1
|
Liu JJ, Mei HW, Jing YY, Li ZL, Wu SG, Yuan HX, Zhang XB. Yinchenhao decoction alleviates obstructive jaundice liver injury by modulating epidermal growth factor receptor and constitutive androstane receptor signaling. World J Hepatol 2025; 17:101724. [PMID: 40177192 PMCID: PMC11959654 DOI: 10.4254/wjh.v17.i3.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/18/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Yinchenhao decoction (YCHD) is a traditional Chinese medicine widely used to treat liver damage caused by obstructive jaundice (OJ). Although YCHD has demonstrated protective effects against liver damage, reduced apoptosis, and mitigated oxidative stress in OJ, the precise molecular mechanisms involved remain poorly understood. AIM To investigate the beneficial effects of YCHD on OJ and elucidate the underlying mechanisms. METHODS The active constituents of YCHD were identified using liquid chromatography-tandem mass spectrometry, and their potential targets for OJ treatment were predicted through network pharmacology. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. An OJ rat model was established by common bile duct ligation. Rats were divided into three groups: Sham surgery (S Group), model (O Group), and YCHD (Y Group). YCHD was administered to Group Y for one week. Bilirubin levels, liver function parameters, and bile acid concentrations in blood and urine were measured by enzyme-linked immunosorbent assay. The bile acid renal clearance rate (Clr) was calculated. Histopathological evaluation of liver and kidney tissues was performed using hematoxylin-eosin staining. Western blotting was utilized to assess the expression of key bile acid metabolism and transport proteins in both liver and kidney tissues. The expression of the constitutive androstane receptor (CAR) and its nuclear localization were evaluated by immunohistochemistry. Molecular docking studies identified the epidermal growth factor receptor (EGFR) as a potential target of YCHD's active components. An OJ cell model was created using human liver (L02) and renal tubular epithelial (HK-2) cells, which were treated with YCHD-containing serum. Western blotting and immunofluorescence assays were employed to evaluate CAR expression and its nuclear localization in relation to EGFR activation. RESULTS Network analysis identified the EGFR signaling pathway as a key mechanism through which YCHD exerts its effects on OJ. In vivo experiments showed that YCHD improved liver function, reduced OJ-induced pathology in liver and kidney tissues, and decreased serum bile acid content by enhancing bile acid Clr and urine output. YCHD also increased CAR expression and nuclear heterotopy, upregulating proteins involved in bile acid metabolism and transport, including CYP3A4, UGT1A1, MRP3, and MRP4 in the liver, and MRP2 and MRP4 in the kidneys. In vitro, YCHD increased CAR expression and nuclear heterotopy in L02 and HK-2 cells, an effect that was reversed by EGFR agonists. CONCLUSION YCHD enhances bile acid metabolism in the liver and promotes bile acid excretion in the kidneys, ameliorating liver damage caused by OJ. These effects are likely mediated by the upregulation of CAR and its nuclear translocation.
Collapse
Affiliation(s)
- Jun-Jian Liu
- Department of Hepatobiliary and Pancreatic Surgery 2, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
- Tianjin Key Laboratory, Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300102, China
| | - Han-Wei Mei
- Department of Gastrointestinal Surgery 3, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 301617, China
| | - Yan-Yan Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhong-Lian Li
- Department of Hepatobiliary and Pancreatic Surgery 2, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
| | - Su-Guo Wu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hong-Xia Yuan
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xi-Bo Zhang
- Department of Hepatobiliary and Pancreatic Surgery 2, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China.
