1
|
Rossiaud L, Miagoux Q, Benabides M, Reiss O, Jauze L, Jarrige M, Polvèche H, Malfatti E, Laforêt P, Ronzitti G, Nissan X, Hoch L. Galectin-3: a novel biomarker of glycogen storage disease type III. Cell Death Discov 2025; 11:173. [PMID: 40229243 PMCID: PMC11997124 DOI: 10.1038/s41420-025-02452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/06/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
Glycogen storage disease type III (GSDIII) is a rare genetic disorder leading to abnormal glycogen storage in the liver and skeletal muscle. In this study, we conducted a comparative gene expression analysis of several in vitro and in vivo models and identified galectin-3 as a potential biomarker of the disease. Interestingly, we also observed a significant decrease in galectin-3 expression in mice treated with an AAV gene therapy. Finally, galectin-3 expression was studied in muscle biopsies of GSDIII patients, confirming its increase in patient tissue. Beyond the identification of this novel biomarker, our study offers a new perspective for future therapeutic developments.
Collapse
Affiliation(s)
- Lucille Rossiaud
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research Unit UMR_S951, Evry, France
| | - Quentin Miagoux
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Manon Benabides
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Océane Reiss
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Louisa Jauze
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research Unit UMR_S951, Evry, France
| | - Margot Jarrige
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Hélène Polvèche
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Edoardo Malfatti
- Reference Center for Neuromuscular Disorders, APHP Henri Mondor University Hospital, Créteil, France
- Université Paris Est Créteil, Inserm, U955, IMRB, Créteil, France
| | - Pascal Laforêt
- Neurology Department, Nord/Est/Île-de-France Neuromuscular Reference Center, FHU PHENIX, AP-HP, Raymond-Poincaré Hospital, Garches, France
| | - Giuseppe Ronzitti
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research Unit UMR_S951, Evry, France
| | - Xavier Nissan
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Lucile Hoch
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France.
- IStem, CECS, Corbeil-Essonnes, France.
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France.
| |
Collapse
|
2
|
Voorn EL, Lucia A, Vissing J. 281st ENMC international workshop: 2nd ENMC workshop on exercise training in muscle diseases; towards consensus-based recommendations on exercise prescription and outcome measures. Hoofddorp, The Netherlands, 4-6 October 2024. Neuromuscul Disord 2025; 49:105318. [PMID: 40174322 DOI: 10.1016/j.nmd.2025.105318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 04/04/2025]
Abstract
The 281st ENMC workshop on exercise in muscle diseases was held on October 4-6, 2024. The workshop study group included people with lived experience, healthcare professionals and researchers from different disciplines. To facilitate improved application of exercise in daily practice, this workshop aimed to reach a consensus on recommendations for exercise prescription and outcome measures. There were sessions on 1) scientific evidence on exercise prescription and current practice (based on international online surveys of people with muscle diseases and healthcare professionals), 2) outcome measures, and 3) long-term continuation of exercise. Based on the scientific evidence, survey results and group discussions during the workshop sessions, a strong consensus (all attendees agreed) was reached that personalized exercise is safe and beneficial for people with muscle diseases and is recommended. Recommendations were formulated for the frequency, intensity, time, and type of aerobic and resistance exercise, as well as potential outcome measures for future studies.
Collapse
Affiliation(s)
- Eric Lukas Voorn
- Amsterdam UMC location University of Amsterdam, Department of Rehabilitation Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands.
| | - Alejandro Lucia
- Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid, Spain; Department of Sport Sciences. Faculty of Medicine, Health and Sports. Universidad Europea de Madrid, Madrid, Spain
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Koeberl DD, Koch RL, Lim JA, Brooks ED, Arnson BD, Sun B, Kishnani PS. Gene therapy for glycogen storage diseases. J Inherit Metab Dis 2024; 47:93-118. [PMID: 37421310 PMCID: PMC10874648 DOI: 10.1002/jimd.12654] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Glycogen storage disorders (GSDs) are inherited disorders of metabolism resulting from the deficiency of individual enzymes involved in the synthesis, transport, and degradation of glycogen. This literature review summarizes the development of gene therapy for the GSDs. The abnormal accumulation of glycogen and deficiency of glucose production in GSDs lead to unique symptoms based upon the enzyme step and tissues involved, such as liver and kidney involvement associated with severe hypoglycemia during fasting and the risk of long-term complications including hepatic adenoma/carcinoma and end stage kidney disease in GSD Ia from glucose-6-phosphatase deficiency, and cardiac/skeletal/smooth muscle involvement associated with myopathy +/- cardiomyopathy and the risk for cardiorespiratory failure in Pompe disease. These symptoms are present to a variable degree in animal models for the GSDs, which have been utilized to evaluate new therapies including gene therapy and genome editing. Gene therapy for Pompe disease and GSD Ia has progressed to Phase I and Phase III clinical trials, respectively, and are evaluating the safety and bioactivity of adeno-associated virus vectors. Clinical research to understand the natural history and progression of the GSDs provides invaluable outcome measures that serve as endpoints to evaluate benefits in clinical trials. While promising, gene therapy and genome editing face challenges with regard to clinical implementation, including immune responses and toxicities that have been revealed during clinical trials of gene therapy that are underway. Gene therapy for the glycogen storage diseases is under development, addressing an unmet need for specific, stable therapy for these conditions.
Collapse
Affiliation(s)
- Dwight D. Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Rebecca L. Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Elizabeth D. Brooks
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Benjamin D. Arnson
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
4
|
Trepiccione F, Iervolino A, D'Acierno M, Siccardi S, Costanzo V, Sardella D, De La Motte LR, D'Apolito L, Miele A, Perna AF, Capolongo G, Zacchia M, Frische S, Nielsen R, Staiano L, Sambri I, De Cegli R, Unwin R, Eladari D, Capasso G. The SGLT2 inhibitor dapagliflozin improves kidney function in glycogen storage disease XI. Sci Transl Med 2023; 15:eabn4214. [PMID: 37910600 DOI: 10.1126/scitranslmed.abn4214] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
Glycogen storage disease XI, also known as Fanconi-Bickel syndrome (FBS), is a rare autosomal recessive disorder caused by mutations in the SLC2A2 gene that encodes the glucose-facilitated transporter type 2 (GLUT2). Patients develop a life-threatening renal proximal tubule dysfunction for which no treatment is available apart from electrolyte replacement. To investigate the renal pathogenesis of FBS, SLC2A2 expression was ablated in mouse kidney and HK-2 proximal tubule cells. GLUT2Pax8Cre+ mice developed time-dependent glycogen accumulation in proximal tubule cells and recapitulated the renal Fanconi phenotype seen in patients. In vitro suppression of GLUT2 impaired lysosomal autophagy as shown by transcriptomic and biochemical analysis. However, this effect was reversed by exposure to a low glucose concentration, suggesting that GLUT2 facilitates the homeostasis of key cellular pathways in proximal tubule cells by preventing glucose toxicity. To investigate whether targeting proximal tubule glucose influx can limit glycogen accumulation and correct symptoms in vivo, we treated mice with the selective SGLT2 inhibitor dapagliflozin. Dapagliflozin reduced glycogen accumulation and improved metabolic acidosis and phosphaturia in the animals by normalizing the expression of Napi2a and NHE3 transporters. In addition, in a patient with FBS, dapagliflozin was safe, improved serum potassium and phosphate concentrations, and reduced glycogen content in urinary shed cells. Overall, this study provides proof of concept for dapagliflozin as a potentially suitable therapy for FBS.
