1
|
Frisk C, Ekström M, Eriksson MJ, Corbascio M, Hage C, Persson H, Linde C, Persson B. Characteristics of gene expression in epicardial adipose tissue and subcutaneous adipose tissue in patients at risk for heart failure undergoing coronary artery bypass grafting. BMC Genomics 2024; 25:938. [PMID: 39375631 PMCID: PMC11457432 DOI: 10.1186/s12864-024-10851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Epicardial adipose tissue (EAT) surrounds the heart and is hypothesised to play a role in the development of heart failure (HF). In this study, we first investigated the differences in gene expression between epicardial adipose tissue (EAT) and subcutaneous adipose tissue (SAT) in patients undergoing elective coronary artery bypass graft (CABG) surgery (n = 21; 95% male). Secondly, we examined the association between EAT and SAT in patients at risk for HF stage A (n = 12) and in pre-HF patients, who show signs but not symptoms of HF, stage B (n = 9). RESULTS The study confirmed a distinct separation between EAT and SAT. In EAT 17 clusters of genes were present, of which several novel gene modules are associated with characteristics of HF. Notably, seven gene modules showed significant correlation to measures of HF, such as end diastolic left ventricular posterior wall thickness, e'mean, deceleration time and BMI. One module was particularly distinct in EAT when compared to SAT, featuring key genes such as FLT4, SEMA3A, and PTX3, which are implicated in angiogenesis, inflammation regulation, and tissue repair, suggesting a unique role in EAT linked to left ventricular dysfunction. Genetic expression was compared in EAT across all pre-HF and normal phenotypes, revealing small genetic changes in the form of 18 differentially expressed genes in ACC/AHA Stage A vs. Stage B. CONCLUSIONS The roles of subcutaneous and epicardial fat are clearly different. We highlight the gene expression difference in search of potential modifiers of HF progress. The true implications of our findings should be corroborated in other studies since HF ACC/AHA stage B patients are common and carry a considerable risk for progression to symptomatic HF.
Collapse
Affiliation(s)
- Christoffer Frisk
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, Uppsala, S-751 24, Sweden
| | - Mattias Ekström
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, S-182 88, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, S-182 88, Sweden
| | - Maria J Eriksson
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, S-171 76, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, S-171 77, Sweden
| | - Matthias Corbascio
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, S-171 76, Sweden
- Department of Thoracic Surgery, Karolinska University Hospital, Stockholm, S-171 76, Sweden
| | - Camilla Hage
- Department of Medicine, Karolinska Institutet, Stockholm, S-171 77, Sweden
- Karolinska University Hospital, Heart and Vascular Theme, Stockholm, S-171 76, Sweden
| | - Hans Persson
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, S-182 88, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, S-182 88, Sweden
| | - Cecilia Linde
- Department of Medicine, Karolinska Institutet, Stockholm, S-171 77, Sweden
- Karolinska University Hospital, Heart and Vascular Theme, Stockholm, S-171 76, Sweden
| | - Bengt Persson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, Uppsala, S-751 24, Sweden.
