1
|
Wang X, Xue Y, Li L, Song J, Jia L, Li X, Fan M, Lu L, Su W, Han J, Lin D, Liu R, Gao X, Guo Y, Xiang Z, Chen C, Wan L, Chong H, He Y, Wang F, Yao K, Zhou Q, Yu D. PRMT3 reverses HIV-1 latency by increasing chromatin accessibility to form a TEAD4-P-TEFb-containing transcriptional hub. Nat Commun 2025; 16:4529. [PMID: 40374607 PMCID: PMC12081701 DOI: 10.1038/s41467-025-59578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 04/28/2025] [Indexed: 05/17/2025] Open
Abstract
Latent HIV-1 presents a formidable challenge for viral eradication. HIV-1 transcription and latency reversal require interactions between the viral promoter and host proteins. Here, we perform the dCas9-targeted locus-specific protein analysis and discover the interaction of human arginine methyltransferase 3 (PRMT3) with the HIV-1 promoter. This interaction reverses latency in cell line models and primary cells from latently infected persons by increasing the levels of H4R3Me2a and transcription factor P-TEFb at the viral promoter. PRMT3 is found to promote chromatin accessibility and transcription of HIV-1 and a small subset of host genes in regions harboring the classical recognition motif for another transcription factor TEAD4. This motif attracts TEAD4 and PRMT3 to the viral promoter to synergistically activate transcription. Physical interactions among PRMT3, P-TEFb, and TEAD4 exist, which may help form a transcriptional hub at the viral promoter. Our study reveals the potential of targeting these hub proteins to eradicate latent HIV-1.
Collapse
Affiliation(s)
- Xinyu Wang
- Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing, China
| | - Yuhua Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiang An Biomedicine Laboratory, Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jinwen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xu Li
- Department of Dermatology, The First Hospital of Hohhot, Hohhot, China
| | - Miao Fan
- Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing, China
| | - Lu Lu
- Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing, China
- State Key Laboratory of Vaccines for Infectious Diseases, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiang An Biomedicine Laboratory, Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Wen Su
- Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing, China
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Dandan Lin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Rongdiao Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiang An Biomedicine Laboratory, Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiang Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiang An Biomedicine Laboratory, Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Yafei Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiang An Biomedicine Laboratory, Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Zixun Xiang
- State Key Laboratory of Vaccines for Infectious Diseases, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiang An Biomedicine Laboratory, Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Chunjing Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiang An Biomedicine Laboratory, Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Linyu Wan
- The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fusheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Kaihu Yao
- Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing, China.
| | - Qiang Zhou
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China.
| | - Dan Yu
- Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing, China.
- Chinese Institutes for Medical Research, Beijing, China.
| |
Collapse
|
2
|
Huang JZ, Qiao BN, Li DC, Wei QR, Zhang ZJ. Arginine methylation modification in the malignant progression of benign and malignant liver diseases. ILIVER 2024; 3:100124. [DOI: 10.1016/j.iliver.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Zhou G, Zhang C, Peng H, Su X, Huang Q, Zhao Z, Zhao G. PRMT3 methylates HIF-1α to enhance the vascular calcification induced by chronic kidney disease. Mol Med 2024; 30:8. [PMID: 38200452 PMCID: PMC10782741 DOI: 10.1186/s10020-023-00759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Medial vascular calcification is commonly identified in chronic kidney disease (CKD) patients and seriously affects the health and life quality of patients. This study aimed to investigate the effects of protein arginine methyltransferase 3 (PRMT3) on vascular calcification induced by CKD. METHODS A mice model of CKD was established with a two-step diet containing high levels of calcium and phosphorus. Vascular smooth muscle cells (VSMCs) were subjected to β-glycerophosphate (β-GP) treatment to induce the osteogenic differentiation as an in vitro CKD model. RESULTS PRMT3 was upregulated in VSMCs of medial artery of CKD mice and β-GP-induced VSMCs. The inhibitor of PRMT3 (SGC707) alleviated the vascular calcification and inhibited the glycolysis of CKD mice. Knockdown of PRMT3 alleviated the β-GP-induced osteogenic transfomation of VSMCs by the repression of glycolysis. Next, PRMT3 interacted with hypoxia-induced factor 1α (HIF-1α), and the knockdown of PRMT3 downregulated the protein expression of HIF-1α by weakening its methylation. Gain of HIF-1α reversed the PRMT3 depletion-induced suppression of osteogenic differentiation and glycolysis of VSMCs. CONCLUSION The inhibitory role of PRMT3 depletion was at least mediated by the regulation of glycolysis upon repressing the methylation of HIF-1α.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Chen Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Hui Peng
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Xuesong Su
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Qun Huang
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Guangyi Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
4
|