Collapse
Affiliation(s)
- Francesco Trepiccione
- Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Anna Iervolino
- Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | | | - Sabrina Siccardi
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Vincenzo Costanzo
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Donato Sardella
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Luigi R De La Motte
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Luciano D'Apolito
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Antonio Miele
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Alessandra F Perna
- Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy
| | - Giovanna Capolongo
- Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy
| | - Miriam Zacchia
- Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy
| | | | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Institute for Genetic and Biomedical Research, National Research Council (CNR), 20089 Milan, Italy
| | - Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Department of Medical and Translational Science, Federico II University, 80131 Naples, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Robert Unwin
- UCL Department of Renal Medicine, Royal Free Hospital, London NW3 2PF, UK
| | - Dominique Eladari
- Service de Médecine de Précision des maladies Métaboliques et Rénales, CHU Amiens-Picardie, Université de Picardie Jules Verne, 80054 Amiens, France
- FCRIN-INI-CRCT, 54500 Vandœuvre-lès-Nancy, France
- Paris Cardiovascular Research Center (PARCC), INSERM U970, F-75015, Paris, France
| | - Giovambattista Capasso
- Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| |
Collapse
|
5
|
Rossiaud L, Fragner P, Barbon E, Gardin A, Benabides M, Pellier E, Cosette J, El Kassar L, Giraud-Triboult K, Nissan X, Ronzitti G, Hoch L. Pathological modeling of glycogen storage disease type III with CRISPR/Cas9 edited human pluripotent stem cells. Front Cell Dev Biol 2023; 11:1163427. [PMID: 37250895 PMCID: PMC10213880 DOI: 10.3389/fcell.2023.1163427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: Glycogen storage disease type III (GSDIII) is a rare genetic disease caused by mutations in the AGL gene encoding the glycogen debranching enzyme (GDE). The deficiency of this enzyme, involved in cytosolic glycogen degradation, leads to pathological glycogen accumulation in liver, skeletal muscles and heart. Although the disease manifests with hypoglycemia and liver metabolism impairment, the progressive myopathy is the major disease burden in adult GSDIII patients, without any curative treatment currently available. Methods: Here, we combined the self-renewal and differentiation capabilities of human induced pluripotent stem cells (hiPSCs) with cutting edge CRISPR/Cas9 gene editing technology to establish a stable AGL knockout cell line and to explore glycogen metabolism in GSDIII. Results: Following skeletal muscle cells differentiation of the edited and control hiPSC lines, our study reports that the insertion of a frameshift mutation in AGL gene results in the loss of GDE expression and persistent glycogen accumulation under glucose starvation conditions. Phenotypically, we demonstrated that the edited skeletal muscle cells faithfully recapitulate the phenotype of differentiated skeletal muscle cells of hiPSCs derived from a GSDIII patient. We also demonstrated that treatment with recombinant AAV vectors expressing the human GDE cleared the accumulated glycogen. Discussion: This study describes the first skeletal muscle cell model of GSDIII derived from hiPSCs and establishes a platform to study the mechanisms that contribute to muscle impairments in GSDIII and to assess the therapeutic potential of pharmacological inducers of glycogen degradation or gene therapy approaches.
Collapse
Affiliation(s)
- Lucille Rossiaud
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | - Pascal Fragner
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
| | - Elena Barbon
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | - Antoine Gardin
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | - Manon Benabides
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
| | - Emilie Pellier
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
| | | | - Lina El Kassar
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
| | - Karine Giraud-Triboult
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
| | - Xavier Nissan
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
| | - Giuseppe Ronzitti
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | - Lucile Hoch
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
| |
Collapse
|
6
|
Lim JA, Kishnani PS, Sun B. Suppression of pullulanase-induced cytotoxic T cell response with a dual promoter in GSD IIIa mice. JCI Insight 2022; 7:152970. [PMID: 36264632 PMCID: PMC9746900 DOI: 10.1172/jci.insight.152970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/18/2022] [Indexed: 01/21/2023] Open
Abstract
Glycogen debranching enzyme deficiency in glycogen storage disease type III (GSD III) results in excessive glycogen accumulation in multiple tissues, primarily the liver, heart, and skeletal muscle. We recently reported that an adeno-associated virus vector expressing a bacterial debranching enzyme (pullulanase) driven by the ubiquitous CMV enhancer/chicken β-actin (CB) promoter cleared glycogen in major affected tissues of infant GSD IIIa mice. In this study, we developed a potentially novel dual promoter consisting of a liver-specific promoter (LSP) and the CB promoter for gene therapy in adult GSD IIIa mice. Ten-week treatment with an adeno-associated virus vector containing the LSP-CB dual promoter in adult GSD IIIa mice significantly increased pullulanase expression and reduced glycogen contents in the liver, heart, and skeletal muscle, accompanied by the reversal of liver fibrosis, improved muscle function, and a significant decrease in plasma biomarkers alanine aminotransferase, aspartate aminotransferase, and creatine kinase. Compared with the CB promoter, the dual promoter effectively decreased pullulanase-induced cytotoxic T lymphocyte responses and enabled persistent therapeutic gene expression in adult GSD IIIa mice. Future studies are needed to determine the long-term durability of dual promoter-mediated expression of pullulanase in adult GSD IIIa mice and in large animal models.
Collapse
|
7
|
D’Acierno M, Resaz R, Iervolino A, Nielsen R, Sardella D, Siccardi S, Costanzo V, D’Apolito L, Suzumoto Y, Segalerba D, Astigiano S, Perna AF, Capasso G, Eva A, Trepiccione F. Dapagliflozin Prevents Kidney Glycogen Accumulation and Improves Renal Proximal Tubule Cell Functions in a Mouse Model of Glycogen Storage Disease Type 1b. J Am Soc Nephrol 2022; 33:1864-1875. [PMID: 35820785 PMCID: PMC9528317 DOI: 10.1681/asn.2021070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 06/14/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Mutations in SLC37A4, which encodes the intracellular glucose transporter G6PT, cause the rare glycogen storage disease type 1b (GSD1b). A long-term consequence of GSD1b is kidney failure, which requires KRT. The main protein markers of proximal tubule function, including NaPi2A, NHE3, SGLT2, GLUT2, and AQP1, are downregulated as part of the disease phenotype. METHODS We utilized an inducible mouse model of GSD1b, TM-G6PT-/-, to show that glycogen accumulation plays a crucial role in altering proximal tubule morphology and function. To limit glucose entry into proximal tubule cells and thus to prevent glycogen accumulation, we administered an SGLT2-inhibitor, dapagliflozin, to TM-G6PT-/- mice. RESULTS In proximal tubule cells, G6PT suppression stimulates the upregulation and activity of hexokinase-I, which increases availability of the reabsorbed glucose for intracellular metabolism. Dapagliflozin prevented glycogen accumulation and improved kidney morphology by promoting a metabolic switch from glycogen synthesis toward lysis and by restoring expression levels of the main proximal tubule functional markers. CONCLUSION We provide proof of concept for the efficacy of dapagliflozin in preserving kidney function in GSD1b mice. Our findings could represent the basis for repurposing this drug to treat patients with GSD1b.
