1
|
Kutryb-Zając B, Kawecka A, Harasim G, Bieńkowski M, Stawarska K, Urbanowicz K, Smoleński RT, Kowalik MM, Kołaczkowska M, Siondalski P. Purinergic ecto-enzymes in human and ovine aortic valves: indicators of bacterial nanocellulose scaffold cellularization. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2025; 53:219-230. [PMID: 40353745 DOI: 10.1080/21691401.2025.2502033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
Purinergic signalling pathways play a vital role in the biological functions of the aortic valve (AV) through nucleotide and adenosine-dependent receptor effects. This study focused on characterizing a side-specific purinergic cascade in human non-stenotic and stenotic AVs, ovine native AVs and a novel bacterial nanocellulose (BNC) bio-prosthesis in an ovine model. Human stenotic AVs were collected during replacement surgeries, while non-stenotic AVs came from heart transplant patients. Ovine native AVs were sourced from domestic sheep, and the BNC prosthesis was implanted in the ovine aorta for six months, with hemodynamic monitoring throughout. Biochemical assessments revealed a beneficial ecto-enzyme pattern in non-stenotic and native AVs, contrasting with a detrimental pattern in stenotic valves. The BNC prosthesis demonstrated significantly lower nucleotide conversion activities than native valves and displayed increased peripheral blood mononuclear cell adhesion on its aortic surface. These findings suggest that nucleotide-converting ecto-enzymes could serve as markers for the biological activity of AV prostheses, highlighting the need for further studies to enhance the cellularization of BNC prostheses, potentially through adenosine-releasing scaffold modifications.
Collapse
Affiliation(s)
- Barbara Kutryb-Zając
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
- Centre of Experimental Cardiooncology, Medical University of Gdansk, Gdańsk, Poland
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Gabriela Harasim
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdansk, Gdańsk, Poland
| | - Klaudia Stawarska
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | | | | | - Maciej M Kowalik
- Department of Anaesthesiology and Intensive Therapy, Medical University of Gdańsk, Gdansk, Poland
| | - Magdalena Kołaczkowska
- Department of Cardiac and Vascular Surgery, Medical University of Gdansk, Gdańsk, Poland
| | - Piotr Siondalski
- Department of Cardiac and Vascular Surgery, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
2
|
Braczko A, Stawarska K, Kawecka A, Walczak I, Slomińska EM, Kutryb-Zając B, Smoleński RT. Pharmacological interventions that activate mitochondrial biogenesis stimulate nucleotide generation in isoproterenol-stressed rat cardiomyocytes. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2025:1-12. [PMID: 39895099 DOI: 10.1080/15257770.2025.2453105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Mitochondrial dysfunction in failing hearts has been described as a driving force for energy deprivation and cardiomyocyte energy supply-demand imbalance. Isoproterenol (ISO), the β1/β2-adrenergic receptor agonist that leads to myocardial stress and mitochondrial damage, is extensively used for in vitro and in vivo studies to test the efficacy of therapeutic strategies in heart failure (HF). This study evaluated the cell morphology, nucleotide concentrations, and mitochondrial function of ISO-treated cardiomyocytes stimulated with the activators of mitochondrial biogenesis and nucleotide precursors. H9c2 rat cardiomyocyte line cells were treated with ISO in the presence of mitochondrial biogenesis stimuli quercetin (Que), rosiglitazone (Ros), S-Nitroso-N-acetyl-DL-penicillamin (SNAP), and NAD+ precursor, nicotinamide riboside (NR). The intracellular concentrations of nucleotides were analyzed using high-performance liquid chromato-graphy, and the Seahorse metabolic flux analyzer determined the mitochondrial function. ISO decreased intracellular ATP concentration in H9c2 cells as compared to control. The treatment with SNAP increased ATP concentration compared to ISO-only treated cells, while Que, Ros, and NR had no effect. NR treatment led to the elevation of intracellular NAD+ concentration, while the treatment with SNAP, Ros, and NR stimulated the mitochondrial respiration in ISO-pretreated H9c2 cells. In conclusion, mitochondrial biogenesis activators consistently improved cardiomyocyte mitochondrial function, but only selected molecules helped to improve ATP or NAD+ concentrations. This information may help to optimize treatment to ameliorate energy imbalance in failing cardiomyocytes.
