1
|
Ge PY, Qi YY, Qu SY, Zhao X, Ni SJ, Yao ZY, Guo R, Yang NY, Zhang QC, Zhu HX. Potential Mechanism of S. baicalensis on Lipid Metabolism Explored via Network Pharmacology and Untargeted Lipidomics. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1915-1930. [PMID: 33976541 PMCID: PMC8106469 DOI: 10.2147/dddt.s301679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022]
Abstract
Background S. baicalensis, a traditional herb, has great potential in treating diseases associated with aberrant lipid metabolism, such as inflammation, hyperlipidemia, atherosclerosis and Alzheimer’s disease. Aim of the Study To elucidate the mechanism by which S. baicalensis modulates lipid metabolism and explore the medicinal effects of S. baicalensis at a holistic level. Materials and Methods The potential active ingredients of S. baicalensis and targets involved in regulating lipid metabolism were identified using a network pharmacology approach. Metabolomics was utilized to compare lipids that were altered after S. baicalensis treatment in order to identify significantly altered metabolites, and crucial targets and compounds were validated by molecular docking. Results Steroid biosynthesis, sphingolipid metabolism, the PPAR signaling pathway and glycerolipid metabolism were enriched and predicted to be potential pathways upon which S. baicalensis acts. Further metabolomics assays revealed 14 significantly different metabolites were identified as lipid metabolism-associated elements. After the pathway enrichment analysis of the metabolites, cholesterol metabolism and sphingolipid metabolism were identified as the most relevant pathways. Based on the results of the pathway analysis, sphingolipid and cholesterol biosynthesis and glycerophospholipid metabolism were regarded as key pathways in which S. baicalensis is involved to regulate lipid metabolism. Conclusion According to our metabolomics results, S. baicalensis may exert its therapeutic effects by regulating the cholesterol biosynthesis and sphingolipid metabolism pathways. Upon further analysis of the altered metabolites in certain pathways, agents downstream of squalene were significantly upregulated; however, the substrate of SQLE was surprisingly increased. By combining evidence from molecular docking, we speculated that baicalin, a major ingredient of S. baicalensis, may suppress cholesterol biosynthesis by inhibiting SQLE and LSS, which are important enzymes in the cholesterol biosynthesis pathway. In summary, this study provides new insights into the therapeutic effects of S. baicalensis on lipid metabolism using network pharmacology and lipidomics.
Collapse
Affiliation(s)
- Ping-Yuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yi-Yu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Shu-Yue Qu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Xin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Sai-Jia Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Zeng-Ying Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Nian-Yun Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Qi-Chun Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Hua-Xu Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Lemke C, Christmann J, Yin J, Alonso JM, Serrano E, Chioua M, Ismaili L, Martínez-Grau MA, Beadle CD, Vetman T, Dato FM, Bartz U, Elsinghorst PW, Pietsch M, Müller CE, Iriepa I, Wille T, Marco-Contelles J, Gütschow M. Chromenones as Multineurotargeting Inhibitors of Human Enzymes. ACS OMEGA 2019; 4:22161-22168. [PMID: 31891098 PMCID: PMC6933783 DOI: 10.1021/acsomega.9b03409] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/21/2019] [Indexed: 06/01/2023]
Abstract
The complex nature of multifactorial diseases, such as Morbus Alzheimer, has produced a strong need to design multitarget-directed ligands to address the involved complementary pathways. We performed a purposive structural modification of a tetratarget small-molecule, that is contilisant, and generated a combinatorial library of 28 substituted chromen-4-ones. The compounds comprise a basic moiety which is linker-connected to the 6-position of the heterocyclic chromenone core. The syntheses were accomplished by Mitsunobu- or Williamson-type ether formations. The resulting library members were evaluated at a panel of seven human enzymes, all of which being involved in the pathophysiology of neurodegeneration. A concomitant inhibition of human acetylcholinesterase and human monoamine oxidase B, with IC50 values of 5.58 and 7.20 μM, respectively, was achieved with the dual-target 6-(4-(piperidin-1-yl)butoxy)-4H-chromen-4-one (7).