Collapse
Affiliation(s)
| | - Roberta Resaz
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Anna Iervolino
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Donato Sardella
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Sabrina Siccardi
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Vincenzo Costanzo
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Luciano D’Apolito
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Yoko Suzumoto
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Daniela Segalerba
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Alessandra F. Perna
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Giovambattista Capasso
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesco Trepiccione
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli,” Naples, Italy
| |
Collapse
|
8
|
Almodóvar-Payá A, Villarreal-Salazar M, de Luna N, Nogales-Gadea G, Real-Martínez A, Andreu AL, Martín MA, Arenas J, Lucia A, Vissing J, Krag T, Pinós T. Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models. Int J Mol Sci 2020; 21:ijms21249621. [PMID: 33348688 PMCID: PMC7766110 DOI: 10.3390/ijms21249621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
GSD are a group of disorders characterized by a defect in gene expression of specific enzymes involved in glycogen breakdown or synthesis, commonly resulting in the accumulation of glycogen in various tissues (primarily the liver and skeletal muscle). Several different GSD animal models have been found to naturally present spontaneous mutations and others have been developed and characterized in order to further understand the physiopathology of these diseases and as a useful tool to evaluate potential therapeutic strategies. In the present work we have reviewed a total of 42 different animal models of GSD, including 26 genetically modified mouse models, 15 naturally occurring models (encompassing quails, cats, dogs, sheep, cattle and horses), and one genetically modified zebrafish model. To our knowledge, this is the most complete list of GSD animal models ever reviewed. Importantly, when all these animal models are analyzed together, we can observe some common traits, as well as model specific differences, that would be overlooked if each model was only studied in the context of a given GSD.
Collapse
Affiliation(s)
- Aitana Almodóvar-Payá
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Noemí de Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Laboratori de Malalties Neuromusculars, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Gisela Nogales-Gadea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Grup de Recerca en Malalties Neuromusculars i Neuropediàtriques, Department of Neurosciences, Institut d’Investigacio en Ciencies de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alberto Real-Martínez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Antoni L. Andreu
- EATRIS, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands;
| | - Miguel Angel Martín
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Joaquin Arenas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, European University, 28670 Madrid, Spain;
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Correspondence: ; Tel.: +34-934894057
| |
Collapse
|
9
|
Role of Metabolism in Bone Development and Homeostasis. Int J Mol Sci 2020; 21:ijms21238992. [PMID: 33256181 PMCID: PMC7729585 DOI: 10.3390/ijms21238992] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Carbohydrates, fats, and proteins are the underlying energy sources for animals and are catabolized through specific biochemical cascades involving numerous enzymes. The catabolites and metabolites in these metabolic pathways are crucial for many cellular functions; therefore, an imbalance and/or dysregulation of these pathways causes cellular dysfunction, resulting in various metabolic diseases. Bone, a highly mineralized organ that serves as a skeleton of the body, undergoes continuous active turnover, which is required for the maintenance of healthy bony components through the deposition and resorption of bone matrix and minerals. This highly coordinated event is regulated throughout life by bone cells such as osteoblasts, osteoclasts, and osteocytes, and requires synchronized activities from different metabolic pathways. Here, we aim to provide a comprehensive review of the cellular metabolism involved in bone development and homeostasis, as revealed by mouse genetic studies.
Collapse
|
10
|
The Protein Phosphatase 1 Complex Is a Direct Target of AKT that Links Insulin Signaling to Hepatic Glycogen Deposition. Cell Rep 2020; 28:3406-3422.e7. [PMID: 31553910 DOI: 10.1016/j.celrep.2019.08.066] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/02/2019] [Accepted: 08/21/2019] [Indexed: 11/24/2022] Open
Abstract
Insulin-stimulated hepatic glycogen synthesis is central to glucose homeostasis. Here, we show that PPP1R3G, a regulatory subunit of protein phosphatase 1 (PP1), is directly phosphorylated by AKT. PPP1R3G phosphorylation fluctuates with fasting-refeeding cycle and is required for insulin-stimulated dephosphorylation, i.e., activation of glycogen synthase (GS) in hepatocytes. In this study, we demonstrate that knockdown of PPP1R3G significantly inhibits insulin response. The introduction of wild-type PPP1R3G, and not phosphorylation-defective mutants, increases hepatic glycogen deposition, blood glucose clearance, and insulin sensitivity in vivo. Mechanistically, phosphorylated PPP1R3G displays increased binding for, and promotes dephosphorylation of, phospho-GS. Furthermore, PPP1R3B, another regulatory subunit of PP1, binds to the dephosphorylated GS, thereby relaying insulin stimulation to hepatic glycogen deposition. Importantly, this PP1-mediated signaling cascade is independent of GSK3. Therefore, we reveal a regulatory axis consisting of insulin/AKT/PPP1R3G/PPP1R3B that operates in parallel to the GSK3-dependent pathway, controlling glycogen synthesis and glucose homeostasis in insulin signaling.
Collapse
|
11
|
Lim JA, Choi SJ, Gao F, Kishnani PS, Sun B. A Novel Gene Therapy Approach for GSD III Using an AAV Vector Encoding a Bacterial Glycogen Debranching Enzyme. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:240-249. [PMID: 32637453 PMCID: PMC7327847 DOI: 10.1016/j.omtm.2020.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
Abstract
Glycogen storage disease type III (GSD III) is an inherited disorder caused by a deficiency of glycogen debranching enzyme (GDE), which results in the accumulation of abnormal glycogen (limit dextrin) in the cytoplasm of liver, heart, and skeletal muscle cells. Currently, there is no curative treatment for this disease. Gene therapy with adeno-associated virus (AAV) provides an optimal treatment approach for monogenic diseases like GSD III. However, the 4.6 kb human GDE cDNA is too large to be packaged into a single AAV vector due to its small carrying capacity. To overcome this limitation, we tested a new gene therapy approach in GSD IIIa mice using an AAV vector ubiquitously expressing a smaller bacterial GDE, Pullulanase, whose cDNA is 2.2 kb. Intravenous injection of the AAV vector (AAV9-CB-Pull) into 2-week-old GSD IIIa mice blocked glycogen accumulation in both cardiac and skeletal muscles, but not in the liver, accompanied by the improvement of muscle functions. Subsequent treatment with a liver-restricted AAV vector (AAV8-LSP-Pull) reduced liver glycogen content by 75% and reversed hepatic fibrosis while maintaining the effect of AAV9-CB-Pull treatment on heart and skeletal muscle. Our results suggest that AAV-mediated gene therapy with Pullulanase is a possible treatment for GSD III.
