1
|
Yu Y, Nie G, Ren YW, Ouyang L, Ni CM. Pumilio RNA binding family member 1 deficiency activates anti-tumor immunity in hepatocellular carcinoma via restraining M2 macrophage polarization. Cell Cycle 2024; 23:682-692. [PMID: 38794797 PMCID: PMC11229713 DOI: 10.1080/15384101.2024.2355825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Pumilio RNA-binding family member 1 (PUM1) has been implicated in both the progression of colorectal cancer and the regulation of inflammation. The role of PUM1 in the polarization of tumor-associated macrophages (TAMs) into the M2 phenotype has not yet been reported in hepatocellular carcinoma. Using the PUM1-knockout mice model, flow cytometry, and IHC, we validated the role of PUM1 in hepatocellular carcinoma (HCC) TAMs. One-way analysis of variance (ANOVA) or student's t-tests was used to compare the experimental groups. We found that PUM1 inhibited anti-tumor immunity in HCC through TAM-mediated inhibition of CD8+ T cells. We also showed that PUM1 promotes the transformation of TAMs into pro-tumorigenic M2-like phenotypes by activating cAMP signaling pathway. This study emphasized the potential of PUM1 as a target for immunotherapy in HCC through TAMs. The present study revealed the molecular mechanism underlying the pro-tumor role of PUM1 in HCC.
Collapse
Affiliation(s)
- Yang Yu
- Department of General Surgery, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Nie
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi-Wei Ren
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liu Ouyang
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen-Ming Ni
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Drozdz MM, Doane AS, Alkallas R, Desman G, Bareja R, Reilly M, Bang J, Yusupova M, You J, Eraslan Z, Wang JZ, Verma A, Aguirre K, Kane E, Watson IR, Elemento O, Piskounova E, Merghoub T, Zippin JH. A nuclear cAMP microdomain suppresses tumor growth by Hippo pathway inactivation. Cell Rep 2022; 40:111412. [PMID: 36170819 PMCID: PMC9549417 DOI: 10.1016/j.celrep.2022.111412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/19/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP (cAMP) signaling is localized to multiple spatially distinct microdomains, but the role of cAMP microdomains in cancer cell biology is poorly understood. Here, we present a tunable genetic system that allows us to activate cAMP signaling in specific microdomains. We uncover a nuclear cAMP microdomain that activates a tumor-suppressive pathway in a broad range of cancers by inhibiting YAP, a key effector protein of the Hippo pathway, inside the nucleus. We show that nuclear cAMP induces a LATS-dependent pathway leading to phosphorylation of nuclear YAP solely at serine 397 and export of YAP from the nucleus with no change in YAP protein stability. Thus, nuclear cAMP inhibition of nuclear YAP is distinct from other known mechanisms of Hippo regulation. Pharmacologic targeting of specific cAMP microdomains remains an untapped therapeutic approach for cancer; thus, drugs directed at the nuclear cAMP microdomain may provide avenues for the treatment of cancer.