Collapse
Affiliation(s)
- Carina Lemke
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Joscha Christmann
- Bundeswehr
Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 München, Germany
| | - Jiafei Yin
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - José M. Alonso
- Laboratory
of Medicinal Chemistry, IQOG, CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Estefanía Serrano
- Laboratory
of Medicinal Chemistry, IQOG, CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Mourad Chioua
- Laboratory
of Medicinal Chemistry, IQOG, CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Lhassane Ismaili
- Neurosciences
intégratives et cliniques EA 481, Pôle de Chimie Organique
et Thérapeutique, Univ. Bourgogne
Franche-Comté, UFR Santé, 19, rue Ambroise Paré, 25000 Besançon, France
| | | | - Christopher D. Beadle
- Lilly Research
Centre, Eli Lilly & Company, Erl Wood Manor,
Windlesham, Surrey GU20 6PH, U.K.
| | - Tatiana Vetman
- Lilly
Research Laboratories, Eli Lilly & Company, Indianapolis 46285, Indiana, United States
| | - Florian M. Dato
- Institute
II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Ulrike Bartz
- Department
of Natural Sciences, University of Applied
Sciences Bonn-Rhein-Sieg, von-Liebig-Strasse 20, 53359 Rheinbach, Germany
| | - Paul W. Elsinghorst
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Central
Institute of the Bundeswehr Medical Service Munich, Ingolstädter Landstraße
102, 85748 Garching, Germany
| | - Markus Pietsch
- Institute
II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Christa E. Müller
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Isabel Iriepa
- Department of Organic and Inorganic Chemistry, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33,6, 28871 Alcalá de Henares, Madrid, Spain
| | - Timo Wille
- Bundeswehr
Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 München, Germany
| | - José Marco-Contelles
- Laboratory
of Medicinal Chemistry, IQOG, CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Michael Gütschow
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
3
|
Karimi H, Heydari Dokoohaki M, Zolghadr AR, Ghatee MH. The interactions of an Aβ protofibril with a cholesterol-enriched membrane and involvement of neuroprotective carbazolium-based substances. Phys Chem Chem Phys 2019; 21:11066-11078. [PMID: 31090756 DOI: 10.1039/c9cp00859d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent studies have shown that the aggregation of the amyloid-beta peptide (Aβ) in the brain cell membrane is responsible for the emergence of Alzheimer's disease (AD); the exploration of effective factors involved in the extension of the aggregation process and alternatively the examination of an effective inhibitor via theoretical and experimental tools are among the main research topics in the field of AD treatment. Therefore, in this study, we used all-atom molecular dynamics (MD) simulations to clarify the impact of cell membrane cholesterol on the interaction of Aβ with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) as a membrane model. Moreover, the effect of the P7C3-S243 molecule on the abovementioned process was investigated. The simulation results disclosed the neuroprotective property of the P7C3-S243 molecule. The MD simulation results indicate that the interaction of cholesterol molecules with the Aβ oligomer is negligible and cannot enhance membrane rupture. However, strong hydrogen bonding between the POPC molecules and the oligomers led to membrane perturbation. According to our modellings, the P7C3-S243 molecular layer can protect the cell membrane by inhibiting the direct interaction between the bilayer and Aβ. In addition, free-energy calculations were conducted to determine the possible penetration of Aβ fibrils into the cholesterol-enriched membrane.
Collapse
Affiliation(s)
- Hedayat Karimi
- Department of Chemistry, Shiraz University, Shiraz, 71946-84795, Iran.