Collapse
Affiliation(s)
- Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Su Jin Choi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Fengqin Gao
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
12
|
Causes of secondary non-alcoholic fatty liver disease in non-obese children below 10 years. Eur J Pediatr 2020; 179:719-726. [PMID: 31897838 DOI: 10.1007/s00431-019-03551-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
This study aimed to detect etiologies and histopathological features of non-alcoholic fatty liver disease (NAFLD) in Egyptian children < 10 years from hepatologist perspectives. Infants and children below 10 years of age with biopsy-proven fatty liver over a 6-year period were included. NAFLD activity score was used to detect the presence of non-alcoholic steatohepatitis (NASH). The study included 66 cases whose age ranged between 5 months and 10 years. Transaminases were elevated in 60% patients. Glycogen storage disease (GSD) was the most common diagnosis (33.3%) followed by hepatitis C virus (HCV) (10.6%) and Chanarin-Dorfman syndrome (CDS) (9.1%). The cause of steatosis could not be identified in 28.8% of cases. There was a higher prevalence of secondary causes of NAFLD in patients < 10 years. Liver histopathological examination revealed preserved lobular architecture in 75.7% with minimal-to-mild fibrosis in 79%. Steatosis was macrovesicular in all specimens (severe steatosis in 39.4%). Four patients had NASH. Higher degree of steatosis was associated with more severe fibrosis (P = 0.01).Conclusion: GSD was the commonest cause of secondary NAFLD in Egyptian children < 10 years followed by HCV and CDS with higher degrees of steatosis in younger patients. The degree of fibrosis was significantly related to the degree of steatosis.What is Known:• Primary non-alcoholic fatty liver disease (NAFLD) is rare in children aged less than 10 years.• Secondary causes of NAFLD should be considered in patients who do not have traditional risk factors.What is New:• Glycogen storage disease, hepatitis C virus, and Chanarin-Dorfman syndrome are the commonest causes of secondary NAFLD in Egyptian children (< 10 years) with higher degrees of steatosis in younger patients.• The degree of liver fibrosis is significantly related to the degree of steatosis.
Collapse
|
13
|
Sottnik JL, Mallaredy V, Chauca-Diaz A, Ritterson Lew C, Owens C, Dancik GM, Pagliarani S, Lucchiari S, Moggio M, Ripolone M, Comi GP, Frierson HF, Clouthier D, Theodorescu D. Elucidating the role of Agl in bladder carcinogenesis by generation and characterization of genetically engineered mice. Carcinogenesis 2019; 40:194-201. [PMID: 30403777 DOI: 10.1093/carcin/bgy139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/06/2018] [Indexed: 12/17/2022] Open
Abstract
Amylo-α-1,6-glucosidase,4-α-glucanotransferase (AGL) is an enzyme primarily responsible for glycogen debranching. Germline mutations lead to glycogen storage disease type III (GSDIII). We recently found AGL to be a tumor suppressor in xenograft models of human bladder cancer (BC) and low levels of AGL expression in BC are associated with poor patient prognosis. However, the impact of low AGL expression on the susceptibility of normal bladder to carcinogenesis is unknown. We address this gap by developing a germline Agl knockout (Agl-/-) mouse that recapitulates biochemical and histological features of GSDIII. Agl-/- mice exposed to N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) had a higher BC incidence compared with wild-type mice (Agl+/+). To determine if the increased BC incidence observed was due to decreased Agl expression in the urothelium specifically, we developed a urothelium-specific conditional Agl knockout (Aglcko) mouse using a Uroplakin II-Cre allele. BBN-induced carcinogenesis experiments repeated in Aglcko mice revealed that Aglcko mice had a higher BC incidence than control (Aglfl/fl) mice. RNA sequencing revealed that tumors from Agl-/- mice had 19 differentially expressed genes compared with control mice. An 'Agl Loss' gene signature was developed and found to successfully stratify normal and tumor samples in two BC patient datasets. These results support the role of AGL loss in promoting carcinogenesis and provide a rationale for evaluating Agl expression levels, or Agl Loss gene signature scores, in normal urothelium of populations at risk of BC development such as older male smokers.
Collapse
Affiliation(s)
- Joseph L Sottnik
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Vandana Mallaredy
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Ana Chauca-Diaz
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Carolyn Ritterson Lew
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Charles Owens
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT, USA
| | - Serena Pagliarani
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sabrina Lucchiari
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo P Comi
- Department of Pathophysiology and Transplantation, University of Milan, and Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Henry F Frierson
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | | | - Dan Theodorescu
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.,Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| |
Collapse
|
14
|
Jauze L, Monteillet L, Mithieux G, Rajas F, Ronzitti G. Challenges of Gene Therapy for the Treatment of Glycogen Storage Diseases Type I and Type III. Hum Gene Ther 2019; 30:1263-1273. [PMID: 31319709 DOI: 10.1089/hum.2019.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glycogen storage diseases (GSDs) type I (GSDI) and type III (GSDIII), the most frequent hepatic GSDs, are due to defects in glycogen metabolism, mainly in the liver. In addition to hypoglycemia and liver pathology, renal, myeloid, or muscle complications affect GSDI and GSDIII patients. Currently, patient management is based on dietary treatment preventing severe hypoglycemia and increasing the lifespan of patients. However, most of the patients develop long-term pathologies. In the past years, gene therapy for GSDI has generated proof of concept for hepatic GSDs. This resulted in a recent clinical trial of adeno-associated virus (AAV)-based gene replacement for GSDIa. However, the current limitations of AAV-mediated gene transfer still represent a challenge for successful gene therapy in GSDI and GSDIII. Indeed, transgene loss over time was observed in GSDI liver, possibly due to the degeneration of hepatocytes underlying the physiopathology of both GSDI and GSDIII and leading to hepatic tumor development. Moreover, multitissue targeting requires high vector doses to target nonpermissive tissues such as muscle and kidney. Interestingly, recent pharmacological interventions or dietary regimen aiming at the amelioration of the hepatocyte abnormalities before the administration of gene therapy demonstrated improved efficacy in GSDs. In this review, we describe the advances in gene therapy and the limitations to be overcome to achieve efficient and safe gene transfer in GSDs.