| |
Collapse
|
2
|
He S, Zhao L, Zhang J, Yang X, Zhu H. Identification of molecular signatures in epicardial adipose tissue in heart failure with preserved ejection fraction. ESC Heart Fail 2024; 11:2510-2520. [PMID: 38454838 PMCID: PMC11424335 DOI: 10.1002/ehf2.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
AIMS The molecular signatures in epicardial adipose tissue (EAT) that contribute to the pathogenesis of heart failure with preserved ejection fraction (HFpEF) are poorly characterized. In this study, we sought to elucidate molecular signatures including genetic transcripts and long non-coding RNAs (lncRNAs) in EAT that might modulate HFpEF development. METHODS RNA sequencing (RNA-seq) was performed to identify differentially expressed lncRNAs and mRNAs in EAT samples from patients with HFpEF (n = 5) and without HF (control, n = 5) who underwent coronary artery bypass grafting. The sequencing results were validated using quantitative real-time PCR (qRT-PCR). Bioinformatics analysis (Gene Ontology and Kyoto Encyclopedia of Genes and Genomes) of differentially expressed RNAs was performed to predict enriched functions. RESULTS HFpEF patients had higher EAT thickness and NT-proBNP levels than the control group. A total of 64 471 transcripts were detected including 35 395 protein-coding sequences, corresponding to 16 854 genes in EAT. RNA-seq identified a total of 741 dysregulated mRNA transcripts (394 up-regulated and 347 down-regulated) and 334 differentially expressed lncRNA transcripts (222 up-regulated and 112 down-regulated) in the HFpEF group compared with the control group (P < 0.05). qRT-PCR analysis confirmed that two lncRNAs ENST00000561775 (P = 0.0194) and ENST00000519093 (P = 0.027) and an mRNA POSTN (P = 0.003) were differentially expressed. Functional enrichment analysis of the differentially expressed mRNAs suggested their potential roles in immune response involving cytokine interaction and chemokine signalling. CONCLUSIONS We are the first group to report on the lncRNA and mRNA landscape in EAT in HFpEF patients. Our study suggests the possible role of lncRNAs in EAT.
Collapse
Affiliation(s)
- Shan He
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jianjun Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinchun Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Huagang Zhu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Zhao X, Xu Y, Feng J, Chen C, Gao Y, Deng Y. Comprehensive analysis of miRNAs-lncRNAs-mRNAs modules and ceRNA network in acute liver failure: Hsa-miR3175 and C-reactive protein determination. Int J Biol Macromol 2024; 276:133919. [PMID: 39029818 DOI: 10.1016/j.ijbiomac.2024.133919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Acute liver failure (ALF), also known as fulminant hepatitis, coagulation disorders, and worsening mental status. It has a poor prognosis and high mortality rate. Among these, the top 10 upregulated genes included GKA-DPA1, IGLL5, PLA2G7, CCL5, IGLJ, GUSBP11, RHOBT1, IGLL3P, CCL18, and ADRBK2. On the other hand, the top 10 downregulated genes were SLC6A1, PID1, AVPR1A, PP1R1A, ST3GAL6, TPST, ERO1LB, SLCO4C1, and KLF15. Furthermore, the DEGs were found to be enriched in processes related to LIAO metastasis and creighton endocrine therapy resistance. To explore the interactions among the DEGs, we constructed a PPI network. This network revealed 16 hub genes that play crucial roles in ALF pathogenesis. Within this network, hsa-mir-375 and hsa-mir-650 were identified as central nodes, indicating their potential importance in ALF. By identifying and analyzing the transcriptional-level ceRNA network, we have provided valuable insights into the etiology of ALF.
Collapse
Affiliation(s)
- Xianyuan Zhao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Yuqing Xu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Junqi Feng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Chen Chen
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China.
| | - Yuxiao Deng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China.
| |
Collapse
|
4
|
Peng Y, Su P, Zhao L. Long noncoding RNA and messenger RNA profiling in epicardial adipose tissue of patients with new-onset postoperative atrial fibrillation after coronary artery bypass grafting. Eur J Med Res 2024; 29:134. [PMID: 38368363 PMCID: PMC10874008 DOI: 10.1186/s40001-024-01721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Postoperative atrial fibrillation (POAF) constitutes a significant complication following coronary artery bypass graft surgery (CABG), potentially linked to epicardial adipose tissue (EAT). This investigation seeks to elucidate the association between POAF and EAT at the genetic level. METHODS EAT and clinical data from patients undergoing CABG were systematically acquired, adhering to established inclusion and exclusion criteria. Patients were categorized into POAF and Non-POAF groups based on the presence or absence of POAF. High-throughput sequencing data of EAT were subjected to differential expression analysis and gene function assessment. A random selection of long noncoding RNAs (lncRNAs) underwent quantitative real-time polymerase chain reaction (qRT-PCR) for validation of the high-throughput sequencing findings. Coexpression analysis was employed to elucidate the interactions between lncRNAs and messenger RNAs (mRNAs). RESULTS RNA sequencing yielded a total of 69,685 transcripts (37,740 coding and 31,945 noncoding sequences), representing 16,920 genes. Within this dataset, 38 mRNAs and 12 lncRNAs exhibited differential expression between the POAF and Non-POAF groups (P < 0.05, fold change > 1.5). The qRT-PCR results for lncRNAs corroborated the sequencing findings (P < 0.01). Functional enrichment analysis of genes and the coexpression network indicated that these differentially expressed RNAs were primarily implicated in processes such as cell growth, differentiation, signal transduction, as well as influencing tissue fibrosis and ion transmembrane transport. CONCLUSIONS This study unveils a potential association between myocardial fibrosis and ion channels co-regulated by mRNAs and lncRNAs, closely linked to the emergence of new-onset POAF, after accounting for clinical risk factors. This discovery holds promise for further advances in clinical and fundamental research.
