1
|
Zhang J, Gao J, Zeng X, Wang Z, Chen C, Rong C, Li S, Cai L, Wang L, Zhang L, Tian Z. A novel Cdc42-YAP-fibronectin signaling axis regulates ameloblast differentiation during early enamel formation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167570. [PMID: 39547518 DOI: 10.1016/j.bbadis.2024.167570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/22/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Enamel formation is a developmental event governed by intricate molecular signal pathways. Cdc42 is proven to regulate enamel development yet its underlying role and molecular mechanism in early amelogenesis remain elusive. The extracellular matrix of tooth germ basement membrane is critical for the regulation of ameloblast differentiation. Present study investigated whether Cdc42 influences amelogenesis by affecting ECM synthesis and how Cdc42 regulates ameloblasts differentiation. Epithelial-specific knockout of Cdc42 (Cdc42-cKO) mice model was employed to study the ECM expression including Fibronectin (Fn) and amelogenesis markers. Cdc42-cKO mice results in retarded ameloblast differentiation and enamel matrix decrease. Fn synthesis in the enamel organ and basal membrane was totally diminished along with Cdc42 knockdown. YAP acting as the Cdc42 downstream transcription factor, its distribution in ameloblasts was synchronously attenuated by Cdc42 knockdown and nuclear localization progressively decreased with tooth germ development. Cdc42 unidirectionally controls the Fn synthesis via YAP regulation. Overall, ameloblast differentiation inhibition by silencing of Cdc42 was successfully rescued by YAP activation. We demonstrated that Cdc42 as an initiator, mediated downstream pathway through transcriptional activator YAP, thereby affecting ameloblast differentiation by controlling Fn synthesis. The Cdc42-YAP-Fn signaling axis are elucidated to act critical role during the early amelogenesis.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingyi Gao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiangliang Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zijie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chuying Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chao Rong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shaowei Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lingxuan Cai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Luchen Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lin Zhang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Zhihui Tian
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Huang B, Wang X, Bu L, Zhang Y, Liu X, Liang F, Zhang X, Tang X, Wu S, Huang J, Zhang L, Zhang M. Construction of a mouse model for sensitive skin research. Contact Dermatitis 2024; 91:327-341. [PMID: 39079889 DOI: 10.1111/cod.14652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Current animal models of sensitive skin do not adequately reflect the objective symptoms or physiological manifestations observed in human sensitive skin. OBJECTIVE To construct and validate a sensitive skin model in mice. METHODS Tape stripping (TS) was used to induce partial mechanical disruption of the lipid film and stratum corneum. Subsequently, propylene glycol (PG) was applied to disrupt the lipid structure in the skin barrier, and capsaicin (CS) activate transient receptor potential vanilloid 1 (TRPV1) receptors of keratinocytes to simulate the formation of sensitive skin. Evident itching and tingling sensations, scaly skin, vasodilation, local congestion, increased transepidermal water loss (TEWL), elevated TRPV1 expression, and inflammatory symptoms were subsequently evaluated. RESULTS TS combined with PG and CS application resulted in skin flakes; skin barrier disruption; vascular dilation; increased itching, stinging, and inflammation; TRPV1 upregulation in the epidermis; and a significant increase in lactic acid-induced itching and stinging. CONCLUSION Using a combination of TS and PG, and CS application, a mouse model of sensitive skin was successfully established involving various skin phenotypes and physiological manifestations, including skin flakes, vasodilation, increased blood flow and TEWL, itching and stinging sensations, inflammation, and elevated TRPV1 expression.