Collapse
Affiliation(s)
- Louisa Jauze
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France.,Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Laure Monteillet
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
15
|
Halaby CA, Young SP, Austin S, Stefanescu E, Bali D, Clinton LK, Smith B, Pendyal S, Upadia J, Schooler GR, Mavis AM, Kishnani PS. Liver fibrosis during clinical ascertainment of glycogen storage disease type III: a need for improved and systematic monitoring. Genet Med 2019; 21:2686-2694. [PMID: 31263214 DOI: 10.1038/s41436-019-0561-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE In glycogen storage disease type III (GSD III), liver aminotransferases tend to normalize with age giving an impression that hepatic manifestations improve with age. However, despite dietary treatment, long-term liver complications emerge. We present a GSD III liver natural history study in children to better understand changes in hepatic parameters with age. METHODS We reviewed clinical, biochemical, histological, and radiological data in pediatric patients with GSD III, and performed a literature review of GSD III hepatic findings. RESULTS Twenty-six patients (median age 12.5 years, range 2-22) with GSD IIIa (n = 23) and IIIb (n = 3) were enrolled in the study. Six of seven pediatric patients showed severe fibrosis on liver biopsy (median [range] age: 1.25 [0.75-7] years). Markers of liver injury (aminotransferases), dysfunction (cholesterol, triglycerides), and glycogen storage (glucose tetrasaccharide, Glc4) were elevated at an early age, and decreased significantly thereafter (p < 0.001). Creatine phosphokinase was also elevated with no significant correlation with age (p = 0.4). CONCLUSION Liver fibrosis can occur at an early age, and may explain the decrease in aminotransferases and Glc4 with age. Our data outlines the need for systematic follow-up and specific biochemical and radiological tools to monitor the silent course of the liver disease process.
Collapse
Affiliation(s)
- Carine A Halaby
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah P Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Stephanie Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Ela Stefanescu
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Deeksha Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Lani K Clinton
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Brian Smith
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Jariya Upadia
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Gary R Schooler
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Alisha M Mavis
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
16
|
Tobaly D, Laforêt P, Perry A, Habes D, Labrune P, Decostre V, Masingue M, Petit F, Barp A, Bello L, Carlier P, Carlier R. Whole‐Body Muscle Magnetic Resonance Imaging in Glycogen‐Storage Disease Type III. Muscle Nerve 2019; 60:72-79. [DOI: 10.1002/mus.26483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 11/08/2022]
Affiliation(s)
- David Tobaly
- APHP, Service de Radiologie GHU PIFO pôle neuro‐locomoteurHôpital Raymond Poincaré Garches France
| | - Pascal Laforêt
- AP‐HP, Service de NeurologieHôpital Raymond‐Poincaré Garches France
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France France
| | - Ariane Perry
- Université Paris‐Diderot‐Sorbonne Paris Cité UMR 1149, Paris France
| | - Dalila Habes
- AP‐HP, Service de pédiatrieHôpital Bicêtre Kremlin‐Bicêtre France
| | - Philippe Labrune
- APHP, Hôpital Antoine Béclère, Centre de Référence Maladies Héréditaires du Métabolisme HépatiqueHôpitaux Universitaires Paris Sud Clamart France
| | | | - Marion Masingue
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de FranceHôpital Pitié‐Salpêtrière APHP, Paris France
| | - Francois Petit
- APHP, Laboratoire de Génétique MoléculaireHôpitaux Universitaires Paris‐Sud, Hôpital Antoine Béclère Clamart France
| | - Andrea Barp
- Department of NeurosciencesUniversity of Padova Padova Italy
| | - Luca Bello
- Department of NeurosciencesUniversity of Padova Padova Italy
| | - Pierre Carlier
- AIM & CEA NMR LaboratoryInstitute of Myology, Pitié‐Salpêtrière University Hospital Paris France
| | - Robert‐Yves Carlier
- APHP, Service de Radiologie GHU PIFO pôle neuro‐locomoteurHôpital Raymond Poincaré Garches France
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France France
- UMR 1179Université Versailles Saint Quentin en Yvelines Paris Saclay France
| |
Collapse
|
17
|
Hepatic Manifestations in Glycogen Storage Disease Type III. CURRENT PATHOBIOLOGY REPORTS 2018. [DOI: 10.1007/s40139-018-0182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Pagliarani S, Lucchiari S, Ulzi G, Ripolone M, Violano R, Fortunato F, Bordoni A, Corti S, Moggio M, Bresolin N, Comi GP. Glucose-free/high-protein diet improves hepatomegaly and exercise intolerance in glycogen storage disease type III mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3407-3417. [PMID: 30076962 PMCID: PMC6134197 DOI: 10.1016/j.bbadis.2018.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/06/2018] [Accepted: 07/30/2018] [Indexed: 11/30/2022]
Abstract
Glycogen disease type III (GSDIII), a rare incurable autosomal recessive disorder due to glycogen debranching enzyme deficiency, presents with liver, heart and skeletal muscle impairment, hepatomegaly and ketotic hypoglycemia. Muscle weakness usually worsens to fixed myopathy and cardiac involvement may present in about half of the patients during disease. Management relies on careful follow-up of symptoms and diet. No common agreement was reached on sugar restriction and treatment in adulthood. We administered two dietary regimens differing in their protein and carbohydrate content, high-protein (HPD) and high-protein/glucose-free (GFD), to our mouse model of GSDIII, starting at one month of age. Mice were monitored, either by histological, biochemical and molecular analysis and motor functional tests, until 10 months of age. GFD ameliorated muscle performance up to 10 months of age, while HPD showed little improvement only in young mice. In GFD mice, a decreased muscle glycogen content and fiber vacuolization was observed, even in aged animals indicating a protective role of proteins against skeletal muscle degeneration, at least in some districts. Hepatomegaly was reduced by about 20%. Moreover, the long-term administration of GFD did not worsen serum parameters even after eight months of high-protein diet. A decreased phosphofructokinase and pyruvate kinase activities and an increased expression of Krebs cycle and gluconeogenesis genes were seen in the liver of GFD fed mice. Our data show that the concurrent use of proteins and a strictly controlled glucose supply could reduce muscle wasting, and indicate a better metabolic control in mice with a glucose-free/high-protein diet. GSDIII is a rare incurable disease due to lacking of glycogen debrancher enzyme. Essential features are liver, heart and skeletal muscle impairment. Two diets differing in protein and sugar amount were tested in Agl-mouse model. Glucose-free/high-protein diet decreased glycogen storage and hepatomegaly. Improved muscle performance and better metabolic compensation were achieved.