Collapse
Affiliation(s)
- Marek M. Drozdz
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Ashley S. Doane
- Englander Institute for Precision Medicine, Joan and Sanford I. Weill Medical College of Cornell University, New York NY 10065, USA
| | - Rached Alkallas
- Rosalind and Morris Goodman Cancer Institute, Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada,Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada,McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Garrett Desman
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rohan Bareja
- Englander Institute for Precision Medicine, Joan and Sanford I. Weill Medical College of Cornell University, New York NY 10065, USA,Institute for Computational Biomedicine, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Michael Reilly
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Jakyung Bang
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Maftuna Yusupova
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Jaewon You
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Zuhal Eraslan
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Jenny Z. Wang
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Akanksha Verma
- Englander Institute for Precision Medicine, Joan and Sanford I. Weill Medical College of Cornell University, New York NY 10065, USA
| | - Kelsey Aguirre
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Elsbeth Kane
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Ian R. Watson
- Rosalind and Morris Goodman Cancer Institute, Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Joan and Sanford I. Weill Medical College of Cornell University, New York NY 10065, USA,Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10029, USA
| | - Elena Piskounova
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA,Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10029, USA,Senior author
| | - Taha Merghoub
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10029, USA,Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA,Senior author
| | - Jonathan H. Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA,Englander Institute for Precision Medicine, Joan and Sanford I. Weill Medical College of Cornell University, New York NY 10065, USA,Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10029, USA,Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA,Senior author,Lead contact,Correspondence:
| |
Collapse
|
3
|
Jung JE, Lee JY, Park HR, Kang JW, Kim YH, Lee JH. MicroRNA-133 Targets Phosphodiesterase 1C in Drosophila and Human Oral Cancer Cells to Regulate Epithelial-Mesenchymal Transition. J Cancer 2021; 12:5296-5309. [PMID: 34335946 PMCID: PMC8317528 DOI: 10.7150/jca.56138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Non-coding microRNAs (miRNAs) have been proposed to play diverse roles in cancer biology, including epithelial-mesenchymal transition (EMT) crucial for cancer progression. Previous comparative studies revealed distinct expression profiles of miRNAs relevant to tumorigenesis and progression of oral cancer. With putative targets of these miRNAs mostly validated in vitro, it remains unclear whether similar miRNA-target relationships exist in vivo. In this study, we employed a hybrid approach, utilizing both Drosophila melanogaster and human oral cancer cells, to validate projected miRNA-target relationships relevant to EMT. Notably, overexpression of dme-miR-133 resulted in significant tissue growth in Drosophila larval wing discs. The RT-PCR analysis successfully validated a subset of its putative targets, including Pde1c. Subsequent experiments performed in oral cancer cells confirmed conserved targeting of human PDE1C by hsa-miR-133. Furthermore, the elevated level of miR-133 and its targeting of PDE1C was positively correlated with enhanced migrative ability of oral cancer cells treated with LPS, along with the molecular signature of a facilitated EMT process induced by LPS and TGF-β. The analysis on the RNAseq data also revealed a negative correlation between the expression level of hsa-miR-133 and the survival of oral cancer patients. Taken together, our mammal-to-Drosophila-to-mammal approach successfully validates targeting of PDE1C by miR-133 both in vivo and in vitro, underlying the promoted EMT phenotypes and potentially influencing the prognosis of oral cancer patients. This hybrid approach will further aid to widen our scope in investigation of intractable human malignancies, including oral cancer.
Collapse
Affiliation(s)
- Ji Eun Jung
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.,BK21 FOUR Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Joo Young Lee
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Hae Ryoun Park
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.,BK21 FOUR Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.,Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea.,Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Ji Wan Kang
- Interdisciplinary Program of Genomic Science, Pusan National University, Yangsan 50612, Korea
| | - Yun Hak Kim
- Department of Anatomy, Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ji Hye Lee
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.,BK21 FOUR Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.,Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea.,Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
4
|
Bang J, Zippin JH. Cyclic adenosine monophosphate (cAMP) signaling in melanocyte pigmentation and melanomagenesis. Pigment Cell Melanoma Res 2020; 34:28-43. [PMID: 32777162 DOI: 10.1111/pcmr.12920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) regulates numerous functions in both benign melanocytes and melanoma cells. cAMP is generated from two distinct sources, transmembrane and soluble adenylyl cyclases (tmAC and sAC, respectively), and is degraded by a family of proteins called phosphodiesterases (PDEs). cAMP signaling can be regulated in many different ways and can lead to varied effects in melanocytes. It was recently revealed that distinct cAMP signaling pathways regulate pigmentation by either altering pigment gene expression or the pH of melanosomes. In the context of melanoma, many studies report seemingly contradictory roles for cAMP in tumorigenesis. For example, cAMP signaling has been implicated in both cancer promotion and suppression, as well as both therapy resistance and sensitization. This conundrum in the field may be explained by the fact that cAMP signals in discrete microdomains and each microdomain can mediate differential cellular functions. Here, we review the role of cAMP signaling microdomains in benign melanocyte biology, focusing on pigmentation, and in melanomagenesis.