Collapse
Affiliation(s)
- Bingli Huang
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Xueer Wang
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lingwei Bu
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yarui Zhang
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoran Liu
- Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, China
| | - Fengting Liang
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xinyue Zhang
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xueting Tang
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shenhua Wu
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianyuan Huang
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Zhang
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Min Zhang
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Zhou T, Chen G, Xu Y, Zhang S, Tang H, Qiu T, Guo W. CDC42-mediated Wnt signaling facilitates odontogenic differentiation of DPCs during tooth root elongation. Stem Cell Res Ther 2023; 14:255. [PMID: 37726858 PMCID: PMC10510226 DOI: 10.1186/s13287-023-03486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND CDC42 is a member of Rho GTPase family, acting as a molecular switch to regulate cytoskeleton organization and junction maturation of epithelium in organ development. Tooth root pattern is a highly complicated and dynamic process that dependens on interaction of epithelium and mesenchyme. However, there is a lack of understanding of the role of CDC42 during tooth root elongation. METHODS The dynamic expression of CDC42 was traced during tooth development through immunofluorescence staining. Then we constructed a model of lentivirus or inhibitor mediated Cdc42 knockdown in Herwig's epithelial root sheath (HERS) cells and dental papilla cells (DPCs), respectively. Long-term influence of CDC42 abnormality was assessed via renal capsule transplantation and in situ injection of alveolar socket. RESULTS CDC42 displayed a dynamic spatiotemporal pattern, with abundant expression in HERS cells and apical DPCs in developing root. Lentivirus-mediated Cdc42 knockdown in HERS cells didn't disrupt cell junctions as well as epithelium-mesenchyme transition. However, inhibition of CDC42 in DPCs undermined cell proliferation, migration and odontogenic differentiation. Wnt/β-catenin signaling as the downstream target of CDC42 modulated DPCs' odontogenic differentiation. The transplantation and in situ injection experiments verified that loss of CDC42 impeded root extension via inhibiting the proliferation and differentiation of DPCs. CONCLUSIONS We innovatively revealed that CDC42 was responsible for guiding root elongation in a mesenchyme-specific manner. Furthermore, CDC42-mediated canonical Wnt signaling regulated odontogenic differentiation of DPCs during root formation.
Collapse
Affiliation(s)
- Tao Zhou
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuchan Xu
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuning Zhang
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huilin Tang
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Qiu
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Wang Z, Chen C, Zhang J, He J, Zhang L, Wu J, Tian Z. Epithelium-derived SCUBE3 promotes polarized odontoblastic differentiation of dental mesenchymal stem cells and pulp regeneration. Stem Cell Res Ther 2023; 14:130. [PMID: 37189178 DOI: 10.1186/s13287-023-03353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3), a secreted multifunctional glycoprotein whose transcript expression is restricted to the tooth germ epithelium during the development of embryonic mouse teeth, has been demonstrated to play a crucial role in the regulation of tooth development. Based on this, we hypothesized that epithelium-derived SCUBE3 contributes to bio-function in dental mesenchymal cells (Mes) via epithelium-mesenchyme interactions. METHODS Immunohistochemical staining and a co-culture system were used to reveal the temporospatial expression of the SCUBE3 protein during mouse tooth germ development. In addition, human dental pulp stem cells (hDPSCs) were used as a Mes model to study the proliferation, migration, odontoblastic differentiation capacity, and mechanism of rhSCUBE3. Novel pulp-dentin-like organoid models were constructed to further confirm the odontoblast induction function of SCUBE3. Finally, semi-orthotopic animal experiments were performed to explore the clinical application of rhSCUBE3. Data were analysed using one-way analysis of variance and t-tests. RESULTS The epithelium-derived SCUBE3 translocated to the mesenchyme via a paracrine pathway during mouse embryonic development, and the differentiating odontoblasts in postnatal tooth germ subsequently secreted the SCUBE3 protein via an autocrine mechanism. In hDPSCs, exogenous SCUBE3 promoted cell proliferation and migration via TGF-β signalling and accelerated odontoblastic differentiation via BMP2 signalling. In the semi-orthotopic animal experiments, we found that SCUBE3 pre-treatment-induced polarized odontoblast-like cells attached to the dental walls and had better angiogenesis performance. CONCLUSION SCUBE3 protein expression is transferred from the epithelium to mesenchyme during embryonic development. The function of epithelium-derived SCUBE3 in Mes, including proliferation, migration, and polarized odontoblastic differentiation, and their mechanisms are elaborated for the first time. These findings shed light on exogenous SCUBE3 application in clinic dental pulp regeneration.