Collapse
Affiliation(s)
- Yuanshu Peng
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Pixiong Su
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Lei Zhao
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
5
|
Halasz L, Divoux A, Sandor K, Erdos E, Daniel B, Smith SR, Osborne TF. An Atlas of Promoter Chromatin Modifications and HiChIP Regulatory Interactions in Human Subcutaneous Adipose-Derived Stem Cells. Int J Mol Sci 2023; 25:437. [PMID: 38203607 PMCID: PMC10778978 DOI: 10.3390/ijms25010437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The genome of human adipose-derived stem cells (ADSCs) from abdominal and gluteofemoral adipose tissue depots are maintained in depot-specific stable epigenetic conformations that influence cell-autonomous gene expression patterns and drive unique depot-specific functions. The traditional approach to explore tissue-specific transcriptional regulation has been to correlate differential gene expression to the nearest-neighbor linear-distance regulatory region defined by associated chromatin features including open chromatin status, histone modifications, and DNA methylation. This has provided important information; nonetheless, the approach is limited because of the known organization of eukaryotic chromatin into a topologically constrained three-dimensional network. This network positions distal regulatory elements in spatial proximity with gene promoters which are not predictable based on linear genomic distance. In this work, we capture long-range chromatin interactions using HiChIP to identify remote genomic regions that influence the differential regulation of depot-specific genes in ADSCs isolated from different adipose depots. By integrating these data with RNA-seq results and histone modifications identified by ChIP-seq, we uncovered distal regulatory elements that influence depot-specific gene expression in ADSCs. Interestingly, a subset of the HiChIP-defined chromatin loops also provide previously unknown connections between waist-to-hip ratio GWAS variants with genes that are known to significantly influence ADSC differentiation and adipocyte function.
Collapse
Affiliation(s)
- Laszlo Halasz
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA;
| | - Katalin Sandor
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Edina Erdos
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Bence Daniel
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Steven R. Smith
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA;
| | - Timothy F. Osborne
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| |
Collapse
|
6
|
Zhang L, Tang M, Diao H, Xiong L, Yang X, Xing S. LncRNA-encoded peptides: unveiling their significance in cardiovascular physiology and pathology-current research insights. Cardiovasc Res 2023; 119:2165-2178. [PMID: 37517040 DOI: 10.1093/cvr/cvad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), which are RNA transcripts exceeding 200 nucleotides were believed to lack any protein-coding capacity. But advancements in -omics technology have revealed that some lncRNAs have small open reading frames (sORFs) that can be translated by ribosomes to encode peptides, some of which have important biological functions. These encoded peptides subserve important biological functions by interacting with their targets to modulate transcriptional or signalling axes, thereby enhancing or suppressing cardiovascular disease (CVD) occurrence and progression. In this review, we summarize what is known about the research strategy of lncRNA-encoded peptides, mainly comprising predictive websites/tools and experimental methods that have been widely used for prediction, identification, and validation. More importantly, we have compiled a list of lncRNA- encoded peptides, with a focus on those that play significant roles in cardiovascular physiology and pathology, including ENSRNOT (RNO)-sORF6/RNO-sORF7/RNO-sORF8, dwarf open reading frame (DOWRF), myoregulin (NLN), etc. Additionally, we have outlined the functions and mechanisms of these peptides in cardiovascular physiology and pathology, such as cardiomyocyte hypertrophy, myocardial contraction, myocardial infarction, and vascular remodelling. Finally, an overview of the existing challenges and potential future developments in the realm of lncRNA-encoded peptides was provided, with consideration given to prospective avenues for further research. Given that many lncRNA-encoded peptides have not been functionally annotated yet, their application in CVD diagnosis and treatment still requires further research.