Collapse
Affiliation(s)
- Jakyung Bang
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
5
|
Perez DR, Sklar LA, Chigaev A, Matlawska-Wasowska K. Drug repurposing for targeting cyclic nucleotide transporters in acute leukemias - A missed opportunity. Semin Cancer Biol 2020; 68:199-208. [PMID: 32044470 DOI: 10.1016/j.semcancer.2020.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 02/03/2020] [Indexed: 02/08/2023]
Abstract
While current treatment regimens for acute leukemia can dramatically improve patient survival, there remains room for improvement. Due to its roles in cell differentiation, cell survival, and apoptotic signaling, modulation of the cyclic AMP (cAMP) pathway has provided a meaningful target in hematological malignancies. Several studies have demonstrated that gene expression profiles associated with increased pro-survival cAMP activity or downregulation of various pro-apoptotic factors associated with the cAMP pathway are apparent in acute leukemia patients. Previous work to increase leukemia cell intracellular cAMP focused on the use of cAMP analogs, stimulating cAMP production via transmembrane-associated adenylyl cyclases, or decreasing cAMP degradation by inhibiting phosphodiesterase activity. However, targeting cyclic nucleotide efflux by ATP-binding cassette (ABC) transporters represents an unexplored approach for modulation of intracellular cyclic nucleotide levels. Preliminary studies have shown that inhibition of cAMP efflux can stimulate leukemia cell differentiation, cell growth arrest, and apoptosis, indicating that targeting cAMP efflux may show promise for future therapeutic development. Furthermore, inhibition of cyclic nucleotide transporter activity may also contribute multiple anticancer benefits by reducing extracellular pro-survival signaling in malignant cells. Hence, several opportunities for drug repurposing may exist for targeting cyclic nucleotide transporters.
Collapse
Affiliation(s)
- Dominique R Perez
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Larry A Sklar
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Alexandre Chigaev
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| | - Ksenia Matlawska-Wasowska
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA; Department of Pediatrics, Division of Hematology-Oncology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
6
|
Nabavi SM, Talarek S, Listos J, Nabavi SF, Devi KP, Roberto de Oliveira M, Tewari D, Argüelles S, Mehrzadi S, Hosseinzadeh A, D'onofrio G, Orhan IE, Sureda A, Xu S, Momtaz S, Farzaei MH. Phosphodiesterase inhibitors say NO to Alzheimer's disease. Food Chem Toxicol 2019; 134:110822. [PMID: 31536753 DOI: 10.1016/j.fct.2019.110822] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/18/2022]
Abstract
Phosphodiesterases (PDEs) consisted of 11 subtypes (PDE1 to PDE11) and over 40 isoforms that regulate levels of cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP), the second messengers in cell functions. PDE inhibitors (PDEIs) have been attractive therapeutic targets due to their involvement in diverse medical conditions, e.g. cardiovascular diseases, autoimmune diseases, Alzheimer's disease (AD), etc. Among them; AD with a complex pathology is a progressive neurodegenerative disorder which affect mostly senile people in the world and only symptomatic treatment particularly using cholinesterase inhibitors in clinic is available at the moment for AD. Consequently, novel treatment strategies towards AD are still searched extensively. Since PDEs are broadly expressed in the brain, PDEIs are considered to modulate neurodegenerative conditions through regulating cAMP and cGMP in the brain. In this sense, several synthetic or natural molecules inhibiting various PDE subtypes such as rolipram and roflumilast (PDE4 inhibitors), vinpocetine (PDE1 inhibitor), cilostazol and milrinone (PDE3 inhibitors), sildenafil and tadalafil (PDE5 inhibitors), etc have been reported showing encouraging results for the treatment of AD. In this review, PDE superfamily will be scrutinized from the view point of structural features, isoforms, functions and pharmacology particularly attributed to PDEs as target for AD therapy.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - Marcos Roberto de Oliveira
- Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Grazia D'onofrio
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Viale Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, 14623, USA.
| | - Saeedeh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Wiggins SV, Steegborn C, Levin LR, Buck J. Pharmacological modulation of the CO 2/HCO 3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase. Pharmacol Ther 2018; 190:173-186. [PMID: 29807057 DOI: 10.1016/j.pharmthera.2018.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cyclic AMP (cAMP), the prototypical second messenger, has been implicated in a wide variety of (often opposing) physiological processes. It simultaneously mediates multiple, diverse processes, often within a single cell, by acting locally within independently-regulated and spatially-restricted microdomains. Within each microdomain, the level of cAMP will be dependent upon the balance between its synthesis by adenylyl cyclases and its degradation by phosphodiesterases (PDEs). In mammalian cells, there are many PDE isoforms and two types of adenylyl cyclases; the G protein regulated transmembrane adenylyl cyclases (tmACs) and the CO2/HCO3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase (sAC). Discriminating the roles of individual cyclic nucleotide microdomains requires pharmacological modulators selective for the various PDEs and/or adenylyl cyclases. Such tools present an opportunity to develop therapeutics specifically targeted to individual cAMP dependent pathways. The pharmacological modulators of tmACs have recently been reviewed, and in this review, we describe the current status of pharmacological tools available for studying sAC.