Collapse
Affiliation(s)
- Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Klaudia Stawarska
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Iga Walczak
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Ewa M Slomińska
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | | | | |
Collapse
|
3
|
Mierzejewska P, Denslow A, Papiernik D, Zabrocka A, Kutryb-Zając B, Charkiewicz K, Braczko A, Smoleński RT, Wietrzyk J, Słomińska EM. 4-Pyridone-3-carboxamide-1-β-D-ribonucleoside Reduces Cyclophosphamide Effects and Induces Endothelial Inflammation in Murine Breast Cancer Model. Int J Mol Sci 2024; 26:35. [PMID: 39795893 PMCID: PMC11719935 DOI: 10.3390/ijms26010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/30/2025] Open
Abstract
4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR) is a nicotinamide derivative, considered a new oncometabolite. 4PYR formation induced a cytotoxic effect on the endothelium. Elevated blood 4PYR concentration was observed in patients with cancer. Still, little is known about the metabolic and functional effects of 4PYR in this pathology. The study aimed to investigate whether this toxic accumulation of 4PYR may affect the activity of anticancer therapy with cyclophosphamide in the orthotropic model of breast cancer. Female Balb/c mice were injected with 4T1 breast cancer cells and assigned into three groups: treated with PBS (Control), cyclophosphamide-treated (+CP), 4PYR-treated (+4PYR), and mice treated with both 4PYR and CP(+4PYR+CP) for 28 days. Afterward, blood and serum samples, liver, muscle, spleen, heart, lungs, aortas, and tumor tissue were collected for analysis of concentrations of nucleotides, nicotinamide metabolites, and 4PYR with its metabolites, as well as the liver level of cytochrome P450 enzymes. 4PYR treatment caused elevation of blood 4PYR, its monophosphate and a nicotinamide adenine dinucleotide (NAD+) analog-4PYRAD. Blood 4PYRAD concentration in the +4PYR+CP was reduced in comparison to +4PYR. Tumor growth and final tumor mass were significantly decreased in +CP and did not differ in +4PYR in comparison to Control. However, we observed a substantial increase in these parameters in +4PYR+CP as compared to +CP. The extracellular adenosine deamination rate was measured to assess vascular inflammation, and it was higher in +4PYR than the Control. Treatment with 4PYR and CP caused the highest vascular ATP hydrolysis and adenosine deamination rate. 4PYR administration caused significant elevation of CYP2C9 and reduction in CYP3A4 liver concentrations in both +4PYR and +4PYR+CP as compared to Control and +CP. In additional experiments, we compared healthy mice without cancer, treated with 4PYR (4PYR w/o cancer) and PBS (Control w/o cancer), where 4PYR treatment caused an increase in the serum proinflammatory cytokine expression as compared to Control w/o cancer. 4PYR accumulation in the blood interferes with cyclophosphamide anticancer activity and induces a pro-inflammatory shift of endothelial extracellular enzymes, probably by affecting its metabolism by cytochrome P450 enzymes. This observation may have crucial implications for the activity of various anticancer drugs metabolized by cytochrome P450.
Collapse
Affiliation(s)
- Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland; (B.K.-Z.); (A.B.); (R.T.S.)
| | - Agnieszka Denslow
- Laboratory of Experimental Anticancer Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 02-103 Wrocław, Poland (D.P.); (J.W.)
| | - Diana Papiernik
- Laboratory of Experimental Anticancer Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 02-103 Wrocław, Poland (D.P.); (J.W.)
| | - Alicja Zabrocka
- Regional Center for Blood Donation and Blood Treatment in Gdansk, 80-309 Gdańsk, Poland;
| | - Barbara Kutryb-Zając
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland; (B.K.-Z.); (A.B.); (R.T.S.)
| | - Karol Charkiewicz
- Department of Perinatology and Obstetrics, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland; (B.K.-Z.); (A.B.); (R.T.S.)
| | - Ryszard T. Smoleński
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland; (B.K.-Z.); (A.B.); (R.T.S.)
| | - Joanna Wietrzyk
- Laboratory of Experimental Anticancer Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 02-103 Wrocław, Poland (D.P.); (J.W.)
| | - Ewa M. Słomińska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland; (B.K.-Z.); (A.B.); (R.T.S.)
| |
Collapse
|
4
|
Mierzejewska P, Di Marzo N, Zabielska-Kaczorowska MA, Walczak I, Slominska EM, Lavitrano M, Giovannoni R, Kutryb-Zajac B, Smolenski RT. Endothelial Effects of Simultaneous Expression of Human HO-1, E5NT, and ENTPD1 in a Mouse. Pharmaceuticals (Basel) 2023; 16:1409. [PMID: 37895880 PMCID: PMC10610121 DOI: 10.3390/ph16101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The vascular endothelium is key target for immune and thrombotic responses that has to be controlled in successful xenotransplantation. Several genes were identified that, if induced or overexpressed, help to regulate the inflammatory response and preserve the transplanted organ function and metabolism. However, few studies addressed combined expression of such genes. The aim of this work was to evaluate in vivo the effects of the simultaneous expression of three human genes in a mouse generated using the multi-cistronic F2A technology. Male 3-month-old mice that express human heme oxygenase 1 (hHO-1), ecto-5'-nucleotidase (hE5NT), and ecto-nucleoside triphosphate diphosphohydrolase 1 (hENTPD1) (Transgenic) were compared to wild-type FVB mice (Control). Background analysis include extracellular nucleotide catabolism enzymes profile on the aortic surface, blood nucleotide concentration, and serum L-arginine metabolites. Furthermore, inflammatory stress induced by LPS in transgenic and control mice was used to characterize interleukin 6 (IL-6) and adhesion molecules endothelium permeability responses. Transgenic mice had significantly higher rates of extracellular adenosine triphosphate and adenosine monophosphate hydrolysis on the aortic surface in comparison to control. Increased levels of blood AMP and adenosine were also noticed in transgenics. Moreover, transgenic animals demonstrated the decrease in serum monomethyl-L-arginine level and a higher L-arginine/monomethyl-L-arginine ratio. Importantly, significantly decreased serum IL-6, and adhesion molecule levels were observed in transgenic mice in comparison to control after LPS treatment. Furthermore, reduced endothelial permeability in the LPS-treated transgenic mice was noted as compared to LPS-treated control. The human enzymes (hHO-1, hE5NT, hENTPD1) simultaneously encoded in transgenic mice demonstrated benefits in several biochemical and functional aspects of endothelium. This is consistent in use of this approach in the context of xenotransplantation.