Collapse
Affiliation(s)
- Li Zhang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, 1617 Riyue Street, Qingyang District, Chengdu 611731, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Mi Tang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, 1617 Riyue Street, Qingyang District, Chengdu 611731, China
| | - Haoyang Diao
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, 1617 Riyue Street, Qingyang District, Chengdu 611731, China
| | - Liling Xiong
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, 1617 Riyue Street, Qingyang District, Chengdu 611731, China
| | - Xiao Yang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, 1617 Riyue Street, Qingyang District, Chengdu 611731, China
| | - Shasha Xing
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, 1617 Riyue Street, Qingyang District, Chengdu 611731, China
| |
Collapse
|
7
|
Zheng J, Wang J, Qin X, Li K, Gao Q, Yang M, Liu H, Li S, Chang X, Sun Y. LncRNA HOTAIRM1 Involved in Nano NiO-Induced Pulmonary Fibrosis via Regulating PRKCB DNA Methylation-Mediated JNK/c-Jun Pathway. Toxicol Sci 2022; 190:64-78. [PMID: 36066426 DOI: 10.1093/toxsci/kfac092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nickel oxide nanoparticles (Nano NiO) lead to pulmonary fibrosis, and the mechanisms are associated with epigenetics. This study aimed to clarify the regulatory relationship among long noncoding RNA HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1), DNA methylation and expression of protein kinase C beta (PRKCB), and JNK/c-Jun pathway in Nano NiO-induced pulmonary fibrosis. Therefore, we constructed the rat pulmonary fibrosis model by intratracheal instillation of Nano NiO twice a week for 9 weeks and established the collagen deposition model by treating BEAS-2B cells with Nano NiO for 24 h. Here, the DNA methylation pattern was analyzed by whole-genome bisulfite sequencing in rat fibrotic lung tissues. Then, we integrated mRNA transcriptome data and found 93 DNA methylation genes with transcriptional significance. Meanwhile, the data showed that Nano NiO caused the down-regulation of lncRNA HOTAIRM1, the hypomethylation, and up-regulation of PRKCB2, JNK/c-Jun pathway activation, and collagen deposition (the up-regulated Col-I and α-SMA) both in vivo and in vitro. DNMTs inhibitor 5-AZDC attenuated Nano NiO-induced PRKCB2 expression, JNK/c-Jun pathway activation, and collagen deposition, but overexpression of PRKCB2 aggravated the changes mentioned indicators in Nano NiO-induced BEAS-2B cells. Furthermore, JNK/c-Jun pathway inhibitor (SP600125) alleviated Nano NiO-induced excessive collagen formation. Additionally, overexpression of HOTAIRM1 restrained the PRKCB hypomethylation, the activation of JNK/c-Jun pathway, and collagen formation induced by Nano NiO in BEAS-2B cells. In conclusion, these findings demonstrated that HOTAIRM1 could arrest Nano NiO-induced pulmonary fibrosis by suppressing the PRKCB DNA methylation-mediated JNK/c-Jun pathway.
