTOR/p70S6K/4E-BP-1 pathway to reduce the expression of HIF-1α and VEGF, and thus inhibited angiogenesis. Furthermore, BLPs induced G1 cell cycle arrest by reducing the expressions of c-Myc, cyclin D1 and CDK4, which was also in accordance with the flow cytometry analysis. Overall, these results indicated that BLPs could be a valuable resource of natural compounds for cancer treatment.
Collapse
Affiliation(s)
- Yu Zhang
- Zhejiang University, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV, 26416, USA
| | - Shiguo Chen
- Zhejiang University, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
| | - Chaoyang Wei
- Zhejiang University, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
| | - Gary O. Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Ning Ren
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV, 26416, USA
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- Zhejiang University, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
| | - Yi Charlie Chen
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV, 26416, USA
| |
Collapse
|
37
|
Pennisi M, Russo G, Ravalli S, Pappalardo F. Combining agent based-models and virtual screening techniques to predict the best citrus-derived vaccine adjuvants against human papilloma virus. BMC Bioinformatics 2017; 18:544. [PMID: 29297294 PMCID: PMC5751416 DOI: 10.1186/s12859-017-1961-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Human papillomavirus infection is a global social burden that, every year, leads to thousands new diagnosis of cancer. The introduction of a protocol of immunization, with Gardasil and Cervarix vaccines, has radically changed the way this infection easily spreads among people. Even though vaccination is only preventive and not therapeutic, it is a strong tool capable to avoid the consequences that this pathogen could cause. Gardasil vaccine is not free from side effects and the duration of immunity is not always well determined. This work aim to enhance the effects of the vaccination by using a new class of adjuvants and a different administration protocol. Due to their minimum side effects, their easy extraction, their low production costs and their proven immune stimulating activity, citrus-derived molecules are valid candidates to be administered as adjuvants in a vaccine formulation against Hpv. Results With the aim to get a stronger immune response against Hpv infection we built an in silico model that delivers a way to predict the best adjuvants and the optimal means of administration to obtain such a goal. Simulations envisaged that the use of Neohesperidin elicited a strong immune response that was then validated in vivo. Conclusions We built up a computational infrastructure made by a virtual screening approach able to preselect promising citrus derived compounds, and by an agent based model that reproduces HPV dynamics subject to vaccine stimulation. This integrated methodology was able to predict the best protocol that confers a very good immune response against HPV infection. We finally tested the in silico results through in vivo experiments on mice, finding good agreement.
Collapse
Affiliation(s)
- Marzio Pennisi
- Department of Mathematics and Computer Science, University of Catania, 95125, Catania, Italy
| | - Giulia Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Silvia Ravalli
- Department of Drug Sciences, University of Catania, 95125, Catania, Italy
| | | |
Collapse
|
38
|
Costa C, Tsatsakis A, Mamoulakis C, Teodoro M, Briguglio G, Caruso E, Tsoukalas D, Margina D, Dardiotis E, Kouretas D, Fenga C. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem Toxicol 2017; 110:286-299. [DOI: 10.1016/j.fct.2017.10.023] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
|
39
|
Yadav P, Bandyopadhyay A, Chakraborty A, Sarkar K. Enhancement of anticancer activity and drug delivery of chitosan-curcumin nanoparticle via molecular docking and simulation analysis. Carbohydr Polym 2017; 182:188-198. [PMID: 29279114 DOI: 10.1016/j.carbpol.2017.10.102] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/14/2017] [Accepted: 10/31/2017] [Indexed: 12/29/2022]
Abstract
Computational analyses followed by traditional wet-bench experiments have become a method of choice due to successful results. To enhance the solubility and bioavailability of curcumin within chitosan nanoparticle, we have exploited computational methodologies i.e. docking, BBD-RSM and MD simulation for the polymer selection, NPs' formulation, optimization and their stability confirmation in an aqueous medium, respectively. Formulated CSCur NPs were assessed for in-vitro release, which exhibited a sustained release pattern and four-fold higher cytotoxic activity in a nanoparticulated system. Enhanced uptake, apoptotic effect of CSCur NPs were established by morphological changes in cells as observed by fluorescence microscopy and FE-SEM. DNA damage, cell-cycle blockage and elevated ROS levels further confirm the anticancer activity of the CSCur NPs following apoptotic pathways. In-vivo study on Danio rerio, for uptake and toxicity reveal the particle's biocompatibility and nontoxicity. Therefore, CSCur NPs could be the potential formulation for a safe chemotherapeutic drug for cancer.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Microbiology, University of Kalyani, Kalyani, 741235, Nadia, West Bengal, India
| | - Arghya Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India
| | - Anindita Chakraborty
- Radiation Biology, UGC-DAE CSR (Kolkata Centre), Kolkata, 700098, West Bengal, India
| | - Keka Sarkar
- Department of Microbiology, University of Kalyani, Kalyani, 741235, Nadia, West Bengal, India.