| |
Collapse
|
2
|
Tang G, Nierath WF, Leitner E, Xie W, Revskij D, Seume N, Zhang X, Ehlers L, Vollmar B, Zechner D. Comparing animal well-being between bile duct ligation models. PLoS One 2024; 19:e0303786. [PMID: 38950046 PMCID: PMC11216573 DOI: 10.1371/journal.pone.0303786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/01/2024] [Indexed: 07/03/2024] Open
Abstract
A prevailing animal model currently used to study severe human diseases like obstructive cholestasis, primary biliary or sclerosing cholangitis, biliary atresia, and acute liver injury is the common bile duct ligation (cBDL). Modifications of this model include ligation of the left hepatic bile duct (pBDL) or ligation of the left bile duct with the corresponding left hepatic artery (pBDL+pAL). Both modifications induce cholestasis only in the left liver lobe. After induction of total or partial cholestasis in mice, the well-being of these animals was evaluated by assessing burrowing behavior, body weight, and a distress score. To compare the pathological features of these animal models, plasma levels of liver enzymes, bile acids, bilirubin, and within the liver tissue, necrosis, fibrosis, inflammation, as well as expression of genes involved in the synthesis or transport of bile acids were assessed. The survival rate of the animals and their well-being was comparable between pBDL+pAL and pBDL. However, surgical intervention by pBDL+pAL caused confluent necrosis and collagen depositions at the edge of necrotic tissue, whereas pBDL caused focal necrosis and fibrosis in between portal areas. Interestingly, pBDL animals had a higher survival rate and their well-being was significantly improved compared to cBDL animals. On day 14 after cBDL liver aspartate, as well as alanine aminotransferase, alkaline phosphatase, glutamate dehydrogenase, bile acids, and bilirubin were significantly elevated, but only glutamate dehydrogenase activity was increased after pBDL. Thus, pBDL may be primarily used to evaluate local features such as inflammation and fibrosis or regulation of genes involved in bile acid synthesis or transport but does not allow to study all systemic features of cholestasis. The pBDL model also has the advantage that fewer mice are needed, because of its high survival rate, and that the well-being of the animals is improved compared to the cBDL animal model.
Collapse
Affiliation(s)
- Guanglin Tang
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
- Department of General Surgery, Fushun Central Hospital, Fushun, Liaoning, China
| | - Wiebke-Felicitas Nierath
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Emily Leitner
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Wentao Xie
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Denis Revskij
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Nico Seume
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Xianbin Zhang
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Luise Ehlers
- Department of General Surgery, Fushun Central Hospital, Fushun, Liaoning, China
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
3
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
4
|
Xu F, Zhang H, Chen J, Zhan J, Liu P, Liu W, Qi S, Mu Y. Recent progress on the application of compound formulas of traditional Chinese medicine in clinical trials and basic research in vivo for chronic liver disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117514. [PMID: 38042388 DOI: 10.1016/j.jep.2023.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic liver diseases mainly include chronic viral liver disease, metabolic liver disease, cholestatic liver disease (CLD), autoimmune liver disease, and liver fibrosis or cirrhosis. Notably, the compound formulas of traditional Chinese medicine (TCM) is effective for chronic liver diseases in clinical trials and basic research in vivo, which provide evidence of chronic liver disease treatment with integrated TCM and traditional Western medicine. AIM OF THE REVIEW This paper aims to provide a comprehensive review of the compound formulas of TCM for treating different chronic liver diseases to elucidate the composition, main curative effects, and mechanisms of these formulas and research methods. MATERIALS AND METHODS Different keywords related to chronic liver diseases and keywords related to the compound formulas of TCM were used to search the literature. PubMed, Scopus, Web of Science, and CNKI were searched to screen out original articles about the compound formulas of TCM related to the treatment of chronic liver diseases, mainly including clinical trials and basic in vivo research related to Chinese patent drugs, classic prescriptions, proven prescriptions, and hospital preparations. We excluded review articles, meta-analysis articles, in vitro experiments, articles about TCM monomers, articles about single-medicine extracts, and articles with incomplete or uncertain description of prescription composition. Plant names were checked with MPNS (http://mpns.kew.org). RESULTS In this review, the clinical efficacy and mechanism of compound formulas of TCM were summarized for the treatment of chronic viral hepatitis, nonalcoholic fatty liver disease, CLD, and liver fibrosis or cirrhosis developed from these diseases and other chronic liver diseases. For each clinical trial and basic research in vivo, this review provides a detailed record of the specific composition of the compound formulas of TCM, type of clinical research, modeling method of animal experiments, grouping methods, medication administration, main efficacy, and mechanisms. CONCLUSION The general development process of chronic liver disease can be summarized as chronic hepatitis, liver fibrosis or cirrhosis, and hepatocellular carcinoma. The compound formulas of TCM have some applications in these stages of chronic liver diseases. Owing to the continuous progress of medical technology, the benefits of the compound formulas of TCM in the treatment of chronic liver diseases are constantly changing and developing.