Collapse
Affiliation(s)
- Jinfa Zheng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jinyu Wang
- Institute of Anthropotomy and Histoembryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Qin
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou 730050, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Comprehensive Analysis of Novel Genes and Pathways Associated with Osteogenic Differentiation of Adipose Stem Cells. DISEASE MARKERS 2022; 2022:4870981. [PMID: 36133435 PMCID: PMC9484926 DOI: 10.1155/2022/4870981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
Background. Adipose-derived stem cells (ADSCs) are an important alternative source of mesenchymal stem cells (MSCs) and show great promise in tissue engineering and regenerative medicine applications. However, identifying the novel genes and pathways and finding the underlying mechanisms regulating ADSCs osteogenic differentiation remain urgent. Methods. We downloaded the gene expression profiles of GSE63754 and GSE37329 from the Gene Expression Omnibus (GEO) Database. We derived differentially expressed genes (DEGs) before and after ADSC osteogenic differentiation, followed by Gene Ontology (GO) functional and KEGG pathway analysis and protein-protein interaction (PPI) network analysis. 211 differentially expressed genes (142 upregulated genes and 69 downregulated genes) were aberrantly expressed. GO analysis revealed that these DEGs were associated with extracellular matrix organization, protein extracellular matrix, and semaphorin receptor binding. Conclusions. Our study provides novel genes and pathways that play important roles in regulating ADSC osteogenic differentiation, which may have potential therapeutic targets for clinic.
Collapse
|
9
|
Functional Analysis of Serum Long Noncoding RNAs in Patients with Atrial Fibrillation. DISEASE MARKERS 2022; 2022:2799123. [PMID: 35615400 PMCID: PMC9126683 DOI: 10.1155/2022/2799123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/21/2022]
Abstract
Objectives Long noncoding RNAs (lncRNAs) are closely related to diverse diseases. However, its role in atrial fibrillation (AF) pathogenesis needs further exploration. Design We performed microarray analysis on the serum samples from 70 healthy volunteers and 70 AF patients. This study was aimed at detecting the levels of serum lncRNAs and mRNAs and bioinformatically analyze them to establish potential marker(s) for AF diagnosis. Receiver operating curve (ROC) and area under the curve (AUC) were employed to address the AF diagnostic power of lncRNAs. Results In the AF serum samples, 753 lncRNAs and 802 mRNAs (p ≤ 0.05; fold change ≥ 2) were upregulated, and 315 lncRNAs and 153 mRNAs were downregulated, as opposed to healthy serum samples. Using bioinformatic analysis, we analyzed the top 4 differentially expressed (DE) lncRNAs, namely, NR-001587, NR-015407, NR-038455, and NR-038894, and found that the PI3K-AKT cell proliferation signaling pathway was most affected. This was in accordance with our functional analysis of DE mRNAs and adjacent lncRNAs. Notably, the elevated serum NR-001587 levels were strongly associated with AF incidence. Conclusions Our work highlights the role of lncRNAs in AF pathogenesis and provides a novel serum biomarker for AF diagnosis.
Collapse
|
10
|
Li D, Nie J, Han Y, Ni L. Epigenetic Mechanism and Therapeutic Implications of Atrial Fibrillation. Front Cardiovasc Med 2022; 8:763824. [PMID: 35127848 PMCID: PMC8815458 DOI: 10.3389/fcvm.2021.763824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia attacking 1. 5–2.0% of general population worldwide. It has a significant impact on morbidity and mortality globally and its prevalence increases exponentially with age. Therapies like catheter ablation or conventional antiarrhythmic drugs have not provided effective solution to the recurrence for AF over the past decades. Over 100 genetic loci have been discovered to be associated with AF by Genome-wide association studies (GWAS) but none has led to a therapy. Recently potential involvement of epigenetics (DNA methylation, histone modification, and non-coding RNAs) in the initiation and maintenance of AF has partly emerged as proof-of-concept in the mechanism and management of AF. Here we reviewed the epigenetic features involved in AF pathophysiology and provided an update of their implications in AF therapy.