| |
Collapse
|
40
|
Novak Jovanović I, Miličević A. A model for the estimation of oxidation potentials of polyphenols. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Le Donne M, Lentini M, Alibrandi A, Salimbeni V, Giuffre' G, Mazzeo F, Triolo O, D'Anna R. Antiviral activity of Ellagic acid and Annona Muricata in cervical HPV related pre-neoplastic lesions: A randomized trial. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
42
|
Su YK, Shih PH, Lee WH, Bamodu OA, Wu ATH, Huang CC, Tzeng YM, Hsiao M, Yeh CT, Lin CM. Antrodia cinnamomea sensitizes radio-/chemo-therapy of cancer stem-like cells by modulating microRNA expression. JOURNAL OF ETHNOPHARMACOLOGY 2017; 207:47-56. [PMID: 28602756 DOI: 10.1016/j.jep.2017.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The discovery of many tissue-specific cancer stem cells (CSCs) continues to attract scientific attention. These CSCs are considered to be associated with chemo- and radio-resistance, and consequently, failure of conventional anticancer therapies. The recent demonstration of several microRNAs as enhancers of tumorigenicity via modulation of epithelial-mesenchymal transition and cancer stemness, makes them putative novel therapeutic target in oncology. Antrodia cinnamomea is a Chinese traditional medicine with several biological functions including anti-inflammation, antioxidant, and cancer prevention. However, the anti-CSC capability of A. Cinnamomea is not clear yet. AIM OF THE STUDY To investigate the inhibitory effect of A. cinnamomea mycelium and extract on CSCs derived from various human cancer cell lines using our in-house therapeutics and human genome-wide miRNA screening panels. MATERIALS AND METHODS A broad range of human cancer cell lines, including the acute monocytic leukemia (THP-1), glioblastoma multiforme (GBM 8401), lung carcinoma (A549), breast adenocarcinoma (MDA-MB-231), hepatoblastoma (HepG2), colorectal adenocarcinoma (SW620), and foreskin fibroblast (HS68), were exposed to A. cinnamomea in this study. CD133+ CSCs generated from the cell lines were characterized and isolated by flow cytometry, effect of chemo- and radiotherapy was assessed using the MTT assay, while the RT-PCR and human genome wide qRT-PCR determined the differential gene expression patterns. A comparative analysis of the anticancer effect of A. cinnamomea and Cisplatin, Taxol, or irradiation was also performed. RESULTS Our results indicated that A. cinnamomea mycelium and its ethyl acetate extracts showed anti-proliferation effects against all types of CSCs, especially the lung, breast, and head and neck squamous cell carcinoma CSCs. Furthermore, CSCs treatment with A. cinnamomea combined with irradiation or chemotherapeutics demonstrated significant anti-cancer effect. We also established an association between the CSC-inhibitory effect of A. cinnamomea and significant downregulation of several microRNAs and cancer stemness expression levels in brain and breast CSCs. More importantly, higher CD133 expression is associated with poor prognosis in glioblastoma and breast cancer patients. CONCLUSION Herein, we demonstrate the putative role of A. cinnamomea as an effective ethnopharmacologic therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Yu-Kai Su
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ping-Hsiao Shih