Collapse
Affiliation(s)
- Shakarr V Wiggins
- Graduate Program in Neuroscience, Weill Cornell Medicine, New York, NY 10065, United States
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States.
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
8
|
The metabolic/pH sensor soluble adenylyl cyclase is a tumor suppressor protein. Oncotarget 2018; 7:45597-45607. [PMID: 27323809 PMCID: PMC5216745 DOI: 10.18632/oncotarget.10056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/01/2016] [Indexed: 11/25/2022] Open
Abstract
cAMP signaling pathways can both stimulate and inhibit the development of cancer; however, the sources of cAMP important for tumorigenesis remain poorly understood. Soluble adenylyl cyclase (sAC) is a non-canonical, evolutionarily conserved, nutrient- and pH-sensing source of cAMP. sAC has been implicated in the metastatic potential of certain cancers, and it is differentially localized in human cancers as compared to benign tissues. We now show that sAC expression is reduced in many human cancers. Loss of sAC increases cellular transformation in vitro and malignant progression in vivo. These data identify the metabolic/pH sensor soluble adenylyl cyclase as a previously unappreciated tumor suppressor protein.
Collapse
|
9
|
Rodríguez CI, Castro-Pérez E, Longley BJ, Setaluri V. Elevated cyclic AMP levels promote BRAF CA/Pten -/- mouse melanoma growth but pCREB is negatively correlated with human melanoma progression. Cancer Lett 2017; 414:268-277. [PMID: 29179997 DOI: 10.1016/j.canlet.2017.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
Abstract
Melanocyte development and differentiation are regulated by cAMP, which is produced by the adenylate cyclase (AC) enzyme upon activation of the melanocortin-1-receptor (MC1R). Individuals carrying single amino acid substitution variants of MC1R have impaired cAMP signaling and higher risk of melanoma. However, the contribution of AC to this risk is not clear. Downstream of AC, the phosphorylated transcription factor, cyclic AMP Responsive Element Binding Protein (pCREB), which is activated by protein kinase A, regulates the expression of several genes including the melanocyte master regulator MITF. The roles of AC and CREB in melanoma development and growth are not well understood. Here, we investigated the effect of topical application of AC inhibitor on BrafCA/Pten-/- mouse melanoma development. We show that AC inhibitor delays melanoma growth independent of MAPK pathway activity and melanin content. Next, employing a primary melanoma tissue microarray and quantitative immunohistochemistry, we show that pCREB levels are positively correlated with the proliferative status of melanoma, but low pCREB expression is associated with tumor aggressiveness and metastatic recurrence. These data suggest that low cAMP signaling inhibits tumor growth but is a predictor of melanoma aggressiveness.
Collapse
Affiliation(s)
- Carlos I Rodríguez
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| | - Edgardo Castro-Pérez
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - B Jack Longley
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Vijayasaradhi Setaluri
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
10
|
Tanwar M, Khera L, Haokip N, Kaul R, Naorem A, Kateriya S. Modulation of cyclic nucleotide-mediated cellular signaling and gene expression using photoactivated adenylyl cyclase as an optogenetic tool. Sci Rep 2017; 7:12048. [PMID: 28935957 PMCID: PMC5608697 DOI: 10.1038/s41598-017-12162-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/01/2017] [Indexed: 11/09/2022] Open
Abstract
Cyclic nucleotide signaling pathway plays a significant role in various biological processes such as cell growth, transcription, inflammation, in microbial pathogenesis, etc. Modulation of cyclic nucleotide levels by optogenetic tools has overcome certain limitations of studying transduction cascade by pharmacological agents and has allowed several ways to modulate biological processes in a spatiotemporal manner. Here, we have shown the optogenetic modulation of the cyclooxygenase 2 (Cox-2) gene expression and their downstream effector molecule (PGE2) in HEK-293T cells and the development process of Dictyostelium discoideum via modulating the cyclic nucleotide (cAMP) signaling pathway utilizing photoactivated adenylyl cyclases (PACs) as an optogenetic tool. Light-induced activation of PACs in HEK-293T cells increases the cAMP level that leads to activation of cAMP response element-binding protein (CREB) transcription factor and further upregulates downstream Cox-2 gene expression and their downstream effector molecule prostaglandin E2. In D. discoideum, the light-regulated increase in cAMP level affects the starvation-induced developmental process. These PACs could modulate the cAMP levels in a light-dependent manner and have a potential to control gene expression and their downstream effector molecules with varying magnitude. It would enable one to utilize PAC as a tool to decipher cyclic nucleotide mediated signaling pathway regulations and their mechanism.