| | | | | | | |
Collapse
|
4
|
Fernández-Cabada T, Ramos-Gómez M. A Novel Contrast Agent Based on Magnetic Nanoparticles for Cholesterol Detection as Alzheimer's Disease Biomarker. NANOSCALE RESEARCH LETTERS 2019; 14:36. [PMID: 30684043 PMCID: PMC6349267 DOI: 10.1186/s11671-019-2863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/10/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Considering the high incidence of Alzheimer's disease among the world population over the years, and the costs that the disease poses in sanitary and social terms to countries, it is necessary to develop non-invasive diagnostic tests that allow to detect early biomarkers of the disease. Within the early diagnosis methods, the development of contrast agents for magnetic resonance imaging becomes especially useful. Accumulating evidence suggests that cholesterol may play a role in the pathogenesis of Alzheimer's disease since abnormal deposits of cholesterol surrounding senile plaques have been described in animal transgenic models and patients with Alzheimer's disease. In vivo experiments have also shown that diet-induced hypercholesterolemia enhances intraneuronal accumulation of β-amyloid protein accompanied by microgliosis and accelerates β-amyloid deposition in brains. PRESENTATION OF THE HYPOTHESIS In the present study, we propose for the first time the synthesis of a new nanoconjugate composed of magnetic nanoparticles bound to an anti-cholesterol antibody, to detect the abnormal deposits of cholesterol observed in senile plaques in Alzheimer's disease by magnetic resonance imaging. The nanoplatform could also reveal the decrease of cholesterol observed in neuronal plasmatic membranes associated with this pathology. TESTING THE HYPOTHESIS Experimental design to test the hypothesis will be done first in vitro and then in ex vivo and in vivo studies in a second stage. IMPLICATIONS OF THE HYPOTHESIS The designed nanoplatform could therefore detect cholesterol deposits at the cerebral level. The detection of this biomarker in areas coinciding with senile plaque accumulations could provide early information on the onset and progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Tamara Fernández-Cabada
- Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Milagros Ramos-Gómez
- Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
5
|
Granger MW, Liu H, Fowler CF, Blanchard AP, Taylor MW, Sherman SPM, Xu H, Le W, Bennett SAL. Distinct disruptions in Land's cycle remodeling of glycerophosphocholines in murine cortex mark symptomatic onset and progression in two Alzheimer's disease mouse models. J Neurochem 2018; 149:499-517. [PMID: 30040874 DOI: 10.1111/jnc.14560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/04/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
Changes in glycerophosphocholine metabolism are observed in Alzheimer's disease; however, it is not known whether these metabolic disruptions are linked to cognitive decline. Here, using unbiased lipidomic approaches and direct biochemical assessments, we profiled Land's cycle lipid remodeling in the hippocampus, frontal cortex, and temporal-parietal-entorhinal cortices of human amyloid beta precursor protein (ΑβPP) over-expressing mice. We identified a cortex-specific hypo-metabolic signature at symptomatic onset and a cortex-specific hyper-metabolic signature of Land's cycle glycerophosphocholine remodeling over the course of progressive behavioral decline. When N5 TgCRND8 and ΑβPPS we /PSIdE9 mice first exhibited deficits in the Morris Water Maze, levels of lyso-phosphatidylcholines, LPC(18:0/0:0), LPC(16:0/0:0), LPC(24:6/0:0), LPC(25:6/0:0), the lyso-platelet-activating factor (PAF), LPC(O-18:0/0:0), and the PAF, PC(O-22:6/2:0), declined as a result of reduced calcium-dependent cytosolic phospholipase A2 α (cPLA2 α) activity in all cortices but not hippocampus. Chronic intermittent hypoxia, an environmental risk factor that triggers earlier learning memory impairment in ΑβPPS we /PSIdE9 mice, elicited these same metabolic changes in younger animals. Thus, this lipidomic signature of phenoconversion appears age-independent. By contrast, in symptomatic N5 TgCRND8 mice, cPLA2 α activity progressively increased; overall Lyso-phosphatidylcholines (LPC) and LPC(O) and PC(O-18:1/2:0) levels progressively rose. Enhanced cPLA2 α activity was only detected in transgenic mice; however, age-dependent increases in the PAF acetylhydrolase 1b α1 to α2 expression ratio, evident in both transgenic and non-transgenic mice, reduced PAF hydrolysis thereby contributing to PAF accumulation. Taken together, these data identify distinct age-independent and age-dependent disruptions in Land's cycle metabolism linked to symptomatic onset and progressive behavioral decline in animals with pre-existing Αβ pathology. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Matthew W Granger
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Hui Liu
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Caitlin F Fowler
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Alexandre P Blanchard
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Matthew W Taylor
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Samantha P M Sherman
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Hongbin Xu
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Weidong Le
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Clinical Research on Neurological Diseases, the 1st Affiliated Hospital, Dailan Medical University, Dailan, China
| | - Steffany A L Bennett
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|