Collapse
Affiliation(s)
- Zijie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Road North, Baiyun District, Guangzhou, 510000, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Hospital of Stomatology, Zunyi Medical University, No. 143 Dalian Road, Huichuan District, Zunyi, 563000, China
- Special Key Laboratory of Oral Disease Research of Higher Education Institution of Guizhou Province, Zunyi, China
| | - Chuying Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Road North, Baiyun District, Guangzhou, 510000, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiayi Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Road North, Baiyun District, Guangzhou, 510000, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiangdie He
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Road North, Baiyun District, Guangzhou, 510000, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, No. 1838, Guangzhou Road North, Baiyun District, Guangzhou, 510000, Guangdong, China.
| | - Jiayuan Wu
- Hospital of Stomatology, Zunyi Medical University, No. 143 Dalian Road, Huichuan District, Zunyi, 563000, China.
- Special Key Laboratory of Oral Disease Research of Higher Education Institution of Guizhou Province, Zunyi, China.
| | - Zhihui Tian
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Road North, Baiyun District, Guangzhou, 510000, Guangdong, China.
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Dong C, Lamichhane B, Yamazaki H, Vasquez B, Wang J, Zhang Y, Feng JQ, Margolis HC, Beniash E, Wang X. The phosphorylation of serine 55 in enamelin is essential for murine amelogenesis. Matrix Biol 2022; 111:245-263. [PMID: 35820561 PMCID: PMC11244640 DOI: 10.1016/j.matbio.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Amelogenesis imperfecta (AI) is an inherited developmental enamel defect affecting tooth masticatory function, esthetic appearance, and the well-being of patients. As one of the major enamel matrix proteins (EMPs), enamelin (ENAM) has three serines located in Ser-x-Glu (S-x-E) motifs, which are potential phosphorylation sites for the Golgi casein kinase FAM20C. Defects in FAM20C have similarly been associated with AI. In our previous study of EnamRgsc514 mice, the Glu57 in the S55-X56-E57 motif was mutated into Gly, which was expected to cause a phosphorylation failure of Ser55 because Ser55 cannot be recognized by FAM20C. The severe enamel defects in ENAMRgsc514 mice reminiscent of Enam-knockout mouse enamel suggested a potentially important role of Ser55 phosphorylation in ENAM function. However, the enamel defects and ENAM dysfunction may also be attributed to distinct physicochemical differences between Glu57 and Gly57. To clarify the significance of Ser55 phosphorylation to ENAM function, we generated two lines of Enam knock-in mice using CRISPR-Cas9 method to eliminate or mimic the phosphorylation state of Ser55 by substituting it with Ala55 or Asp55 (designated as S55A or S55D), respectively. The teeth of 6-day or 4-week-old mice were subjected to histology, micro-CT, SEM, TEM, immunohistochemistry, and mass spectrometry analyses to characterize the morphological, microstructural and proteomic changes in ameloblasts, enamel matrix and enamel rods. Our results showed that the enamel formation and EMP expression in S55D heterozygotes (Het) were less disturbed than those in S55A heterozygotes, while both homozygotes (Homo) had no mature enamel formation. Proteomic analysis revealed alterations of enamel matrix biosynthetic and mineralization processes in S55A Hets. Our present findings indicate that Asp55 substitution partially mimics the phosphorylation state of Ser55 in ENAM. Ser55 phosphorylation is essential for ENAM function during amelogenesis.
Collapse
Affiliation(s)
- Changchun Dong
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, United States
| | - Bikash Lamichhane
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, United States
| | - Hajime Yamazaki
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brent Vasquez
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jingya Wang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, United States
| | - Yongxu Zhang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, United States
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, United States
| | - Henry C Margolis
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Elia Beniash
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, United States.