Collapse
Affiliation(s)
- Meenakshi Tanwar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Lohit Khera
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Nemneineng Haokip
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Aruna Naorem
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Suneel Kateriya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India. .,School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Roa JN, Tresguerres M. Bicarbonate-sensing soluble adenylyl cyclase is present in the cell cytoplasm and nucleus of multiple shark tissues. Physiol Rep 2017; 5:5/2/e13090. [PMID: 28108644 PMCID: PMC5269408 DOI: 10.14814/phy2.13090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/31/2022] Open
Abstract
The enzyme soluble adenylyl cyclase (sAC) is directly stimulated by bicarbonate (HCO3−) to produce the signaling molecule cyclic adenosine monophosphate (cAMP). Because sAC and sAC‐related enzymes are found throughout phyla from cyanobacteria to mammals and they regulate cell physiology in response to internal and external changes in pH, CO2, and HCO3−, sAC is deemed an evolutionarily conserved acid‐base sensor. Previously, sAC has been reported in dogfish shark and round ray gill cells, where they sense and counteract blood alkalosis by regulating the activity of V‐type H+‐ ATPase. Here, we report the presence of sAC protein in gill, rectal gland, cornea, intestine, white muscle, and heart of leopard shark Triakis semifasciata. Co‐expression of sAC with transmembrane adenylyl cyclases supports the presence of cAMP signaling microdomains. Furthermore, immunohistochemistry on tissue sections, and western blots and cAMP‐activity assays on nucleus‐enriched fractions demonstrate the presence of sAC protein in and around nuclei. These results suggest that sAC modulates multiple physiological processes in shark cells, including nuclear functions.
Collapse
Affiliation(s)
- Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography University of California San Diego, 9500 Gilman Drive La Jolla, California, 92093, USA
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography University of California San Diego, 9500 Gilman Drive La Jolla, California, 92093, USA
| |
Collapse
|
12
|
Wong M, Funasaka K, Obayashi T, Miyahara R, Hirooka Y, Hamaguchi M, Goto H, Senga T. AMPD3 is associated with the malignant characteristics of gastrointestinal stromal tumors. Oncol Lett 2016; 13:1281-1287. [PMID: 28454247 DOI: 10.3892/ol.2016.5532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/01/2016] [Indexed: 11/05/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are mesenchymal tumors of the gastrointestinal tract. It is well known that activating mutations in the receptor tyrosine kinases KIT and platelet-derived growth factor receptor-α have essential roles in the pathogenesis of GISTs. The activation of these receptor protein kinases triggers multiple signaling pathways that promote cell proliferation and survival; however, the exact mechanism by which the activation of these kinases promotes the progression of GISTs remains uncertain. The aim of the present was to search for genes that are associated with the progression of GIST. The present study used reverse transcription-quantitative polymerase chain reaction to demonstrate that adenosine monophosphate deaminase 3 (AMPD3) was highly expressed in GISTs. Furthermore, transfection of GIST-T1 cells with KIT-specific small interfering RNA (siRNA) demonstrated that the expression of AMPD3 was dependent on KIT expression, while the depletion of AMPD3 in human GIST-T1 cells using AMPD3-specific siRNA resulted in the suppression of cell migration and invasion. In addition, AMPD3 depletion sensitized GIST-T1 cells to the tyrosine kinase inhibitor imatinib. The results of the present suggested that the combined inhibition of tyrosine kinases and AMPD3 may be effective for the treatment of GISTs.