- Department of Pediatrics, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Cancer Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chih Huang
- Department of Life Science, National Taitung University, Taitung, Taiwan
| | - Yew-Min Tzeng
- Department of Life Science, National Taitung University, Taitung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Tai Yeh
- Cancer Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| | - Chien-Min Lin
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
43
|
A new, simplified model for the estimation of polyphenol oxidation potentials based on the number of OH groups. Arh Hig Rada Toksikol 2017; 68:93-98. [DOI: 10.1515/aiht-2017-68-2988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/01/2017] [Indexed: 01/29/2023] Open
Abstract
Abstract
We present a new and simpler regression model for the estimation of the first oxidation potentials (Ep1) of flavonoids based on the number of phenolic, alcoholic, and carboxylic OH groups. In the regression we included the Ep1 of 12 polyphenols (mostly flavonols and catechins) that were measured in our laboratory at pH 3. The model yielded r=0.986 and SE=0.040. Later successive inclusions of previously reported Ep values into the regression model, 7 at pH 3, the model (N=19) yielded r=0.980, SE=0.046 and 19 at pH 7 the model (N=38), yielded r=0.985, SE=0.044.
Collapse
|
44
|
Lopes RDVC, Teixeira JA, Marchioni D, Villa LL, Giuliano AR, Luiza Baggio M, Fisberg RM. Dietary intake of selected nutrients and persistence of HPV infection in men. Int J Cancer 2017; 141:757-765. [PMID: 28486774 DOI: 10.1002/ijc.30772] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/22/2017] [Accepted: 04/26/2017] [Indexed: 01/18/2023]
Abstract
Human papillomavirus (HPV) infection is a common sexually transmitted disease. Although often transitory, persistent oncogenic HPV infection may progress to a precursor lesion and, if not treated, can further increase the risk of cancer. The purpose of this study was to investigate the relation between dietary intake and HPV persistent infection in men of a Brazilian cohort. The study population consisted of 1,248 men from the Brazilian cohort of the HIM (HPV in Men) Study, ages 18 to 70 years, who completed a quantitative food frequency questionnaire. U Mann-Whitney test was used to assess differences in median nutrient intake of selected nutrients. The association of dietary intake and persistent HPV infection was assessed in multivariate logistic models. The prevalence of any HPV infection at baseline was 66.6%. Of 1,248 participants analyzed, 1,211 (97.0%) were HPV positive at one or more times during the 4 years of follow-up and 781 (62.6%) were persistently HPV positive. Men with nonpersistent oncogenic HPV infections had higher median intake of retinol (p = 0.008), vitamin A (p < 0.001) and folate (DFE; p = 0.003) and lower median intake of energy (p = 0.005) and lycopene (p = 0.008) in comparison to men with persistent oncogenic infections. No significant association was found between selected nutrients and persistent oncogenic HPV infection. For nononcogenic persistent infections, only vitamin B12 intake was significantly associated (p = 0.003, test for trend). No association was observed between dietary intake and persistent oncogenic-type HPV infection; however, vitamin B12 intake was inversely associated with nononcogenic HPV persistence.