Zhao S, Mo LX, Li WT, Jiang LL, Meng YY, Ou JF, Liao LS, Yan YS, Luo XM, Feng JX. Arginine methyltransferases PRMT2 and PRMT3 are essential for biosynthesis of plant-polysaccharide-degrading enzymes in Penicillium oxalicum. PLoS Genet 2023; 19:e1010867. [PMID: 37523410 PMCID: PMC10414604 DOI: 10.1371/journal.pgen.1010867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/10/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Many filamentous fungi produce plant-polysaccharide-degrading enzymes (PPDE); however, the regulatory mechanism of this process is poorly understood. A Gal4-like transcription factor, CxrA, is essential for mycelial growth and PPDE production in Penicillium oxalicum. Its N-terminal region, CxrAΔ207-733 is required for the regulatory functions of whole CxrA, and contains a DNA-binding domain (CxrAΔ1-16&Δ59-733) and a methylated arginine (R) 94. Methylation of R94 is mediated by an arginine N-methyltransferase, PRMT2 and appears to induce dimerization of CxrAΔ1-60. Overexpression of prmt2 in P. oxalicum increases PPDE production by 41.4-95.1% during growth on Avicel, compared with the background strain Δku70;hphR+. Another arginine N-methyltransferase, PRMT3, appears to assist entry of CxrA into the nucleus, and interacts with CxrAΔ1-60 in vitro under Avicel induction. Deletion of prmt3 resulted in 67.0-149.7% enhanced PPDE production by P. oxalicum. These findings provide novel insights into the regulatory mechanism of fungal PPDE production.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Li-Xiang Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Wen-Tong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Lian-Li Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Yi-Yuan Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Jian-Feng Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Lu-Sheng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Yu-Si Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, People’s Republic of China
| |
Collapse
|
5
|
de Jong LM, Zhang Z, den Hartog Y, Sijsenaar TJP, Martins Cardoso R, Manson ML, Hankemeier T, Lindenburg PW, Salvatori DCF, Van Eck M, Hoekstra M. PRMT3 inhibitor SGC707 reduces triglyceride levels and induces pruritus in Western-type diet-fed LDL receptor knockout mice. Sci Rep 2022; 12:483. [PMID: 35013582 PMCID: PMC8748717 DOI: 10.1038/s41598-021-04524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Protein arginine methyltransferase 3 (PRMT3) is a co-activator of liver X receptor capable of selectively modulating hepatic triglyceride synthesis. Here we investigated whether pharmacological PRMT3 inhibition can diminish the hepatic steatosis extent and lower plasma lipid levels and atherosclerosis susceptibility. Hereto, male hyperlipidemic low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet and injected 3 times per week intraperitoneally with PRMT3 inhibitor SGC707 or solvent control. Three weeks into the study, SGC707-treated mice developed severe pruritus and scratching-associated skin lesions, leading to early study termination. SGC707-treated mice exhibited 50% lower liver triglyceride stores as well as 32% lower plasma triglyceride levels. Atherosclerotic lesions were virtually absent in all experimental mice. Plasma metabolite analysis revealed that levels of taurine-conjugated bile acids were ~ threefold increased (P < 0.001) in response to SGC707 treatment, which was paralleled by systemically higher bile acid receptor TGR5 signalling. In conclusion, we have shown that SGC707 treatment reduces hepatic steatosis and plasma triglyceride levels and induces pruritus in Western-type diet-fed LDL receptor knockout mice. These findings suggest that pharmacological PRMT3 inhibition can serve as therapeutic approach to treat non-alcoholic fatty liver disease and dyslipidemia/atherosclerosis, when unwanted effects on cholesterol and bile acid metabolism can be effectively tackled.
Collapse
Affiliation(s)
- Laura M de Jong
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, 2333CC, Leiden, The Netherlands
| | - Zhengzheng Zhang
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yvette den Hartog
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, 2333CC, Leiden, The Netherlands
| | - Timothy J P Sijsenaar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, 2333CC, Leiden, The Netherlands
| | - Renata Martins Cardoso
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, 2333CC, Leiden, The Netherlands
| | - Martijn L Manson
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, 2333CC, Leiden, The Netherlands
| | - Thomas Hankemeier
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Peter W Lindenburg
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.,Research Group Metabolomics, Leiden Center for Applied Bioscience, University of Applied Sciences Leiden, Leiden, The Netherlands
| | - Daniela C F Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, Leiden, The Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, 2333CC, Leiden, The Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
6
|
Zhao J, Qiao L, Dong J, Wu R. Antioxidant Effects of Irisin in Liver Diseases: Mechanistic Insights. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3563518. [PMID: 35035659 PMCID: PMC8759828 DOI: 10.1155/2022/3563518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 02/08/2023]
Abstract
Oxidative stress is a crucial factor in the development of various liver diseases. Irisin, a metabolic hormone discovered in 2012, is mainly produced by proteolytic cleavage of fibronectin type III domain containing 5 (FNDC5) in skeletal muscles. Irisin is induced by physical exercise, and a rapidly growing body of literature suggests that irisin is, at least partially, responsible for the beneficial effects of regular exercise. The major biological function of irisin is believed to be involved in the maintenance of metabolic homeostasis. However, recent studies have suggested the therapeutic potential of irisin against a variety of liver diseases involving its antioxidative function. In this review, we aim to summarize the accumulating evidence demonstrating the antioxidative effects of irisin in liver diseases, with an emphasis on the current understanding of the potential molecular mechanisms.