Collapse
Affiliation(s)
- Serena Pagliarani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy.
| | - Sabrina Lucchiari
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy
| | - Gianna Ulzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy
| | - Michela Ripolone
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy
| | - Raffaella Violano
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy
| | - Francesco Fortunato
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy
| | - Andreina Bordoni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy
| | - Stefania Corti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy
| | - Maurizio Moggio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy
| | - Nereo Bresolin
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy
| | - Giacomo P Comi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy
| |
Collapse
|
19
|
Pursell N, Gierut J, Zhou W, Dills M, Diwanji R, Gjorgjieva M, Saxena U, Yang JS, Shah A, Venkat N, Storr R, Kim B, Wang W, Abrams M, Raffin M, Mithieux G, Rajas F, Dudek H, Brown BD, Lai C. Inhibition of Glycogen Synthase II with RNAi Prevents Liver Injury in Mouse Models of Glycogen Storage Diseases. Mol Ther 2018; 26:1771-1782. [PMID: 29784585 PMCID: PMC6035741 DOI: 10.1016/j.ymthe.2018.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/25/2022] Open
Abstract
Glycogen storage diseases (GSDs) of the liver are devastating disorders presenting with fasting hypoglycemia as well as hepatic glycogen and lipid accumulation, which could lead to long-term liver damage. Diet control is frequently utilized to manage the potentially dangerous hypoglycemia, but there is currently no effective pharmacological treatment for preventing hepatomegaly and concurrent liver metabolic abnormalities, which could lead to fibrosis, cirrhosis, and hepatocellular adenoma or carcinoma. In this study, we demonstrate that inhibition of glycogen synthesis using an RNAi approach to silence hepatic Gys2 expression effectively prevents glycogen synthesis, glycogen accumulation, hepatomegaly, fibrosis, and nodule development in a mouse model of GSD III. Mechanistically, reduction of accumulated abnormally structured glycogen prevents proliferation of hepatocytes and activation of myofibroblasts as well as infiltration of mononuclear cells. Additionally, we show that silencing Gys2 expression reduces hepatic steatosis in a mouse model of GSD type Ia, where we hypothesize that the reduction of glycogen also reduces the production of excess glucose-6-phosphate and its subsequent diversion to lipid synthesis. Our results support therapeutic silencing of GYS2 expression to prevent glycogen and lipid accumulation, which mediate initial signals that subsequently trigger cascades of long-term liver injury in GSDs.
Collapse
Affiliation(s)
| | | | - Wei Zhou
- Dicerna Pharmaceuticals, Cambridge, MA 02140, USA
| | | | | | | | - Utsav Saxena
- Dicerna Pharmaceuticals, Cambridge, MA 02140, USA
| | | | - Anee Shah
- Dicerna Pharmaceuticals, Cambridge, MA 02140, USA
| | | | - Rachel Storr
- Dicerna Pharmaceuticals, Cambridge, MA 02140, USA
| | - Boyoung Kim
- Dicerna Pharmaceuticals, Cambridge, MA 02140, USA
| | - Weimin Wang
- Dicerna Pharmaceuticals, Cambridge, MA 02140, USA
| | - Marc Abrams
- Dicerna Pharmaceuticals, Cambridge, MA 02140, USA
| | | | | | | | - Henryk Dudek
- Dicerna Pharmaceuticals, Cambridge, MA 02140, USA
| | - Bob D Brown
- Dicerna Pharmaceuticals, Cambridge, MA 02140, USA.
| | | |
Collapse
|
20
|
Decostre V, Laforêt P, De Antonio M, Kachetel K, Canal A, Ollivier G, Nadaj-Pakleza A, Petit FM, Wahbi K, Fayssoil A, Eymard B, Behin A, Labrune P, Hogrel JY. Long term longitudinal study of muscle function in patients with glycogen storage disease type IIIa. Mol Genet Metab 2017; 122:108-116. [PMID: 28888851 DOI: 10.1016/j.ymgme.2017.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022]
Abstract
Glycogen storage disease type III (GSDIII) is an autosomal recessive disorder caused by mutations in the AGL gene coding for the glycogen debranching enzyme. Current therapy is based on dietary adaptations but new preclinical therapies are emerging. The identification of outcome measures which are sensitive to disease progression becomes critical to assess the efficacy of new treatments in upcoming clinical trials. In order to prepare future longitudinal studies or therapeutic trials with large cohorts, information about disease progression is required. In this study we present preliminary longitudinal data of Motor Function Measure (MFM), timed tests, Purdue pegboard test, and handgrip strength collected over 5 to 9years of follow-up in 13 patients with GSDIII aged between 13 and 56years old. Follow-up for nine of the 13 patients was up to 9years. Similarly to our previous cross-sectional retrospective study, handgrip strength significantly decreased with age in patients older than 37years. MFM scores started to decline after the age of 35. The Purdue pegboard score also significantly reduced with increasing age (from 13years of age) but with large inter-visit variations. The time to stand up from a chair or to climb 4 stairs increased dramatically in some but not all patients older than 30years old. In conclusion, this preliminary longitudinal study suggests that MFM and handgrip strength are the most sensitive muscle function outcome measures in GSDIII patients from the end of their third decade. Sensitive muscle outcome measures remain to be identified in younger GSDIII patients but is challenging as muscle symptoms remain discrete and often present as accumulated fatigue.