Collapse
Affiliation(s)
| | - Juliana A Teixeira
- Department of Nutrition, Faculdade de Saúde Pública, Universidade de São Paulo, Brazil
| | - Dirce Marchioni
- Department of Nutrition, Faculdade de Saúde Pública, Universidade de São Paulo, Brazil
| | - Luisa L Villa
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo and Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo - ICESP, Brazil
| | - Anna R Giuliano
- Center for Infection Research in Cancer (CIRC) H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Maria Luiza Baggio
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Brazil
| | - Regina M Fisberg
- Department of Nutrition, Faculdade de Saúde Pública, Universidade de São Paulo, Brazil
| |
Collapse
|
45
|
Morosetti G, Criscuolo AA, Santi F, Perno CF, Piccione E, Ciotti M. Ellagic acid and Annona muricata in the chemoprevention of HPV-related pre-neoplastic lesions of the cervix. Oncol Lett 2017; 13:1880-1884. [PMID: 28454338 PMCID: PMC5403706 DOI: 10.3892/ol.2017.5634] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/12/2016] [Indexed: 12/13/2022] Open
Abstract
Ellagic acid is a phenolic compound naturally present in nuts and berries. Several studies have demonstrated that this bioactive compound has antioxidant, chemopreventive and antiviral activity. Annona muricata is a type of fruit tree with a long history of traditional use. A number of properties have been attributed to different parts of the plant, including anticancer and antioxidant activities. In the current study, a complex based on ellagic acid, Annona Muricata and antioxidant factors (an ellagic acid complex) was administered to a group of human papilloma virus (HPV) infected women with and without cervical lesions, for 12 months. Its effect on HPV clearance and cervical cytological outcomes was assessed and a group of women with the same clinical features who did not receive the ellagic acid complex served as a control. A positive correlation was observed between intake of ellagic acid complex and negative Pap test following 6 and 12 months of treatment (χ2 test: 0.041 and 0.014, respectively). Women treated with the ellagic acid complex were less likely to be diagnosed with an abnormal Pap smear at 6 months [Odds ratio (OR): 0.39; 95% confidence interval (CI) 0.14-1.06] and 12 months (OR: 0.35; 95% CI 0.13-0.89), compared with the control group. After adjusting for confounding factors including age and smoking habit, this association remained significant. No effect was observed on HPV clearance or viral integration. The data from the current study suggest a protective effect of the ellagic acid complex on cervical cells, possibly through apoptosis, cell cycle arrest and repair mechanisms.
Collapse
Affiliation(s)
- Giulia Morosetti
- Clinical Department of Surgery, Division of Gynecology, Polyclinic Tor Vergata, I-00133 Rome, Italy
| | - Anna Angela Criscuolo
- Clinical Department of Surgery, Division of Gynecology, Polyclinic Tor Vergata, I-00133 Rome, Italy
| | - Flavia Santi
- Department of Statistical Sciences, Sapienza University of Rome, I-00185 Rome, Italy
| | - Carlo Federico Perno
- Department of Laboratory Medicine, Laboratory of Molecular Virology, Polyclinic Tor Vergata, I-00133 Rome, Italy
- Department of Experimental Medicine and Surgery, Tor Vergata University, I-00133 Rome, Italy
| | - Emilio Piccione
- Clinical Department of Surgery, Division of Gynecology, Polyclinic Tor Vergata, I-00133 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, I-00133 Rome, Italy
| | - Marco Ciotti
- Department of Laboratory Medicine, Laboratory of Molecular Virology, Polyclinic Tor Vergata, I-00133 Rome, Italy
| |
Collapse
|
46
|
Esposito T, Sansone F, Franceschelli S, Del Gaudio P, Picerno P, Aquino RP, Mencherini T. Hazelnut (Corylus avellana L.) Shells Extract: Phenolic Composition, Antioxidant Effect and Cytotoxic Activity on Human Cancer Cell Lines. Int J Mol Sci 2017; 18:E392. [PMID: 28208804 PMCID: PMC5343927 DOI: 10.3390/ijms18020392] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/07/2023] Open
Abstract
Hazelnut shells, a by-product of the kernel industry processing, are reported to contain high amount of polyphenols. However, studies on the chemical composition and potential effects on human health are lacking. A methanol hazelnut shells extract was prepared and dried. Our investigation allowed the isolation and characterization of different classes of phenolic compounds, including neolignans, and a diarylheptanoid, which contribute to a high total polyphenol content (193.8 ± 3.6 mg of gallic acid equivalents (GAE)/g of extract). Neolignans, lawsonicin and cedrusin, a cyclic diarylheptanoid, carpinontriol B, and two phenol derivatives, C-veratroylglycol, and β-hydroxypropiovanillone, were the main components of the extract (0.71%-2.93%, w/w). The biological assays suggested that the extract could be useful as a functional ingredient in food technology and pharmaceutical industry showing an in vitro scavenging activity against the radical 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) (EC50 = 31.7 μg/mL with respect to α-tocopherol EC50 = 10.1 μg/mL), and an inhibitory effect on the growth of human cancer cell lines A375, SK-Mel-28 and HeLa (IC50 = 584, 459, and 526 μg/mL, respectively). The expression of cleaved forms of caspase-3 and poly(ADP-ribose) polymerase-1 (PARP-1) suggested that the extract induced apoptosis through caspase-3 activation in both human malignant melanoma (SK-Mel-28) and human cervical cancer (HeLa) cell lines. The cytotoxic activity relies on the presence of the neolignans (balanophonin), and phenol derivatives (gallic acid), showing a pro-apoptotic effect on the tested cell lines, and the neolignan, cedrusin, with a cytotoxic effect on A375 and HeLa cells.