| |
Collapse
|
6
|
Huang S, Wang X, Zhang M, Huang M, Yan Y, Chen Y, Zhang Y, Xu J, Bu L, Fan R, Tang H, Zeng C, Zhang L, Zhang L. Activin B-activated Cdc42 signaling plays a key role in regulating adipose-derived mesenchymal stem cells-mediated skin wound healing. Stem Cell Res Ther 2022; 13:248. [PMID: 35690801 PMCID: PMC9188063 DOI: 10.1186/s13287-022-02918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In our previous study, activin B in combination with ADSCs enhances skin wound healing. However, the underlying molecular mechanisms are not well studied. Cdc42 is recognized to play a critical role in the regulation of stem cells. METHODS Pull-down assay was performed to investigate the activity of Cdc42. The dominant-negative mutant of Cdc42 (Cdc42N17) was used to explore the role of Cdc42 in activin B-induced ADSCs migration, proliferation, and secretion in vitro. Cdc42N17-transfected ADSCs were injected into a full-thickness excisional wound model to explore their efficiency in wound healing in vivo. The wound healing efficacy was evaluated by the wound closure rates and histological examination. The neovascularization and wound contraction were detected by immunohistochemistry staining of CD31 and α-SMA. Finally, the underlying mechanisms were explored by RNA sequencing. RESULTS Cdc42N17 inhibited ADSCs migration, proliferation, and secretion induced by activin B. Furthermore, Cdc42N17-transfected ADSCs inhibited the wound closure rate and suppressed the expression of CD31 and α-SMA induced by activin B in vivo. The RNA sequencing showed that the differentially expressed genes in Cdc42N17-transfected ADSCs versus ADSCs were associated with cell migration, proliferation, and adhesion. Further study revealed that the Cdc42-Erk-Srf pathway was required for activin B-induced proliferation in ADSCs. CONCLUSIONS Our study indicates that Cdc42 plays a crucial role in ADSCs-mediated skin wound healing induced by activin B.
Collapse
Affiliation(s)
- Simin Huang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xueer Wang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Min Zhang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Mianbo Huang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yuan Yan
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yinghua Chen
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yijia Zhang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jinfu Xu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lingwei Bu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ruyi Fan
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Huiyi Tang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Canjun Zeng
- Department of Orthopedics, Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics Guangdong Province, Guangzhou, 510630, Guangdong, China
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Lin Zhang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
7
|
Inoue A, Kiyoshima T, Yoshizaki K, Nakatomi C, Nakatomi M, Ohshima H, Shin M, Gao J, Tsuru K, Okabe K, Nakamura I, Honda H, Matsuda M, Takahashi I, Jimi E. Deletion of epithelial cell-specific p130Cas impairs the maturation stage of amelogenesis. Bone 2022; 154:116210. [PMID: 34592494 DOI: 10.1016/j.bone.2021.116210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/02/2022]
Abstract
Amelogenesis consists of secretory, transition, maturation, and post-maturation stages, and the morphological changes of ameloblasts at each stage are closely related to their function. p130 Crk-associated substrate (Cas) is a scaffold protein that modulates essential cellular processes, including cell adhesion, cytoskeletal changes, and polarization. The expression of p130Cas was observed from the secretory stage to the maturation stage in ameloblasts. Epithelial cell-specific p130Cas-deficient (p130CasΔepi-) mice exhibited enamel hypomineralization with chalk-like white mandibular incisors in young mice and attrition in aged mouse molars. A micro-computed tomography analysis and Vickers micro-hardness testing showed thinner enamel, lower enamel mineral density and hardness in p130CasΔepi- mice in comparison to p130Casflox/flox mice. Scanning electron microscopy, and an energy dispersive X-ray spectroscopy analysis indicated the disturbance of the enamel rod structure and lower Ca and P contents in p130CasΔepi- mice, respectively. The disorganized arrangement of ameloblasts, especially in the maturation stage, was observed in p130CasΔepi- mice. Furthermore, expression levels of enamel matrix proteins, such as amelogenin and ameloblastin in the secretory stage, and functional markers, such as alkaline phosphatase and iron accumulation, and Na+/Ca2++K+-exchanger in the maturation stage were reduced in p130CasΔepi- mice. These findings suggest that p130Cas plays important roles in amelogenesis (197 words).