Collapse
Affiliation(s)
- Feipeng Xu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Hua Zhang
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Jiamei Chen
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Junyi Zhan
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Ping Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Department of pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shenglan Qi
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Department of pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yongping Mu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
5
|
Wang Y, Tan N, Su R, Liu Z, Hu N, Dong Q. Exploring the Potential Mechanisms of Action of Gentiana Veitchiorum Hemsl. Extract in the Treatment of Cholestasis using UPLC-MS/MS, Systematic Network Pharmacology, and Molecular Docking. Comb Chem High Throughput Screen 2024; 27:1948-1968. [PMID: 38357941 DOI: 10.2174/0113862073275657231210055250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Gentiana veitchiorum Hemsl. (GV) has a long history in Tibetan medicine for treating hepatobiliary disease cholestasis. However, the mechanisms mediating its efficacy in treating cholestasis have yet to be determined. AIM To elucidate the mechanisms of action of GV in the treatment of cholestasis, an integrated approach combining ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis with network pharmacology was established. MATERIALS AND METHODS A comprehensive analysis of the chemical composition of GV was achieved by UPLC-MS/MS. Subsequently, a network pharmacology method that integrated target prediction, a protein-protein interaction (PPI) network, gene set enrichment analysis, and a component- target-pathway network was established, and finally, molecular docking and experiments in vitro were conducted to verify the predicted results. RESULTS Twenty compounds that were extracted from GV were identified by UPLC-MS/MS analysis. Core proteins such as AKT1, TNF, and IL6 were obtained through screening in the Network pharmacology PPI network. The Kyoto Encyclopedia of the Genome (KEGG) pathway predicted that GV could treat cholestasis by acting on signaling pathways such as TNF/IL-17 / PI3K-Akt. Network pharmacology suggested that GV might exert a therapeutic effect on cholestasis by regulating the expression levels of inflammatory mediators, and the results were further confirmed by the subsequent construction of an LPS-induced RAW 264.7 cell model. CONCLUSIONS In this study, UPLC-MS/MS analysis, network pharmacology, and experiment validation were used to explore potential mechanisms of action of GV in the treatment of cholestasis.