Collapse
Affiliation(s)
- Junzhou Zhao
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Linlan Qiao
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jian Dong
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
7
|
Lei Y, Han P, Tian D. Protein arginine methyltransferases and hepatocellular carcinoma: A review. Transl Oncol 2021; 14:101194. [PMID: 34365222 PMCID: PMC8353347 DOI: 10.1016/j.tranon.2021.101194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022] Open
Abstract
Protein arginine methylation is essential in multiple biological processes. The family of PRMTs is a novel regulator of liver diseases. Deregulation of PRMTs is correlated with HCC prognosis and clinical features. PRMTs play a vital role in HCC malignancy, immune responses and metabolism. PRMTs may represent druggable targets as novel strategies for HCC therapy.
Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed cancers with a high mortality rate worldwide. The complexity of HCC initiation and progression poses a great challenge to the diagnosis and treatment. An increasing number of studies have focused on the emerging roles of protein arginine methylation in cancers, including tumor growth, invasion, metastasis, metabolism, immune responses, chemotherapy sensitivity, etc. The family of protein arginine methyltransferases (PRMTs) is the most important proteins that mediate arginine methylation. The deregulation of PRMTs’ expression and functions in cancers have been gradually unveiled, and many PRMTs inhibitors are in preclinical and clinical investigations now. This review focuses predominantly on the aberrant expression of PRMTs, underlying mechanisms, as well as their potential applications in HCC, and provide novel insights into HCC therapy.
Collapse
Affiliation(s)
- Yu Lei
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
8
|
Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat Rev Drug Discov 2021; 20:509-530. [PMID: 33742187 DOI: 10.1038/s41573-021-00159-8] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) are emerging as attractive therapeutic targets. PRMTs regulate transcription, splicing, RNA biology, the DNA damage response and cell metabolism; these fundamental processes are altered in many diseases. Mechanistically understanding how these enzymes fuel and sustain cancer cells, especially in specific metabolic contexts or in the presence of certain mutations, has provided the rationale for targeting them in oncology. Ongoing inhibitor development, facilitated by structural biology, has generated tool compounds for the majority of PRMTs and enabled clinical programmes for the most advanced oncology targets, PRMT1 and PRMT5. In-depth mechanistic investigations using genetic and chemical tools continue to delineate the roles of PRMTs in regulating immune cells and cancer cells, and cardiovascular and neuronal function, and determine which pathways involving PRMTs could be synergistically targeted in combination therapies for cancer. This research is enhancing our knowledge of the complex functions of arginine methylation, will guide future clinical development and could identify new clinical indications.
Collapse
|
9
|
Protein Arginine Methyltransferases in Cardiovascular and Neuronal Function. Mol Neurobiol 2019; 57:1716-1732. [PMID: 31823198 DOI: 10.1007/s12035-019-01850-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022]
Abstract
The methylation of arginine residues by protein arginine methyltransferases (PRMTs) is a type of post-translational modification which is important for numerous cellular processes, including mRNA splicing, DNA repair, signal transduction, protein interaction, and transport. PRMTs have been extensively associated with various pathologies, including cancer, inflammation, and immunity response. However, the role of PRMTs has not been well described in vascular and neurological function. Aberrant expression of PRMTs can alter its metabolic products, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA). Increased ADMA levels are recognized as an independent risk factor for cardiovascular disease and mortality. Recent studies have provided considerable advances in the development of small-molecule inhibitors of PRMTs to study their function under normal and pathological states. In this review, we aim to elucidate the particular roles of PRMTs in vascular and neuronal function as a potential target for cardiovascular and neurological diseases.
Collapse
|
10
|
Li ASM, Li F, Eram MS, Bolotokova A, Dela Seña CC, Vedadi M. Chemical probes for protein arginine methyltransferases. Methods 2019; 175:30-43. [PMID: 31809836 DOI: 10.1016/j.ymeth.2019.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/28/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups to specific arginine residues of their substrates using S-adenosylmethionine as a methyl donor, contributing to regulation of many biological processes including transcription, and DNA damage repair. Dysregulation of PRMT expression is often associated with various diseases including cancers. Different methods have been used to characterize the activities of PRMTs and determine their kinetic parameters including mass spectrometry, radiometric, and antibody-based assays. Here, we present kinetic characterization of PRMTs using a radioactivity-based assay for better comparison along with previously reported values. We also report on full characterization of PRMT9 activity with SAP145 peptide as substrate. We further review the potent, selective and cell-active PRMT inhibitors discovered in recent years to provide a better understanding of available tools to investigate the roles these proteins play in health and disease.
Collapse
Affiliation(s)
- Alice Shi Ming Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Albina Bolotokova
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Carlo C Dela Seña
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|