Collapse
Affiliation(s)
- Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
| | - Noemi Di Marzo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.D.M.); (M.L.); (R.G.)
| | - Magdalena A. Zabielska-Kaczorowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
- Department of Physiology, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Iga Walczak
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.D.M.); (M.L.); (R.G.)
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.D.M.); (M.L.); (R.G.)
- Department of Biology, University of Pisa, 56026 Pisa, Italy
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland; (P.M.); (M.A.Z.-K.); (I.W.); (E.M.S.)
| |
Collapse
|
5
|
Sayegh MN, Cooney KA, Han WM, Cicka M, Strobel F, Wang L, García AJ, Levit RD. Hydrogel delivery of purinergic enzymes improves cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 176:98-109. [PMID: 36764383 PMCID: PMC10006353 DOI: 10.1016/j.yjmcc.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
RATIONALE The innate immune response contributes to cardiac injury in myocardial ischemia/reperfusion (MI/R). Neutrophils are an important early part of the innate immune response to MI/R. Adenosine, an endogenous purine, is a known innate immune modulator and inhibitor of neutrophil activation. However, its delivery to the heart is limited by its short half-life (<30 s) and off-target side effects. CD39 and CD73 are anti-inflammatory homeostatic enzymes that can generate adenosine from phosphorylated adenosine substrate such as ATP released from injured tissue. OBJECTIVE We hypothesize that hydrogel-delivered CD39 and CD73 target the local early innate immune response, reduce neutrophil activation, and preserve cardiac function in MI/R injury. METHODS AND RESULTS We engineered a poly(ethylene) glycol (PEG) hydrogel loaded with the adenosine-generating enzymes CD39 and CD73. We incubated the hydrogels with neutrophils in vitro and showed a reduction in hydrogen peroxide production using Amplex Red. We demonstrated availability of substrate for the enzymes in the myocardium in MI/R by LC/MS, and tested release kinetics from the hydrogel. On echocardiography, global longitudinal strain (GLS) was preserved in MI/R hearts treated with the loaded hydrogel. Delivery of purinergic enzymes via this synthetic hydrogel resulted in lower innate immune infiltration into the myocardium post-MI/R, decreased markers of macrophage and neutrophil activation (NETosis), and decreased leukocyte-platelet complexes in circulation. CONCLUSIONS In a rat model of MI/R injury, CD39 and CD73 delivered via a hydrogel preserve cardiac function by modulating the innate immune response.
Collapse
Affiliation(s)
- Michael N Sayegh
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Kimberly A Cooney
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biological Sciences, Tennessee State University, Nashville, TN, United States of America
| | - Woojin M Han
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America; Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Markus Cicka
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Frederick Strobel
- Department of Chemistry, Emory University, Atlanta, GA, United States of America
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America.
| |
Collapse
|
6
|
Braczko A, Kutryb-Zajac B, Jedrzejewska A, Krol O, Mierzejewska P, Zabielska-Kaczorowska M, Slominska EM, Smolenski RT. Cardiac Mitochondria Dysfunction in Dyslipidemic Mice. Int J Mol Sci 2022; 23:ijms231911488. [PMID: 36232794 PMCID: PMC9570391 DOI: 10.3390/ijms231911488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dyslipidemia triggers many severe pathologies, including atherosclerosis and chronic inflammation. Several lines of evidence, including our studies, have suggested direct effects of dyslipidemia on cardiac energy metabolism, but details of these effects are not clear. This study aimed to investigate how mild dyslipidemia affects cardiac mitochondria function and vascular nucleotide metabolism. The analyses were performed in 3- and 6-month-old knock-out mice for low-density lipoprotein receptor (Ldlr−/−) and compared to wild-type C57Bl/6J mice (WT). Cardiac isolated mitochondria function was analyzed using Seahorse metabolic flux analyzer. The mechanical function of the heart was measured using echocardiography. The levels of fusion, fission, and mitochondrial biogenesis proteins were determined by ELISA kits, while the cardiac intracellular nucleotide concentration and vascular pattern of nucleotide metabolism ecto-enzymes were analyzed using reverse-phase high-performance liquid chromatography. We revealed the downregulation of mitochondrial complex I, together with a decreased activity of citrate synthase (CS), reduced levels of nuclear respiratory factor 1 and mitochondrial fission 1 protein, as well as lower intracellular adenosine and guanosine triphosphates’ pool in the hearts of 6-month Ldlr−/− mice vs. age-matched WT. The analysis of vascular ecto-enzyme pattern revealed decreased rate of extracellular adenosine monophosphate hydrolysis and increased ecto-adenosine deaminase activity (eADA) in 6-month Ldlr−/− vs. WT mice. No changes were observed in echocardiography parameters in both age groups of Ldlr−/− mice. Younger hyperlipidemic mice revealed no differences in cardiac mitochondria function, CS activity, intracellular nucleotides, mitochondrial biogenesis, and dynamics but exhibited minor changes in vascular eADA activity vs. WT. This study revealed that dysfunction of cardiac mitochondria develops during prolonged mild hyperlipidemia at the time point corresponding to the formation of early vascular alterations.