Collapse
Affiliation(s)
- Yue Wang
- Medical College of Qinghai University, Xining, 810016, China
| | - Nixia Tan
- Medical College of Qinghai University, Xining, 810016, China
| | - Rong Su
- Medical College of Qinghai University, Xining, 810016, China
| | - Zhenhua Liu
- Medical College of Qinghai University, Xining, 810016, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| |
Collapse
|
6
|
Kister B, Viehof A, Rolle-Kampczyk U, Schwentker A, Treichel NS, Jennings SA, Wirtz TH, Blank LM, Hornef MW, von Bergen M, Clavel T, Kuepfer L. A physiologically based model of bile acid metabolism in mice. iScience 2023; 26:107922. [PMID: 37817939 PMCID: PMC10561051 DOI: 10.1016/j.isci.2023.107922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Bile acid (BA) metabolism is a complex system that includes a wide variety of primary and secondary, as well as conjugated and unconjugated BAs that undergo continuous enterohepatic circulation (EHC). Alterations in both composition and dynamics of BAs have been associated with various diseases. However, a mechanistic understanding of the relationship between altered BA metabolism and related diseases is lacking. Computational modeling may support functional analyses of the physiological processes involved in the EHC of BAs along the gut-liver axis. In this study, we developed a physiologically based model of murine BA metabolism describing synthesis, hepatic and microbial transformations, systemic distribution, excretion, and EHC of BAs at the whole-body level. For model development, BA metabolism of specific pathogen-free (SPF) mice was characterized in vivo by measuring BA levels and composition in various organs, expression of transporters along the gut, and cecal microbiota composition. We found significantly different BA levels between male and female mice that could only be explained by adjusted expression of the hepatic enzymes and transporters in the model. Of note, this finding was in agreement with experimental observations. The model for SPF mice could also describe equivalent experimental data in germ-free mice by specifically switching off microbial activity in the intestine. The here presented model can therefore facilitate and guide functional analyses of BA metabolism in mice, e.g., the effect of pathophysiological alterations on BA metabolism and translation of results from mouse studies to a clinically relevant context through cross-species extrapolation.
Collapse
Affiliation(s)
- Bastian Kister
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, Aachen, Germany
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Alina Viehof
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Annika Schwentker
- Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Nicole Simone Treichel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Susan A.V. Jennings
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Theresa H. Wirtz
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Mathias W. Hornef
- Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Lars Kuepfer
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
7
|
Zhou Y, Zhou Y, Li Y, Sun W, Wang Z, Chen L, He Y, Niu X, Chen J, Yao G. Targeted bile acid profiles reveal the liver injury amelioration of Da-Chai-Hu decoction against ANIT- and BDL-induced cholestasis. Front Pharmacol 2022; 13:959074. [PMID: 36059946 PMCID: PMC9437253 DOI: 10.3389/fphar.2022.959074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
Multiple types of liver diseases, particularly cholestatic liver diseases (CSLDs) and biliary diseases, can disturb bile acid (BA) secretion; however, BA accumulation is currently seen as an important incentive of various types of liver diseases’ progression. Da-Chai-Hu decoction (DCHD) has long been used for treating cholestatic liver diseases; however, the exact mechanisms remain unclear. Currently, our study indicates that the liver damage and cholestasis status of the α-naphthylisothiocyanate (ANIT)-induced intrahepatic cholestasis and bile duct ligation (BDL)-induced extrahepatic cholestasis, following DCHD treatment, were improved; the changes of BA metabolism post-DCHD treatment were investigated by targeted metabolomics profiling by UPLC-MS/MS. DCHD treatment severely downregulated serum biochemical levels and relieved inflammation and the corresponding pathological changes including necrosis, inflammatory infiltration, ductular proliferation, and periductal fibrosis in liver tissue. The experimental results suggested that DCHD treatment altered the size, composition, and distribution of the BAs pool, led the BAs pool of the serum and liver to sharply shrink, especially TCA and TMCA, and enhanced BA secretion into the gallbladder and the excretion of BAs by the urinary and fecal pathway; the levels of BAs synthesized by the alternative pathway were increased in the liver, and the conjugation of BAs and the pathway of BA synthesis were actually affected. In conclusion, DCHD ameliorated ANIT- and BDL-induced cholestatic liver injury by reversing the disorder of BAs profile.