Collapse
Affiliation(s)
- Akane Inoue
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chihiro Nakatomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Mitsushiro Nakatomi
- Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Masashi Shin
- Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan; Oral Medicine Center, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kanji Tsuru
- Section of Bioengineering, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Koji Okabe
- Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Ichiro Nakamura
- Department of Rehabilitation, Yugawara Hospital, Japan Community Health Care Organization, 2-21-6 Chuo, Yugawara, Ashigara-shimo, Kanagawa 259-0396, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
8
|
Zhou T, Rong M, Wang Z, Chu H, Chen C, Zhang J, Tian Z. Conditioned medium derived from 3D tooth germs: A novel cocktail for stem cell priming and early in vivo pulp regeneration. Cell Prolif 2021; 54:e13129. [PMID: 34585454 PMCID: PMC8560607 DOI: 10.1111/cpr.13129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Conditioned medium (CM) from 2D cell culture can mitigate the weakened regenerative capacity of the implanted stem cells. However, the capacity of 3D CM to prime dental pulp stem cells (DPSCs) for pulp regeneration and its protein profile are still elusive. We aim to investigate the protein profile of CM derived from 3D tooth germs, and to unveil its potential for DPSCs-based pulp regeneration. MATERIALS AND METHODS We prepared CM of 3D ex vivo cultured tooth germ organs (3D TGO-CM) and CM of 2D cultured tooth germ cells (2D TGC-CM) and applied them to prime DPSCs. Influences on cell behaviours and protein profiles of CMs were compared. In vivo pulp regeneration of CMs-primed DPSCs was explored using a tooth root fragment model on nude mice. RESULTS TGO-CM enhanced DPSCs proliferation, migration, in vitro mineralization, odontogenic differentiation, and angiogenesis performances. The TGO-CM group generated superior pulp structures, more odontogenic cells attachment, and enhanced vasculature at 4 weeks post-surgery, compared with the TGC-CM group. Secretome analysis revealed that TGO-CM contained more odontogenic and angiogenic growth factors and fewer pro-inflammatory cytokines. Mechanisms leading to the differential CM profiles may be attributed to the cytokine-cytokine receptor interaction and PI3K-Akt signalling pathway. CONCLUSIONS The unique secretome profile of 3D TGO-CM made it a successful priming cocktail to enhance DPSCs-based early pulp regeneration.
Collapse
Affiliation(s)
- Tengfei Zhou
- Department of Periodontology and Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zijie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongxing Chu
- Department of Periodontology and Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Chuying Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayi Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhihui Tian
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Fan L, Ou YJ, Zhu YX, Liang YD, Zhou Y, Wang YN. Lif Deficiency Leads to Iron Transportation Dysfunction in Ameloblasts. J Dent Res 2021; 101:63-72. [PMID: 34034544 DOI: 10.1177/00220345211011986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leukemia inhibitory factor (LIF), a member of the interleukin 6 family of cytokines, is involved in skeletal metabolism, blastocyst implantation, and stem cell pluripotency maintenance. However, the role of LIF in tooth development needs to be elucidated. The aim of the present study was to investigate the effect of Lif deficiency on tooth development and to elucidate the functions of Lif during tooth development and the underlying mechanisms. First, it was found that the incisors of Lif-knockout mice had a much whiter color than those of wild-type mice. Although there were no structural abnormalities or defective mineralization according to scanning electronic microscopy and computed tomography analysis, 3-dimensional images showed that the length of incisors was shorter in Lif-/- mice. Microhardness and acid resistance assays showed that the hardness and acid resistance of the enamel surface of Lif-/- mice were decreased compared to those of wild-type mice. In Lif-/- mice, whose general iron status was comparable to that of the control mice, the iron content of the incisors was significantly reduced, as confirmed by energy-dispersive X-ray spectroscopy (EDS) and Prussian blue staining. Histological staining showed that the cell length of maturation-stage ameloblasts was shorter in Lif-/- mice. Likewise, decreased expression of Tfrc and Slc40a1, both of which are crucial proteins for iron transportation, was observed in Lif-/- mice and Lif-knockdown ameloblast lineage cell lines, according to quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and Western blot. Moreover, the upregulation of Tfrc and Slc40a1 induced by Lif stimulation was blocked by Stattic, a signal transducer and activator of transcription 3 (Stat3) signaling inhibitor. These results suggest that Lif deficiency inhibits iron transportation in the maturation-stage ameloblasts, and Lif modulates expression of Tfrc and Slc40a1 through the Stat3 signaling pathway during enamel development.