Collapse
Affiliation(s)
- Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Correspondence: (B.K.-Z.); (R.T.S.); Tel.: +48-58-349-14-14 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| | - Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Magdalena Zabielska-Kaczorowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Department of Physiology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Correspondence: (B.K.-Z.); (R.T.S.); Tel.: +48-58-349-14-14 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| |
Collapse
|
7
|
Tomczyk M, Braczko A, Mierzejewska P, Podlacha M, Krol O, Jablonska P, Jedrzejewska A, Pierzynowska K, Wegrzyn G, Slominska EM, Smolenski RT. Rosiglitazone Ameliorates Cardiac and Skeletal Muscle Dysfunction by Correction of Energetics in Huntington’s Disease. Cells 2022; 11:cells11172662. [PMID: 36078070 PMCID: PMC9454785 DOI: 10.3390/cells11172662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington’s disease (HD) is a rare neurodegenerative disease that is accompanied by skeletal muscle atrophy and cardiomyopathy. Tissues affected by HD (central nervous system [CNS], skeletal muscle, and heart) are known to suffer from deteriorated cellular energy metabolism that manifests already at presymptomatic stages. This work aimed to test the effects of peroxisome proliferator-activated receptor (PPAR)-γ agonist—rosiglitazone on grip strength and heart function in an experimental HD model—on R6/1 mice and to address the mechanisms. We noted that rosiglitazone treatment lead to improvement of R6/1 mice grip strength and cardiac mechanical function. It was accompanied by an enhancement of the total adenine nucleotides pool, increased glucose oxidation, changes in mitochondrial number (indicated as increased citric synthase activity), and reduction in mitochondrial complex I activity. These metabolic changes were supported by increased total antioxidant status in HD mice injected with rosiglitazone. Correction of energy deficits with rosiglitazone was further indicated by decreased accumulation of nucleotide catabolites in HD mice serum. Thus, rosiglitazone treatment may not only delay neurodegeneration but also may ameliorate cardio- and myopathy linked to HD by improvement of cellular energetics.
Collapse
Affiliation(s)
- Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
- Correspondence: (M.T.); (R.T.S.)
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | | | - Magdalena Podlacha
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: (M.T.); (R.T.S.)
| |
Collapse
|
8
|
Uchida T, Yamashita A, Ishizawa A, Sadahiro M, Azuma N, Kaname T. NT5E mutation in sisters who underwent aortic valve replacements for aortic stenosis. Interact Cardiovasc Thorac Surg 2022; 34:45-48. [PMID: 34999808 PMCID: PMC8932508 DOI: 10.1093/icvts/ivab229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 11/12/2022] Open
Abstract
Mutations of the NT5E gene encoding the cluster of differentiation 73 (CD73) protein have been found in patients with characteristic calcification of joints and arteries (CALJA). CD73 plays a protective role against aortic valve calcification; therefore, its deletion results in aortic valve calcification. However, to date, there are no reports of a patient with CALJA with aortic stenosis. In this study, we describe 2 extremely rare cases of sisters with identical NT5E gene mutation patterns, both of whom developed late-onset severe aortic stenosis and limb ischaemia. Both patients underwent aortic valve replacement and bilateral distal arterial bypass surgeries successfully. They were genetically diagnosed with CALJA based on the NT5E mutation. Our report suggests that NT5E mutations should be considered in patients requiring aortic valve replacement for a calcified aortic valve and bypass surgery for specific calcified and occluded arteries.
Collapse
Affiliation(s)
- Tetsuro Uchida
- Department of Cardiovascular, Thoracic and Paediatric Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Atsushi Yamashita
- Department of Cardiovascular, Thoracic and Paediatric Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Ai Ishizawa
- Department of Cardiovascular, Thoracic and Paediatric Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Mitsuaki Sadahiro
- Department of Cardiovascular, Thoracic and Paediatric Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Centre for Child Health and Development, Tokyo, Japan
| |
Collapse
|
9
|
High Throughput Procedure for Comparative Analysis of In Vivo Cardiac Glucose or Amino Acids Use in Cardiovascular Pathologies and Pharmacological Treatments. Metabolites 2021; 11:metabo11080497. [PMID: 34436438 PMCID: PMC8398927 DOI: 10.3390/metabo11080497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
The heart is characterized by the prominent flexibility of its energy metabolism and is able to use diverse carbon substrates, including carbohydrates and amino acids. Cardiac substrate preference could have a major impact on the progress of cardiac pathologies. However, the majority of methods to investigate changes in substrates’ use in cardiac metabolism in vivo are complex and not suitable for high throughput testing necessary to understand and reverse these pathologies. Thus, this study aimed to develop a simple method that would allow for the analysis of cardiac metabolic substrate use. The developed methods involved the subcutaneous injection of stable 13C isotopomers of glucose, valine, or leucine with mass spectrometric analysis for the investigation of its entry into cardiac metabolic pathways that were deducted from 13C alanine and glutamate enrichments in heart extracts. The procedures were validated by confirming the known effects of treatments that modify glucose, free fatty acids, and amino acid metabolism. Furthermore, we studied changes in the energy metabolism of CD73 knock-out mice to demonstrate the potential of our methods in experimental research. The methods created allowed for fast estimation of cardiac glucose and amino acid use in mice and had the potential for high-throughput analysis of changes in pathology and after pharmacological treatments.