Collapse
|
11
|
Yang P, Cao Y, Jian H, Chen H. Identification of Hub mRNAs and lncRNAs in Atrial Fibrillation Using Weighted Co-expression Network Analysis With RNA-Seq Data. Front Cell Dev Biol 2021; 9:722671. [PMID: 34671599 PMCID: PMC8520999 DOI: 10.3389/fcell.2021.722671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/09/2021] [Indexed: 01/28/2023] Open
Abstract
Atrial fibrillation (AF)/paroxysmal AF (PAF) is the main cause of cardiogenic embolism. In recent years, the progression from paroxysmal AF to persistent AF has attracted more and more attention. However, the molecular mechanism of the progression of AF is unclear. In this study, we performed RNA sequencing for normal samples, paroxysmal AF and persistent AF samples to identify differentially expressed gene (DEG) and explore the roles of these DEGs in AF. Totally, 272 differently expressed mRNAs (DEmRNAs) and 286 differentially expressed lncRNAs (DElncRNAs) were identified in paroxysmal AF compared to normal samples; 324 DEmRNAs and 258 DElncRNAs were found in persistent atrial fibrillation compared with normal samples; and 520 DEmRNAs and 414 DElncRNAs were identified in persistent AF compared to paroxysmal AF samples. Interestingly, among the DEGs, approximately 50% were coding genes and around 50% were non-coding RNAs, suggesting that lncRNAs may also have a crucial role in the progression of AF. Bioinformatics analysis demonstrated that these DEGs were significantly related to regulating multiple AF associated pathways, such as the regulation of vascular endothelial growth factor production and binding to the CXCR chemokine receptor. Furthermore, weighted gene co-expression network analysis (WGCNA) was conducted to identify key modules and hub RNAs and lncRNAs to determine their potential associations with AF. Five hub modules were identified in the progression of AF, including blue, brown, gray, turquoise and yellow modules. Interestingly, blue module and turquoise module were significantly negatively and positively correlated to the progression of AF respectively, indicating that they may have a more important role in the AF. Moreover, the hub protein-protein interaction (PPI) networks and lncRNA-mRNA regulatory network were constructed. Bioinformatics analysis on the hub PPI network in turquoise was involved in regulating immune response related signaling, such as leukocyte chemotaxis, macrophage activation, and positive regulation of α-β T cell activation. Our findings could clarify the underlying molecular changes associated fibrillation, and provide a useful resource for identifying AF marker.
Collapse
Affiliation(s)
- Pan Yang
- Emergency Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Cardiovascular Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujing Cao
- Department of Cardiovascular Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Huagang Jian
- Emergency Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Chen
- Department of Cardiovascular Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
12
|
Curcumin Improves Pulmonary Hypertension Rats by Regulating Mitochondrial Function. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1078019. [PMID: 34497845 PMCID: PMC8421153 DOI: 10.1155/2021/1078019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022]
Abstract
Objective To investigate the role of curcumin in regulating pathogenesis of pulmonary arterial smooth muscle cells (PASMCs) derived from pulmonary arterial hypertension (PAH) model. Methods Male Sprague Dawley rats were injected with monocrotaline (MCT) to establish the PAH experimental model. The rats were divided into control group, MCT group, and curcumin group. At the end of the study, hemodynamic data were measured to determine pulmonary hypertension. Proliferation ability of PASMCs, a remodeling indicator of pulmonary artery and right ventricle, was detected. In addition, the morphology and function of mitochondria, antiglycolysis and antiproliferation pathways, and genes were also analyzed. Results Curcumin may function by reversing MCT-mediated pulmonary vascular remodeling in rats. Curcumin effectively improved pulmonary vascular remodeling, promoted PASMC apoptosis, and protected mitochondrial function. In addition, curcumin treatment suppressed the PI3K/AKT pathway in PASMCs and regulated the expression of antiproliferative genes. Conclusion Curcumin can improve energy metabolism and reverse the process of PAHS. However, there were side effects of curcumin in MCT-induced rats, suggesting that the dosage should be treated with caution and its toxicological mechanism should be further studied and evaluated.