Collapse
Affiliation(s)
- Tiziana Esposito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano (SA), Italy.
- Ph.D. Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (SA), Italy.
| | - Francesca Sansone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano (SA), Italy.
| | - Silvia Franceschelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano (SA), Italy.
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano (SA), Italy.
| | - Patrizia Picerno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano (SA), Italy.
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano (SA), Italy.
| | - Teresa Mencherini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano (SA), Italy.
| |
Collapse
|
47
|
Nikseresht M, Kamali AM, Rahimi HR, Delaviz H, Toori MA, Kashani IR, Mahmoudi R. The Hydroalcoholic Extract of Matricaria chamomilla Suppresses Migration and Invasion of Human Breast Cancer MDA-MB-468 and MCF-7 Cell Lines. Pharmacognosy Res 2017; 9:87-95. [PMID: 28250660 PMCID: PMC5330110 DOI: 10.4103/0974-8490.199778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Matricaria chamomilla is an aromatic plant with antioxidant, anticancer, and anti-inflammatory properties. However, the inhibitory role of M. chamomilla on migration and invasion of human breast cancer cells remains unclear. Objective: This study investigated the methods to evaluate these anticancer mechanisms of M. chamomilla on human breast cancer MCF-7 and MDA-MB-468 cell lines. Materials and Methods: The cells were treated with hydroalcoholic extract of M. chamomilla at different concentrations (50–1300 μg/mL) for 24, 48, and 72 h in a culture medium containing 10% fetal bovine serum. This study quantified the 50% growth inhibition concentrations (IC50) by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay; apoptosis and necrosis through Hoechst 33342/propidium iodide staining; cell proliferation and clone formation by clonogenic assay as well as cellular migration, invasion, and attachment. After 24, 48, and 72 h of treatment, the IC50levels were 992 ± 2.3 μg/mL, 893 ± 5.4 μg/mL, and 785 ± 4.8 μg/mL against MDA-MB-468, respectively, and 1288 ± 5.6 μg/mL, 926 ± 2.5 μg/mL, and 921 ± 3.5 μg/mL, against MCF-7, respectively. Furthermore, increasing the extract concentrations induced cellular apoptosis and necrosis and decreased cellular invasion or migration through 8 μm pores, colonization and attachment in a dose-dependent manner. Results: It indicated time- and dose-dependent anti-invasive and antimigrative or proliferative and antitoxic effects of hydroalcoholic extract of aerial parts of chamomile on breast cancer cells. Conclusion: This study demonstrated an effective plant in preventing or treating breast cancer. SUMMARY Antioxidant compounds in Matricaria chamomilla have anticancer effects. Hydroalcoholic extract of M. chamomilla controls cellular proliferation and apoptosis induction. Hoechst 33342/propidium iodide staining suggested that the extract induces apoptosis more than necrosis. Hydroalcoholic extract of M. chamomilla prevents colonization and cellular migration of human breast cancer MDA-MB-468 and MCF-7 cell lines in a time- and dose-dependent manner. M. chamomilla has low cytotoxic effects on natural cells.