Collapse
|
10
|
Jablonska P, Kutryb‐Zajac B, Mierzejewska P, Jasztal A, Bocian B, Lango R, Rogowski J, Chlopicki S, Smolenski RT, Slominska EM. The new insight into extracellular NAD + degradation-the contribution of CD38 and CD73 in calcific aortic valve disease. J Cell Mol Med 2021; 25:5884-5898. [PMID: 34142751 PMCID: PMC8256368 DOI: 10.1111/jcmm.15912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 12/26/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is crucial for cell energy metabolism and many signalling processes. Recently, we proved the role of ecto-enzymes in controlling adenine nucleotide-dependent pathways during calcific aortic valve disease (CAVD). This study aimed to investigate extracellular hydrolysis of NAD+ and mononucleotide nicotinamide (NMN) in aortic valves and aorta fragments of CAVD patients and on the inner aortic surface of ecto-5'-nucleotidase knockout mice (CD73-/-). Human non-stenotic valves (n = 10) actively converted NAD+ and NMN via both CD73 and NAD+ -glycohydrolase (CD38) according to our analysis with RP-HPLC and immunofluorescence. In stenotic valves (n = 50), due to reduced CD73 activity, NAD+ was degraded predominantly by CD38 and additionally by ALP and eNPP1. CAVD patients had significantly higher hydrolytic rates of NAD+ (0.81 ± 0.07 vs 0.56 ± 0.10) and NMN (1.12 ± 0.10 vs 0.71 ± 0.08 nmol/min/cm2 ) compared with controls. CD38 was also primarily engaged in human vascular NAD+ metabolism. Studies using specific ecto-enzyme inhibitors and CD73-/- mice confirmed that CD73 is not the only enzyme involved in NAD+ and NMN hydrolysis and that CD38 had a significant contribution to these pathways. Modifications of extracellular NAD+ and NMN metabolism in aortic valve cells may be particularly important in valve pathology and could be a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Agnieszka Jasztal
- Jagiellonian Center for Experimental TherapeuticsJagiellonian UniversityKrakowPoland
| | - Barbara Bocian
- Department of Cardiac & Vascular SurgeryMedical University of GdanskGdanskPoland
| | - Romuald Lango
- Department of Cardiac AnaesthesiologyMedical University of GdanskGdanskPoland
| | - Jan Rogowski
- Department of Cardiac & Vascular SurgeryMedical University of GdanskGdanskPoland
| | - Stefan Chlopicki
- Jagiellonian Center for Experimental TherapeuticsJagiellonian UniversityKrakowPoland
| | | | - Ewa M. Slominska
- Department of BiochemistryMedical University of GdanskGdanskPoland
| |
Collapse
|
11
|
Hebanowska A, Mierzejewska P, Braczko A. Effect of estradiol on enzymes of vascular extracellular nucleotide metabolism. Hormones (Athens) 2021; 20:111-117. [PMID: 32935303 PMCID: PMC7889668 DOI: 10.1007/s42000-020-00242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/02/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE Estrogens have beneficial effects on the cardiovascular system, promoting vasodilation, endothelial cells growth, relaxation, and regulation of blood pressure. Some of these effects could be associated with the purinergic system known for the control of vasodilation, inflammation, and platelet function. The aim of our study was the evaluation of ATP, AMP, and adenosine extracellular catabolism, catalyzed by ectonucleoside triphosphate diphosphohydrolase-1 (CD39), ecto-5'-nucleotidase (CD73), and ecto-adenosine deaminase (eADA) in mouse aortas. METHODS Extracellular hydrolysis of ATP, AMP, and adenosine was estimated on the aortic surface of 3-month-old female and male C57BL/6 J wild-type (WT) mice, in female WT mouse aortas incubated for 48 h in the presence or absence of 100 nM estradiol, and in WT female mouse and ApoE-/-LDL-R-/- aortas. The conversion of substrates to products was analyzed by high-pressure liquid chromatography (HPLC). RESULTS We demonstrated significantly higher adenosine deamination rate in WT male vs. female mice (p = 0.041). We also noted the lower adenosine hydrolysis in aortas exposed to estradiol, as compared with the samples incubated in estradiol-free medium (p = 0.043). Finally, we observed that adenosine conversion to inosine was significantly higher on the surface of ApoE-/-LDL-R-/- aortas compared with WT mice (p = 0.001). No such effects were noted in ATP and AMP extracellular hydrolysis. CONCLUSION We conclude that estradiol inhibits the extracellular degradation of adenosine to inosine, which may be an element of its vascular protective effect, as it will lead to an increase in extracellular adenosine concentration. We can also assume that during the development of the atherosclerotic process, the protective role of estradiol in the regulation of adenosine degradation may be obscured by other pathogenic factors.