Collapse
Affiliation(s)
| | - Pascal Laforêt
- Centre de référence Pathologie Neuromusculaire Paris-Est, APHP - GH Pitié-Salpêtrière, Institut de Myologie, Paris, France; INSERM UMRS 974, Institut de Myologie, Paris, France
| | - Marie De Antonio
- Centre de référence Pathologie Neuromusculaire Paris-Est, APHP - GH Pitié-Salpêtrière, Institut de Myologie, Paris, France; Centre de recherche des Cordeliers UMRS 1138, Paris Descartes et UPMC, France
| | - Kahina Kachetel
- Centre de référence Pathologie Neuromusculaire Paris-Est, APHP - GH Pitié-Salpêtrière, Institut de Myologie, Paris, France
| | - Aurélie Canal
- Institut de Myologie, GH Pitié-Salpêtrière, Paris, France
| | - Gwenn Ollivier
- Institut de Myologie, GH Pitié-Salpêtrière, Paris, France
| | - Aleksandra Nadaj-Pakleza
- Centre de référence Pathologie Neuromusculaire Paris-Est, APHP - GH Pitié-Salpêtrière, Institut de Myologie, Paris, France
| | - François M Petit
- Department of Molecular Genetics, APHP - GH Antoine Béclère, Clamart, France
| | - Karim Wahbi
- Institut de Myologie, GH Pitié-Salpêtrière, Paris, France; Département de Cardiologie, APHP, Hôpital Cochin, Paris, France
| | | | - Bruno Eymard
- Centre de référence Pathologie Neuromusculaire Paris-Est, APHP - GH Pitié-Salpêtrière, Institut de Myologie, Paris, France
| | - Anthony Behin
- Centre de référence Pathologie Neuromusculaire Paris-Est, APHP - GH Pitié-Salpêtrière, Institut de Myologie, Paris, France
| | - Philippe Labrune
- APHP, Hôpitaux Universitaires Paris Sud, Hôpital Antoine Béclère, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Clamart, France; Université Paris Sud, Orsay, France
| | | |
Collapse
|
21
|
Quinlivan R, Andreu AL, Marti R. 211th ENMC International Workshop:: Development of diagnostic criteria and management strategies for McArdle Disease and related rare glycogenolytic disorders to improve standards of care. 17-19 April 2015, Naarden, The Netherlands. Neuromuscul Disord 2017; 27:1143-1151. [PMID: 29079393 DOI: 10.1016/j.nmd.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 11/17/2022]
Affiliation(s)
- Ros Quinlivan
- MRC Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Antoni L Andreu
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, CIBERER, Barcelona, Catalonia, Spain
| | - Ramon Marti
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, CIBERER, Barcelona, Catalonia, Spain
| |
Collapse
|
22
|
Decostre V, Laforêt P, Nadaj-Pakleza A, De Antonio M, Leveugle S, Ollivier G, Canal A, Kachetel K, Petit F, Eymard B, Behin A, Wahbi K, Labrune P, Hogrel JY. Cross-sectional retrospective study of muscle function in patients with glycogen storage disease type III. Neuromuscul Disord 2016; 26:584-92. [PMID: 27460348 DOI: 10.1016/j.nmd.2016.06.460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022]
Abstract
Glycogen storage disease type III is an inherited metabolic disorder characterized by liver and muscle impairment. This study aimed to identify promising muscle function measures for future studies on natural disease progression and therapeutic trials. The age-effect on the manual muscle testing (MMT), the hand-held dynamometry (HHD), the motor function measure (MFM) and the Purdue pegboard test was evaluated by regression analysis in a cross-sectional retrospective single site study. In patients aged between 13 and 56 years old, the Purdue pegboard test and dynamometry of key pinch and knee extension strength were age-sensitive with annual losses of 1.49, 1.10 and 0.70% of the predicted values (%pred), respectively. The MFM score and handgrip strength were also age-sensitive but only in patients older than 29 and 37 years old with annual losses of 1.42 and 1.84%pred, respectively. Muscle strength assessed by MMT and elbow extension measured by HHD demonstrated an annual loss of less than 0.50%pred and are thus unlikely to be promising outcome measures for future clinical trials. In conclusion, our results identified age-sensitive outcomes from retrospective data and may serve for future longitudinal studies in which an estimation of the minimal number of subjects is provided.
Collapse
Affiliation(s)
- Valérie Decostre
- Institut de Myologie, APHP - GH Pitié-Salpêtrière, Bd de l'Hôpital, Paris 75651 Cedex 13, France.
| | - Pascal Laforêt
- Paris-Est Neuromuscular Center , APHP - GH Pitié-Salpêtrière, Paris, France; INSERM UMRS 974, Paris, France
| | - Aleksandra Nadaj-Pakleza
- Centre de référence des maladies neuromusculaires Nantes/Angers, Service de Neurologie, CHU Angers, Angers, France
| | - Marie De Antonio
- INSERM U1138-team22, Centre de Recherche des Cordeliers, Paris Descartes and UPMC University, Paris, France
| | - Sylvain Leveugle
- INSERM U1138-team22, Centre de Recherche des Cordeliers, Paris Descartes and UPMC University, Paris, France
| | - Gwenn Ollivier
- Institut de Myologie, APHP - GH Pitié-Salpêtrière, Bd de l'Hôpital, Paris 75651 Cedex 13, France
| | - Aurélie Canal
- Institut de Myologie, APHP - GH Pitié-Salpêtrière, Bd de l'Hôpital, Paris 75651 Cedex 13, France
| | - Kahina Kachetel
- Paris-Est Neuromuscular Center , APHP - GH Pitié-Salpêtrière, Paris, France
| | - François Petit
- Laboratoire de Génétique moléculaire, APHP - GH Antoine Béclère, Clamart, France
| | - Bruno Eymard
- Paris-Est Neuromuscular Center , APHP - GH Pitié-Salpêtrière, Paris, France
| | - Anthony Behin
- Paris-Est Neuromuscular Center , APHP - GH Pitié-Salpêtrière, Paris, France
| | - Karim Wahbi
- Institut de Myologie, APHP - GH Pitié-Salpêtrière, Bd de l'Hôpital, Paris 75651 Cedex 13, France; Département de Cardiologie, APHP, Hôpital Cochin, Paris, France
| | - Philippe Labrune
- APHP, Hôpital Antoine Béclère, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Hôpitaux Universitaires Paris Sud, Clamart, France; Université Paris Sud, Orsay, France
| | - Jean-Yves Hogrel
- Institut de Myologie, APHP - GH Pitié-Salpêtrière, Bd de l'Hôpital, Paris 75651 Cedex 13, France
| |
Collapse
|
23
|
Sun B, Brooks ED, Koeberl DD. Preclinical Development of New Therapy for Glycogen Storage Diseases. Curr Gene Ther 2016; 15:338-47. [PMID: 26122079 DOI: 10.2174/1566523215666150630132253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/24/2015] [Accepted: 04/01/2015] [Indexed: 02/07/2023]
Abstract
Glycogen storage disease (GSD) consists of more than 10 discrete conditions for which the biochemical and genetic bases have been determined, and new therapies have been under development for several of these conditions. Gene therapy research has generated proof-of-concept for GSD types I (von Gierke disease) and II (Pompe disease). Key features of these gene therapy strategies include the choice of vector and regulatory cassette, and recently adeno-associated virus (AAV) vectors containing tissue-specific promoters have achieved a high degree of efficacy. Efficacy of gene therapy for Pompe disease depend upon the induction of immune tolerance to the therapeutic enzyme. Efficacy of von Gierke disease is transient, waning gradually over the months following vector administration. Small molecule therapies have been evaluated with the goal of improving standard of care therapy or ameliorating the cellular abnormalities associated with specific GSDs. The receptor-mediated uptake of the therapeutic enzyme in Pompe disease was enhanced by administration of β2 agonists. Rapamycin reduced the liver fibrosis observed in GSD III. Further development of gene therapy could provide curative therapy for patients with GSD, if efficacy from preclinical research is observed in future clinical trials and these treatments become clinically available.