Collapse
Affiliation(s)
- L Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y J Ou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Y X Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y D Liang
- Yantian Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Y Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y N Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Zhang M, Wang X, Guo F, Jia Q, Liu N, Chen Y, Yan Y, Huang M, Tang H, Deng Y, Huang S, Zhou Z, Zhang L, Zhang L. Cdc42 Deficiency Leads To Epidermal Barrier Dysfunction by Regulating Intercellular Junctions and Keratinization of Epidermal Cells during Mouse Skin Development. Am J Cancer Res 2019; 9:5065-5084. [PMID: 31410202 PMCID: PMC6691388 DOI: 10.7150/thno.34014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/08/2019] [Indexed: 01/19/2023] Open
Abstract
Rationale: Cdc42 is a Rho GTPase that regulates diverse cellular functions. Here, we used genetic techniques to investigate the role of Cdc42 in epidermal development and epidermal barrier formation. Methods: Keratinocyte-restricted Cdc42 knockout mice were generated with the Cre-LoxP system under the keratin 14 (K14) promoter. The skin and other tissues were collected from mutant and wild-type mice, and their cellular, molecular, morphological, and physiological features were analyzed. Results: Loss of Cdc42 in the epidermis in vivo resulted in neonatal lethality and impairment of epidermal barrier formation. Cdc42 deficiency led to the loss of epidermal stem cells. The absence of Cdc42 led to increased thickening of the epidermis, which was associated with increased proliferation and reduced apoptosis of keratinocytes. In addition, Cdc42 deficiency damaged tight junctions, adherens junctions and desmosomes. RNA sequencing results showed that the most significantly altered genes were enriched by the terms of “keratinization” and “cornified envelope” (CE). Among the differentially expressed genes in the CE term, several members of the small proline-rich protein (SPRR) family were upregulated. Further study revealed that there may be a Cdc42-SPRR pathway, which may correlate with epidermal barrier function. Conclusions: Our study indicates that Cdc42 is essential for epidermal development and epidermal barrier formation. Defects in Cdc42-SPRR signaling may be associated with skin barrier dysfunction and a variety of skin diseases.
Collapse
|
11
|
Wang X, Tang P, Guo F, Zhang M, Yan Y, Huang M, Chen Y, Zhang L, Zhang L. mDia1 and Cdc42 Regulate Activin B-Induced Migration of Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells 2019; 37:150-162. [PMID: 30358011 PMCID: PMC7379979 DOI: 10.1002/stem.2924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
Abstract
In a previous study, we have shown that Activin B is a potent chemoattractant for bone marrow-derived mesenchymal stromal cells (BMSCs). As such, the combination of Activin B and BMSCs significantly accelerated rat skin wound healing. In another study, we showed that RhoA activation plays a key role in Activin B-induced BMSC migration. However, the role of the immediate downstream effectors of RhoA in this process is unclear. Here, we demonstrated that mammalian homolog of Drosophila diaphanous-1 (mDia1), a downstream effector of RhoA, exerts a crucial function in Activin B-induced BMSC migration by promoting membrane ruffling, microtubule morphology, and adhesion signaling dynamics. Furthermore, we showed that Activin B does not change Rac1 activity but increases Cdc42 activity in BMSCs. Inactivation of Cdc42 inhibited Activin B-stimulated Golgi reorientation and the cell migration of BMSCs. Furthermore, knockdown of mDia1 affected Activin B-induced BMSC-mediated wound healing in vivo. In conclusion, this study demonstrated that the RhoA-mDia1 and Cdc42 pathways regulate Activin B-induced BMSC migration. This study may help to optimize clinical MSC-based transplantation strategies to promote skin wound healing. Stem Cells 2019;37:150-162.
Collapse
Affiliation(s)
- Xueer Wang
- Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Pei Tang
- Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer BiologyChildren's Hospital Research FoundationCincinnatiOhioUSA
| | - Min Zhang
- Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Yuan Yan
- Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Mianbo Huang
- Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Yinghua Chen
- Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| |
Collapse
|