Collapse
Affiliation(s)
- Areta Hebanowska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.
| | | | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
12
|
Pakiet A, Jakubiak A, Mierzejewska P, Zwara A, Liakh I, Sledzinski T, Mika A. The Effect of a High-Fat Diet on the Fatty Acid Composition in the Hearts of Mice. Nutrients 2020; 12:nu12030824. [PMID: 32245049 PMCID: PMC7146498 DOI: 10.3390/nu12030824] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
The Western diet can lead to alterations in cardiac function and increase cardiovascular risk, which can be reproduced in animal models by implementing a high-fat diet (HFD). However, the mechanism of these alterations is not fully understood and may be dependent on alterations in heart lipid composition. The aim of this study was to evaluate the effect of an HFD on the fatty acid (FA) composition of total lipids, as well as of various lipid fractions in the heart, and on heart function. C57BL/6 mice were fed an HFD or standard laboratory diet. The FA composition of chow, serum, heart and skeletal muscle tissues was measured by gas chromatography–mass spectrometry. Cardiac function was evaluated by ultrasonography. Our results showed an unexpected increase in polyunsaturated FAs (PUFAs) and a significant decrease in monounsaturated FAs (MUFAs) in the heart tissue of mice fed the HFD. For comparison, no such effects were observed in skeletal muscle or serum samples. Furthermore, we found that the largest increase in PUFAs was in the sphingolipid fraction, whereas the largest decrease in MUFAs was in the phospholipid and sphingomyelin fractions. The hearts of mice fed an HFD had an increased content of triacylglycerols. Moreover, the HFD treatment altered aortic flow pattern. We did not find significant changes in heart mass or oxidative stress markers between mice fed the HFD and standard diet. The above results suggest that alterations in FA composition in the heart may contribute to deterioration of heart function. A possible mechanism of this phenomenon is the alteration of sphingolipids and phospholipids in the fatty acid profile, which may change the physical properties of these lipids. Since phospho- and sphingolipids are the major components of cell membranes, alterations in their structures in heart cells can result in changes in cell membrane properties.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (A.Z.)
| | - Agnieszka Jakubiak
- Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Paulina Mierzejewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland;
| | - Agata Zwara
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (A.Z.)
| | - Ivan Liakh
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (A.Z.)
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
- Correspondence: ; Tel.: +48-585-230-810
| |
Collapse
|
13
|
Kutryb-Zajac B, Jablonska P, Serocki M, Bulinska A, Mierzejewska P, Friebe D, Alter C, Jasztal A, Lango R, Rogowski J, Bartoszewski R, Slominska EM, Chlopicki S, Schrader J, Yacoub MH, Smolenski RT. Nucleotide ecto-enzyme metabolic pattern and spatial distribution in calcific aortic valve disease; its relation to pathological changes and clinical presentation. Clin Res Cardiol 2020; 109:137-160. [PMID: 31144065 PMCID: PMC6989624 DOI: 10.1007/s00392-019-01495-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Extracellular nucleotide metabolism contributes to chronic inflammation, cell differentiation, and tissue mineralization by controlling nucleotide and adenosine concentrations and hence its purinergic effects. This study investigated location-specific changes of extracellular nucleotide metabolism in aortic valves of patients with calcific aortic valve disease (CAVD). Individual ecto-enzymes and adenosine receptors involved were analyzed together with correlation with CAVD severity and risk factors. RESULTS Nucleotide and adenosine degradation rates were adversely modified on the aortic surface of stenotic valve as compared to ventricular side, including decreased ATP removal (1.25 ± 0.35 vs. 2.24 ± 0.61 nmol/min/cm2) and adenosine production (1.32 ± 0.12 vs. 2.49 ± 0.28 nmol/min/cm2) as well as increased adenosine deamination (1.28 ± 0.31 vs. 0.67 ± 0.11 nmol/min/cm2). The rates of nucleotide to adenosine conversions were lower, while adenosine deamination was higher on the aortic sides of stenotic vs. non-stenotic valve. There were no differences in extracellular nucleotide metabolism between aortic and ventricular sides of non-stenotic valves. Furthermore, nucleotide degradation rates, measured on aortic side in CAVD (n = 62), negatively correlated with echocardiographic and biochemical parameters of disease severity (aortic jet velocity vs. ATP hydrolysis: r = - 0.30, p < 0.05; vs. AMP hydrolysis: r = - 0.44, p < 0.001; valvular phosphate concentration vs. ATP hydrolysis: r = - 0.26, p < 0.05; vs. AMP hydrolysis: r = - 0.25, p = 0.05) while adenosine deamination showed positive correlation trend with valvular phosphate deposits (r = 0.23, p = 0.07). Nucleotide and adenosine conversion rates also correlated with CAVD risk factors, including hyperlipidemia (AMP hydrolysis vs. serum LDL cholesterol: r = - 0.28, p = 0.05; adenosine deamination vs. total cholesterol: r = 0.25, p = 0.05; LDL cholesterol: r = 0.28, p < 0.05; triglycerides: r = 0.32, p < 0.05), hypertension (adenosine deamination vs. systolic blood pressure: r = 0.28, p < 0.05) and thrombosis (ATP hydrolysis vs. prothrombin time: r = - 0.35, p < 0.01). Functional assays as well as histological and immunofluorescence, flow cytometry and RT-PCR studies identified all major ecto-enzymes engaged in nucleotide metabolism in aortic valves that included ecto-nucleotidases, alkaline phosphatase, and ecto-adenosine deaminase. We have shown that changes in nucleotide-converting ecto-enzymes were derived from their altered activities on valve cells and immune cell infiltrate. We have also demonstrated a presence of A1, A2a and A2b adenosine receptors with diminished expression of A2a and A2b in stenotic vs. non-stenotic valves. Finally, we revealed that augmenting adenosine effects by blocking adenosine deamination with deoxycoformycin decreased aortic valve thickness and reduced markers of calcification via adenosine-dependent pathways in a mouse model of CAVD. CONCLUSIONS This work highlights profound changes in extracellular nucleotide and adenosine metabolism in CAVD. Altered extracellular nucleotide hydrolysis and degradation of adenosine in stenotic valves may affect purinergic responses to support a pro-stenotic milieu and valve calcification. This emphasizes a potential mechanism and target for prevention and therapy. .