Abbreviations Used: IARC: International Agency for Research on Cancer; WHO: World Health Organization; FBS: Fetal bovine serum; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; DMSO: Dimethyl sulfoxide; PI: Propidium iodide; LN: Live cells with normal nucleus; LA: Live cells with apoptized nucleus; DN: Dead cells with normal nucleus; DA: Dead cells with apoptized nucleus; BSA: Bovine serum albumin; ANOVA: Analysis of variance; IC50: 50% growth inhibition concentration; GSE: Grape seed extract
Collapse
Affiliation(s)
- Mohsen Nikseresht
- Department of Biochemistry, Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Mohammad Kamali
- Student Research Committee, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamid Reza Rahimi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamdollah Delaviz
- Department of Anatomy and Embryology, Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehdi Akbartabar Toori
- Department of Nutrition, Social Determinants of Health Research Center, Faculty of Health, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mahmoudi
- Department of Anatomy and Embryology, Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
48
|
Rastogi N, Duggal S, Singh SK, Porwal K, Srivastava VK, Maurya R, Bhatt MLB, Mishra DP. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-gingerol in cervical cancer cells. Oncotarget 2016; 6:43310-25. [PMID: 26621832 PMCID: PMC4791234 DOI: 10.18632/oncotarget.6383] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/17/2015] [Indexed: 12/15/2022] Open
Abstract
Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer.
Collapse
Affiliation(s)
- Namrata Rastogi
- Cell Death Research Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shivali Duggal
- Department of Radiotherapy, King George Medical University, Lucknow, India
| | - Shailendra Kumar Singh
- Department of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Konica Porwal
- Cell Death Research Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Rakesh Maurya
- Medicinal Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - M L B Bhatt
- Department of Radiotherapy, King George Medical University, Lucknow, India
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
49
|
Braakhuis AJ, Campion P, Bishop KS. Reducing Breast Cancer Recurrence: The Role of Dietary Polyphenolics. Nutrients 2016; 8:E547. [PMID: 27608040 PMCID: PMC5037532 DOI: 10.3390/nu8090547] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/31/2022] Open
Abstract
Evidence from numerous observational and clinical studies suggest that polyphenolic phytochemicals such as phenolic acids in olive oil, flavonols in tea, chocolate and grapes, and isoflavones in soy products reduce the risk of breast cancer. A dietary food pattern naturally rich in polyphenols is the Mediterranean diet and evidence suggests those of Mediterranean descent have a lower breast cancer incidence. Whilst dietary polyphenols have been the subject of breast cancer risk-reduction, this review will focus on the clinical effects of polyphenols on reducing recurrence. Overall, we recommend breast cancer patients consume a diet naturally high in flavonol polyphenols including tea, vegetables (onion, broccoli), and fruit (apples, citrus). At least five servings of vegetables and fruit daily appear protective. Moderate soy protein consumption (5-10 g daily) and the Mediterranean dietary pattern show the most promise for breast cancer patients. In this review, we present an overview of clinical trials on supplementary polyphenols of dietary patterns rich in polyphenols on breast cancer recurrence, mechanistic data, and novel delivery systems currently being researched.
Collapse
Affiliation(s)
- Andrea J Braakhuis
- Discipline of Nutrition and Dietetics, FM & HS, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Peta Campion
- Discipline of Nutrition and Dietetics, FM & HS, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Karen S Bishop
- Auckland Cancer Society Research Center, FM & HS, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
50
|
Muthusamy G, Balupillai A, Ramasamy K, Shanmugam M, Gunaseelan S, Mary B, Prasad NR. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines. Eur J Pharmacol 2016; 786:194-203. [DOI: 10.1016/j.ejphar.2016.05.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 01/01/2023]
|