Collapse
|
24
|
Herlin B, Laforět P, Labrune P, Fournier E, Stojkovic T. Peripheral neuropathy in glycogen storage disease type III: Fact or myth? Muscle Nerve 2015; 53:310-2. [DOI: 10.1002/mus.24977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Bastien Herlin
- AP-HP, G-H Pitié-Salpêtrière, Institut de Myologie, centre de référence des maladies neuromusculaires Paris Est; 75013 Paris France
| | - Pascal Laforět
- AP-HP, G-H Pitié-Salpêtrière, Institut de Myologie, centre de référence des maladies neuromusculaires Paris Est; 75013 Paris France
| | - Philippe Labrune
- AP-HP, Hôpitaux Universitaires Paris-Sud - Hôpital Antoine Béclère, Centre de Référence des maladies héréditaires du métabolisme hépatique, service de Pédiatrie, Clamart, and Université Paris Sud; UFR Le Kremlin-Bicêtre France
| | - Emmanuel Fournier
- AP-HP, G-H Pitié-Salpêtrière, Département de Neurophysiologie; Paris France
| | - Tanya Stojkovic
- AP-HP, G-H Pitié-Salpêtrière, Institut de Myologie, centre de référence des maladies neuromusculaires Paris Est; 75013 Paris France
| |
Collapse
|
25
|
Guin S, Ru Y, Agarwal N, Lew CR, Owens C, Comi GP, Theodorescu D. Loss of Glycogen Debranching Enzyme AGL Drives Bladder Tumor Growth via Induction of Hyaluronic Acid Synthesis. Clin Cancer Res 2015; 22:1274-83. [PMID: 26490312 DOI: 10.1158/1078-0432.ccr-15-1706] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/11/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE We demonstrated that amylo-alpha-1-6-glucosidase-4-alpha-glucanotransferase (AGL) is a tumor growth suppressor and prognostic marker in human bladder cancer. Here we determine how AGL loss enhances tumor growth, hoping to find therapeutically tractable targets/pathways that could be used in patients with low AGL-expressing tumors. EXPERIMENTAL DESIGN We transcriptionally profiled bladder cell lines with different AGL expression. By focusing on transcripts overexpressed as a function of low AGL and associated with adverse clinicopathologic variables in human bladder tumors, we sought to increase the chances of discovering novel therapeutic opportunities. RESULTS One such transcript was hyaluronic acid synthase 2 (HAS2), an enzyme responsible for hyaluronic acid (HA) synthesis. HAS2 expression was inversely proportional to that of AGL in bladder cancer cells and immortalized and normal urothelium. HAS2-driven HA synthesis was enhanced in bladder cancer cells with low AGL, and this drove anchorage-dependent and independent growth. siRNA-mediated depletion of HAS2 or inhibition of HA synthesis by 4-methylumbelliferone (4MU) abrogated in vitro and xenograft growth of bladder cancer cells with low AGL. AGL and HAS2 mRNA expression in human tumors was inversely correlated in patient datasets. Patients with high HAS2 and low AGL tumor mRNA expression had poor survival, lending clinical support to xenograft findings that HAS2 drives growth of tumors with low AGL. CONCLUSIONS Our study establishes HAS2-mediated HA synthesis as a driver of growth of bladder cancer with low AGL and provides preclinical rationale for personalized targeting of HAS2/HA signaling in patients with low AGL-expressing tumors.
Collapse
Affiliation(s)
- Sunny Guin
- Department of Surgery (Urology), University of Colorado, Denver, Colorado. Department of Pharmacology, University of Colorado, Denver, Colorado
| | - Yuanbin Ru
- Department of Surgery (Urology), University of Colorado, Denver, Colorado. Department of Pharmacology, University of Colorado, Denver, Colorado
| | - Neeraj Agarwal
- Department of Surgery (Urology), University of Colorado, Denver, Colorado. Department of Pharmacology, University of Colorado, Denver, Colorado
| | - Carolyn R Lew
- Department of Surgery (Urology), University of Colorado, Denver, Colorado. Department of Pharmacology, University of Colorado, Denver, Colorado
| | - Charles Owens
- Department of Surgery (Urology), University of Colorado, Denver, Colorado. Department of Pharmacology, University of Colorado, Denver, Colorado
| | - Giacomo P Comi
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dan Theodorescu
- Department of Surgery (Urology), University of Colorado, Denver, Colorado. Department of Pharmacology, University of Colorado, Denver, Colorado. University of Colorado Comprehensive Cancer Center, Denver, Colorado.
| |
Collapse
|
26
|
Ritterson Lew C, Guin S, Theodorescu D. Targeting glycogen metabolism in bladder cancer. Nat Rev Urol 2015; 12:383-91. [PMID: 26032551 DOI: 10.1038/nrurol.2015.111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metabolism has been a heavily investigated topic in cancer research for the past decade. Although the role of aerobic glycolysis (the Warburg effect) in cancer has been extensively studied, abnormalities in other metabolic pathways are only just being understood in cancer. One such pathway is glycogen metabolism; its involvement in cancer development, particularly in urothelial malignancies, and possible ways of exploiting aberrations in this process for treatment are currently being studied. New research shows that the glycogen debranching enzyme amylo-α-1,6-glucosidase, 4-α-glucanotransferase (AGL) is a novel tumour suppressor in bladder cancer. Loss of AGL leads to rapid proliferation of bladder cancer cells. Another enzyme involved in glycogen debranching, glycogen phosphorylase, has been shown to be a tumour promoter in cancer, including in prostate cancer. Studies demonstrate that bladder cancer cells in which AGL expression is lost are more metabolically active than cells with intact AGL expression, and these cells are more sensitive to inhibition of both glycolysis and glycine synthesis--two targetable pathways. As a tumour promoter and enzyme, glycogen phosphorylase can be directly targeted, and preclinical inhibitor studies are promising. However, few of these glycogen phosphorylase inhibitors have been tested for cancer treatment in the clinical setting. Several possible limitations to the targeting of AGL and glycogen phosphorylase might also exist.
Collapse
Affiliation(s)
- Carolyn Ritterson Lew
- Department of Surgery (Urology), University of Colorado, 12700 East 19th Avenue, RC2/P15-6430D/MS-8609, Aurora, CO 80045, USA
| | - Sunny Guin
- Department of Surgery (Urology), University of Colorado, 12700 East 19th Avenue, RC2/P15-6430D/MS-8609, Aurora, CO 80045, USA
| | - Dan Theodorescu
- University of Colorado Comprehensive Cancer Center, MS F-434, 13001 East 17th Place, Aurora, CO 80045, USA
| |
Collapse
|
27
|
Chandramouli C, Varma U, Stevens EM, Xiao RP, Stapleton DI, Mellor KM, Delbridge LMD. Myocardial glycogen dynamics: New perspectives on disease mechanisms. Clin Exp Pharmacol Physiol 2015; 42:415-25. [DOI: 10.1111/1440-1681.12370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 11/26/2022]
Affiliation(s)
| | - Upasna Varma
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
| | - Ellie M Stevens
- Department of Physiology; University of Auckland; Auckland New Zealand
| | - Rui-Ping Xiao
- Institute of Molecular Medicine; Peking University; Beijing China
| | - David I Stapleton
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
- The Florey Institute of Neuroscience; Melbourne Vic. Australia
| | - Kimberley M Mellor
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
- Department of Physiology; University of Auckland; Auckland New Zealand
| | - Lea MD Delbridge
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
| |
Collapse
|