Collapse
Affiliation(s)
- Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107 Street, 80-416, Gdańsk, Poland
| | - Alicja Bulinska
- Department of Biochemistry, Medical University of Gdansk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Daniela Friebe
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Christina Alter
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14 Street, 30-348, Kraków, Poland
| | - Romuald Lango
- Department of Cardiac Anesthesiology, Medical University of Gdansk, Dębinki 7 Street, 80-211, Gdańsk, Poland
| | - Jan Rogowski
- Chair and Clinic of Cardiac and Vascular Surgery, Medical University of Gdansk, Dębinki 7 Street, 80-211, Gdańsk, Poland
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107 Street, 80-416, Gdańsk, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14 Street, 30-348, Kraków, Poland
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Magdi H Yacoub
- Heart Science Centre, Imperial College of London at Harefield Hospital, Harefield, Middlesex, UB9 6JH, UK
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, Dębinki 1 Street, 80-211, Gdańsk, Poland.
| |
Collapse
|
14
|
Joolharzadeh P, St Hilaire C. CD73 (Cluster of Differentiation 73) and the Differences Between Mice and Humans. Arterioscler Thromb Vasc Biol 2020; 39:339-348. [PMID: 30676071 DOI: 10.1161/atvbaha.118.311579] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As vascular disease is complex and the various manifestations are influenced by differences in vascular bed architecture, exposure to shear and mechanical forces, cell types involved, and inflammatory responses, in vivo models are necessary to recapitulate the complex physiology and dynamic cellular interactions during pathogenesis. Murine knockout models are commonly used tools for investigators to study the role of a specific gene or pathway in multifaceted disease traits. Although valuable, these models are not perfect, and this is particularly true in regard to CD73 (cluster of differentiation 73), the extracellular enzyme that generates adenosine from AMP. At baseline, CD73-deficient mice do not present with an overt phenotype, whereas CD73-deficient humans present with the complex phenotype of vascular calcification, arteriomegaly and tortuosity, and calcification in small joints. In this review, we highlight the differences between the mouse and human systems and discuss the potential to leverage findings in mice to inform us on the human conditions.
Collapse
Affiliation(s)
- Pouya Joolharzadeh
- From the Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, PA; and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| | - Cynthia St Hilaire
- From the Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, PA; and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| |
Collapse
|
15
|
Meta-analysis of gene expression profiles in preeclampsia. Pregnancy Hypertens 2020; 19:52-60. [DOI: 10.1016/j.preghy.2019.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
|
16
|
Mierzejewska P, Zabielska MA, Kutryb-Zajac B, Tomczyk M, Koszalka P, Smolenski RT, Slominska EM. Impaired L-arginine metabolism marks endothelial dysfunction in CD73-deficient mice. Mol Cell Biochem 2019; 458:133-142. [PMID: 31093850 PMCID: PMC6616215 DOI: 10.1007/s11010-019-03537-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
Abstract
Changes in the ecto-5'-nucleotidase activity-an extracellular nucleotide catabolic enzyme may lead to the inflammation and endothelial dysfunction. We investigated the effect of CD73 deletion on the endothelial function and L-arginine metabolism in various age groups of mice. 1-,3-,6-, and 12-month-old, male C57BL/6 J wild type (WT) and C57BL/6 J CD73-/- (CD73-/-) mice were used. Blood samples were used for the analysis of adenine nucleotide concentrations. Serum samples were analyzed for the concentration of amino acids, Interleukin 6 (IL-6), Intercellular Adhesion Molecule 1 (ICAM-1), Vascular Cell Adhesion Molecule 1 (VCAM-1), and endothelial nitric oxide synthase (eNOS) level. Serum and aortic nitrate/nitrite, as well as aortic arginase and NOS activity in endothelial cells (EC) were evaluated. CD73 deletion led to age-dependent increase in IL-6, ICAM-1, and VCAM-1 concentration compared to WT. All CD73-/- mice age groups were characterized by reduced L-Arginine concentration and eNOS level. Significantly lower NOS activity was noticed in EC isolated from CD73-/- mice lungs in comparison to EC isolated from WT lungs. The L-Arginine/ADMA ratio in the CD73-/- decreased in age-dependent manner in comparison to WT. The nitrate/nitrite ratio was reduced in serum and in aortas of 6-month-old CD73-/- mice as compared to WT. The ornithine/arginine and ornithine/citrulline ratios were increased in CD73-/- compared to controls. Blood (erythrocyte) Adenosine-5'-triphosphate and Adenosine-5'-diphosphate levels were reduced in favor to higher blood Adenosine-5'-monophosphate concentration in CD73-/- mice in comparison to WT. The CD73 deletion leads to the development of age-dependent endothelial dysfunction in mice, associated with impaired L-arginine metabolism. CD73 activity seems to protect endothelium.