Collapse
Affiliation(s)
- YueHua Zhou
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YunZhong Zhou
- Institute of Pharmaceutical Preparation Research, Jinghua Pharmaceutical Group Co., Ltd., Jiangsu, China
| | - YiFei Li
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Sun
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - ZhaoLong Wang
- Institute of Pharmaceutical Preparation Research, Jinghua Pharmaceutical Group Co., Ltd., Jiangsu, China
| | - Long Chen
- Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye He
- Institute of Pharmaceutical Preparation Research, Jinghua Pharmaceutical Group Co., Ltd., Jiangsu, China
| | - XiaoLong Niu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialiang Chen
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Yao
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guangtao Yao,
| |
Collapse
|
8
|
Choudhuri S, Klaassen CD. Molecular Regulation of Bile Acid Homeostasis. Drug Metab Dispos 2022; 50:425-455. [PMID: 34686523 DOI: 10.1124/dmd.121.000643] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
Bile acids have been known for decades to aid in the digestion and absorption of dietary fats and fat-soluble vitamins in the intestine. The development of gene knockout mice models and transgenic humanized mouse models have helped us understand other functions of bile acids, such as their role in modulating fat, glucose, and energy metabolism, and in the molecular regulation of the synthesis, transport, and homeostasis of bile acids. The G-protein coupled receptor TGR5 regulates the bile acid induced alterations of intermediary metabolism, whereas the nuclear receptor FXR regulates bile acid synthesis and homeostasis. However, this review indicates that unidentified factors in addition to FXR must exist to aid in the regulation of bile acid synthesis and homeostasis. SIGNIFICANCE STATEMENT: This review captures the present understanding of bile acid synthesis, the role of bile acid transporters in the enterohepatic circulation of bile acids, the role of the nuclear receptor FXR on the regulation of bile acid synthesis and bile acid transporters, and the importance of bile acids in activating GPCR signaling via TGR5 to modify intermediary metabolism. This information is useful for developing drugs for the treatment of various hepatic and intestinal diseases, as well as the metabolic syndrome.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland (S.C.) and Department of Pharmacology, Toxicology, and Therapeutics, School of Medicine, University of Kansas, Kansas City, Kansas (C.D.K.)
| | - Curtis D Klaassen
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland (S.C.) and Department of Pharmacology, Toxicology, and Therapeutics, School of Medicine, University of Kansas, Kansas City, Kansas (C.D.K.)
| |
Collapse
|
9
|
de Haan LR, Verheij J, van Golen RF, Horneffer-van der Sluis V, Lewis MR, Beuers UHW, van Gulik TM, Olde Damink SWM, Schaap FG, Heger M, Olthof PB. Unaltered Liver Regeneration in Post-Cholestatic Rats Treated with the FXR Agonist Obeticholic Acid. Biomolecules 2021; 11:biom11020260. [PMID: 33578971 PMCID: PMC7916678 DOI: 10.3390/biom11020260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
In a previous study, obeticholic acid (OCA) increased liver growth before partial hepatectomy (PHx) in rats through the bile acid receptor farnesoid X-receptor (FXR). In that model, OCA was administered during obstructive cholestasis. However, patients normally undergo PHx several days after biliary drainage. The effects of OCA on liver regeneration were therefore studied in post-cholestatic Wistar rats. Rats underwent sham surgery or reversible bile duct ligation (rBDL), which was relieved after 7 days. PHx was performed one day after restoration of bile flow. Rats received 10 mg/kg OCA per day or were fed vehicle from restoration of bile flow until sacrifice 5 days after PHx. Liver regeneration was comparable between cholestatic and non-cholestatic livers in PHx-subjected rats, which paralleled liver regeneration a human validation cohort. OCA treatment induced ileal Fgf15 mRNA expression but did not enhance post-PHx hepatocyte proliferation through FXR/SHP signaling. OCA treatment neither increased mitosis rates nor recovery of liver weight after PHx but accelerated liver regrowth in rats that had not been subjected to rBDL. OCA did not increase biliary injury. Conclusively, OCA does not induce liver regeneration in post-cholestatic rats and does not exacerbate biliary damage that results from cholestasis. This study challenges the previously reported beneficial effects of OCA in liver regeneration in cholestatic rats.
Collapse
Affiliation(s)
- Lianne R. de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China;
- Department of Surgery, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (P.B.O.)