Collapse
Affiliation(s)
- Meihong Wong
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kohei Funasaka
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomohiko Obayashi
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ryoji Miyahara
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Michinari Hamaguchi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hidemi Goto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takeshi Senga
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
13
|
Ramos-Espiritu L, Kleinboelting S, Navarrete FA, Alvau A, Visconti PE, Valsecchi F, Starkov A, Manfredi G, Buck H, Adura C, Zippin JH, van den Heuvel J, Glickman JF, Steegborn C, Levin LR, Buck J. Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase. Nat Chem Biol 2016; 12:838-44. [PMID: 27547922 PMCID: PMC5030147 DOI: 10.1038/nchembio.2151] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/23/2016] [Indexed: 12/22/2022]
Abstract
The prototypical second messenger cAMP regulates a wide variety of physiological processes. It can simultaneously mediate diverse functions by acting locally in independently regulated microdomains. In mammalian cells, two types of adenylyl cyclase generate cAMP: G-protein-regulated transmembrane adenylyl cyclases and bicarbonate-, calcium- and ATP-regulated soluble adenylyl cyclase (sAC). Because each type of cyclase regulates distinct microdomains, methods to distinguish between them are needed to understand cAMP signaling. We developed a mass-spectrometry-based adenylyl cyclase assay, which we used to identify a new sAC-specific inhibitor, LRE1. LRE1 bound to the bicarbonate activator binding site and inhibited sAC via a unique allosteric mechanism. LRE1 prevented sAC-dependent processes in cellular and physiological systems, and it will facilitate exploration of the therapeutic potential of sAC inhibition.
Collapse
Affiliation(s)
- Lavoisier Ramos-Espiritu
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
- The High-Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York, USA
| | | | - Felipe A Navarrete
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Antonio Alvau
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Federica Valsecchi
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Anatoly Starkov
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Hannes Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Carolina Adura
- The High-Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York, USA
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical College, New York, New York, USA
| | | | - J Fraser Glickman
- The High-Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York, USA
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
14
|
Huang S, Chong N, Lewis NE, Jia W, Xie G, Garmire LX. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis. Genome Med 2016; 8:34. [PMID: 27036109 PMCID: PMC4818393 DOI: 10.1186/s13073-016-0289-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/16/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND More accurate diagnostic methods are pressingly needed to diagnose breast cancer, the most common malignant cancer in women worldwide. Blood-based metabolomics is a promising diagnostic method for breast cancer. However, many metabolic biomarkers are difficult to replicate among studies. METHODS We propose that higher-order functional representation of metabolomics data, such as pathway-based metabolomic features, can be used as robust biomarkers for breast cancer. Towards this, we have developed a new computational method that uses personalized pathway dysregulation scores for disease diagnosis. We applied this method to predict breast cancer occurrence, in combination with correlation feature selection (CFS) and classification methods. RESULTS The resulting all-stage and early-stage diagnosis models are highly accurate in two sets of testing blood samples, with average AUCs (Area Under the Curve, a receiver operating characteristic curve) of 0.968 and 0.934, sensitivities of 0.946 and 0.954, and specificities of 0.934 and 0.918. These two metabolomics-based pathway models are further validated by RNA-Seq-based TCGA (The Cancer Genome Atlas) breast cancer data, with AUCs of 0.995 and 0.993. Moreover, important metabolic pathways, such as taurine and hypotaurine metabolism and the alanine, aspartate, and glutamate pathway, are revealed as critical biological pathways for early diagnosis of breast cancer. CONCLUSIONS We have successfully developed a new type of pathway-based model to study metabolomics data for disease diagnosis. Applying this method to blood-based breast cancer metabolomics data, we have discovered crucial metabolic pathway signatures for breast cancer diagnosis, especially early diagnosis. Further, this modeling approach may be generalized to other omics data types for disease diagnosis.
Collapse
Affiliation(s)
- Sijia Huang
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Nicole Chong
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, San Diego, CA, 92093, USA
| | - Wei Jia
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Guoxiang Xie
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA.
| | - Lana X Garmire
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA.
| |
Collapse
|