Collapse
Affiliation(s)
- P Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland
| | - M A Zabielska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland
- Department of Physiology, Medical University of Gdansk, Gdańsk, Poland
| | - B Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland
| | - M Tomczyk
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland
| | - P Koszalka
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, Gdańsk, Poland
| | - R T Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland
| | - E M Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland.
| |
Collapse
|
17
|
Tomczyk M, Mierzejewska P, Slominska EM, Smolenski RT. The metabolism of ecto-5'-nucleotidase (CD73) inhibitor-α,β-methylene adenosine diphosphate in BALB/c mice. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 37:709-716. [PMID: 30623751 DOI: 10.1080/15257770.2018.1489052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD73 inhibitors are considered to be used in the therapies of melanomas, gliomas or breast cancer. However, little is known about their pharmacology and kinetics in mouse experimental models. Thus, this study is aimed to define a metabolic stability and elimination of the adenosine diphosphate (ADP) analog - α,β-Methylene-ADP also known as AOPCP in BALB/c mice. The process starts with an intravenous injection of AOPCP, next blood and serum samples are collected. Urine samples are possessed by a bladder puncture. Mice aortas are dissected for the e5NT activity evaluation. In order to assess the AOPCP degradation, the incubation of AOPCP in mice blood and plasma is performed. The AOPCP concentration as well as the activity of e5NT were analyzed with the reverse phase-high pressure liquid chromatography (RP-HPLC). The study shows that after 60 minutes of the 20 mg/kg intravenous injection of AOPCP (body weight dose), the concentration of AOPCP in blood diminished rapidly from 38.6 ± 5.0 µM (measured 5 minutes after the injection) to 6.4 ± 1.4 µM. Interestingly, it is also noted that 60 minutes after the incubation of mice blood samples the AOPCP concentration decreases from 50 µM to 30.0 ± 0.3 µM. This study demonstrates a significant and quick decrease of AOPCP concentration in BALB/c mice blood after the intravenous injection and in isolated blood sample incubation. These findings emphasize the quick elimination of AOPCP as well as its instability and suggest that the AOPCP concentration have to be accurately and frequently monitored in all the studies that address its clinical application.
Collapse
Affiliation(s)
- Marta Tomczyk
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | | | - Ewa M Slominska
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - Ryszard T Smolenski
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| |
Collapse
|
18
|
Sakkou M, Chouvardas P, Ntari L, Prados A, Moreth K, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Denis MC, Karagianni N, Kollias G. Mesenchymal TNFR2 promotes the development of polyarthritis and comorbid heart valve stenosis. JCI Insight 2018; 3:98864. [PMID: 29618659 DOI: 10.1172/jci.insight.98864] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal TNF signaling is etiopathogenic for inflammatory diseases such as rheumatoid arthritis and spondyloarthritis (SpA). The role of Tnfr1 in arthritis has been documented; however, Tnfr2 functions are unknown. Here, we investigate the mesenchymal-specific role of Tnfr2 in the TnfΔARE mouse model of SpA in arthritis and heart valve stenosis comorbidity by cell-specific, Col6a1-cre-driven gene targeting. We find that TNF/Tnfr2 signaling in resident synovial fibroblasts (SFs) and valvular interstitial cells (VICs) is detrimental for both pathologies, pointing to common cellular mechanisms. In contrast, systemic Tnfr2 provides protective signaling, since its complete deletion leads to severe deterioration of both pathologies. SFs and VICs lacking Tnfr2 fail to acquire pathogenic activated phenotypes and display increased expression of antiinflammatory cytokines associated with decreased Akt signaling. Comparative RNA sequencing experiments showed that the majority of the deregulated pathways in TnfΔARE mesenchymal-origin SFs and VICs, including proliferation, inflammation, migration, and disease-specific genes, are regulated by Tnfr2; thus, in its absence, they are maintained in a quiescent nonpathogenic state. Our data indicate a pleiotropy of Tnfr2 functions, with mesenchymal Tnfr2 driving cell activation and arthritis/valve stenosis pathogenesis only in the presence of systemic Tnfr2, whereas nonmesenchymal Tnfr2 overcomes this function, providing protective signals and, thus, containing both pathologies.
Collapse
Affiliation(s)
- Maria Sakkou
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Panagiotis Chouvardas
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Lydia Ntari
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Alejandro Prados
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | | | - George Kollias
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|