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Rowan F. van Golen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Verena Horneffer-van der Sluis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; (V.H.-v.d.S.); (M.R.L.)
| | - Matthew R. Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; (V.H.-v.d.S.); (M.R.L.)
| | - Ulrich H. W. Beuers
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands;
| | - Thomas M. van Gulik
- Department of Surgery, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (P.B.O.)
| | - Steven W. M. Olde Damink
- Department of Surgery & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (S.W.M.O.D.); (F.G.S.)
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Frank G. Schaap
- Department of Surgery & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (S.W.M.O.D.); (F.G.S.)
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China;
- Department of Surgery, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (P.B.O.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: or ; Tel.: +86-138-19345926 or +31-30-2533966
| | - Pim B. Olthof
- Department of Surgery, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (T.M.v.G.); (P.B.O.)
- Department of Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
10
|
Javitt NB. Hepatic bile formation: bile acid transport and water flow into the canalicular conduit. Am J Physiol Gastrointest Liver Physiol 2020; 319:G609-G618. [PMID: 32935994 DOI: 10.1152/ajpgi.00078.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Advances in molecular biology identifying the many carrier-mediated organic anion transporters and advances in microscopy that have provided a more detailed anatomy of the canalicular conduit make updating the concept of osmotically determined canalicular flow possible. For the most part water flow is not transmembrane but via specific pore proteins in both the hepatocyte and the tight junction. These pores independently regulate the rate at which water flows in response to an osmotic gradient and therefore are determinants of canalicular bile acid concentration. Review of the literature indicates that the initial effect on hepatic bile flow of cholestatic agents such as Thorazine and estradiol 17β-glucuronide are on water flow and not bile salt export pump-mediated bile acid transport and thus provides new approaches to the pathogenesis of drug-induced liver injury. Attaining a micellar concentration of bile acids in the canaliculus is essential to the formation of cholesterol-lecithin vesicles, which mostly occur in the periportal region of the canalicular conduit. The other regions, midcentral and pericentral, may transport lesser amounts of bile acid but augment water flow. Broadening the concept of how hepatic bile flow is initiated, provides new insights into the pathogenesis of canalicular cholestasis.
Collapse
Affiliation(s)
- Norman B Javitt
- Division of Gastroenterology and Hepatology, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
11
|
de Haan LR, van Golen RF. Finding fibroblast growth factor 19 during cholestasis: Does x mark the spot? J Hepatol 2018; 69:1399-1400. [PMID: 30293670 DOI: 10.1016/j.jhep.2018.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/13/2018] [Accepted: 09/02/2018] [Indexed: 12/04/2022]
Affiliation(s)
- Lianne R de Haan
- Department of Surgery, Surgical Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - Rowan F van Golen
- Department of Surgery, Surgical Laboratory, Academic Medical Center, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
12
|
Yang R, Zhao Q, Hu DD, Xiao XR, Huang JF, Li F. Metabolomic analysis of cholestatic liver damage in mice. Food Chem Toxicol 2018; 120:253-260. [DOI: 10.1016/j.fct.2018.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023]
|
13
|
Li J, Dawson PA. Animal models to study bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2018; 1865:895-911. [PMID: 29782919 DOI: 10.1016/j.bbadis.2018.05.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022]
Abstract
The use of animal models, particularly genetically modified mice, continues to play a critical role in studying the relationship between bile acid metabolism and human liver disease. Over the past 20 years, these studies have been instrumental in elucidating the major pathways responsible for bile acid biosynthesis and enterohepatic cycling, and the molecular mechanisms regulating those pathways. This work also revealed bile acid differences between species, particularly in the composition, physicochemical properties, and signaling potential of the bile acid pool. These species differences may limit the ability to translate findings regarding bile acid-related disease processes from mice to humans. In this review, we focus primarily on mouse models and also briefly discuss dietary or surgical models commonly used to study the basic mechanisms underlying bile acid metabolism. Important phenotypic species differences in bile acid metabolism between mice and humans are highlighted.
Collapse
Affiliation(s)
- Jianing Li
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States
| | - Paul A Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|