Collapse
|
13
|
Li G, Cheng Z. miR-339-5p Inhibits Autophagy to Reduce the Resistance of Laryngeal Carcinoma on Cisplatin via Targeting TAK1. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9938515. [PMID: 34395629 PMCID: PMC8357498 DOI: 10.1155/2021/9938515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
Laryngeal carcinoma is a malignant disease with high morbidity and mortality. Several studies have indicated that miRNA dysfunction involves in the development of laryngeal carcinoma. In this study, the connection of miR-339-5p and laryngeal carcinoma was investigated, and qRT-PCR, CCK-8, and flow cytometry assay were used to observe the function of miR-339-5p on laryngeal carcinoma. Besides, the target database, dual-luciferase reporter assay, and western blot were used to explore the regulation mechanism of miR-339-5p on the progression of laryngeal carcinoma. The results showed that miR-339-5p was significantly downregulated in cisplatin-resistant cells of laryngeal carcinoma, and miR-339-5p upregulation could weaken the resistance of laryngeal carcinoma cells on cisplatin. Moreover, miR-339-5p could directly react with 3'-UTR of TAK1, and TAK1 could reverse the effects of miR-339-5p on the progression of autophagy. In conclusion, this study suggests that miR-339-5p can inhibit the autophagy to decrease the cisplatin resistance of laryngeal carcinoma via targeting TAK1.
Collapse
Affiliation(s)
- Guang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Zexing Cheng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, China
| |
Collapse
|
14
|
Pan X, Bi F. A Potential Immune-Related Long Non-coding RNA Prognostic Signature for Ovarian Cancer. Front Genet 2021; 12:694009. [PMID: 34367253 PMCID: PMC8335165 DOI: 10.3389/fgene.2021.694009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer (OC), the most lethal gynecologic malignancy, ranks fifth in cancer deaths among women, largely because of late diagnosis. Recent studies suggest that the expression levels of immune-related long non-coding RNAs (lncRNAs) play a significant role in the prognosis of OC; however, the potential of immune-related lncRNAs as prognostic factors in OC remains unexplored. In this study, we aimed to identify a potential immune-related lncRNA prognostic signature for OC patients. We used RNA sequencing and clinical data from The Cancer Genome Atlas and the Gene Expression Omnibus database to identify immune-related lncRNAs that could serve as useful biomarkers for OC diagnosis and prognosis. Univariate Cox regression analysis was used to identify the immune-related lncRNAs with prognostic value. Functional annotation of the data was performed through the GenCLiP310 website. Seven differentially expressed lncRNAs (AC007406.4, AC008750.1, AL022341.2, AL133351.1, FAM74A7, LINC02229, and HOXB-AS2) were found to be independent prognostic factors for OC patients. The Kaplan-Meier curve indicated that patients in the high-risk group had a poorer survival outcome than those in the low-risk group. The receiver operating characteristic curve revealed that the predictive potential of the immune-related lncRNA signature for OC was robust. The prognostic signature of the seven lncRNAs was successfully validated in the GSE9891, GSE26193 datasets and our clinical specimens. Multivariate analyses suggested that the signature of the seven lncRNAs was an independent prognostic factor for OC patients. Finally, we constructed a nomogram model and a competing endogenous RNA network related to the lncRNA prognostic signature. In conclusion, our study reveals novel immune-related lncRNAs that may serve as independent prognostic factors in OC.
Collapse
Affiliation(s)
- Xue Pan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Novikova EL, Kulakova MA. There and Back Again: Hox Clusters Use Both DNA Strands. J Dev Biol 2021; 9:28. [PMID: 34287306 PMCID: PMC8293171 DOI: 10.3390/jdb9030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Bilaterian animals operate the clusters of Hox genes through a rich repertoire of diverse mechanisms. In this review, we will summarize and analyze the accumulated data concerning long non-coding RNAs (lncRNAs) that are transcribed from sense (coding) DNA strands of Hox clusters. It was shown that antisense regulatory RNAs control the work of Hox genes in cis and trans, participate in the establishment and maintenance of the epigenetic code of Hox loci, and can even serve as a source of regulatory peptides that switch cellular energetic metabolism. Moreover, these molecules can be considered as a force that consolidates the cluster into a single whole. We will discuss the examples of antisense transcription of Hox genes in well-studied systems (cell cultures, morphogenesis of vertebrates) and bear upon some interesting examples of antisense Hox RNAs in non-model Protostomia.
Collapse
Affiliation(s)
- Elena L. Novikova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| | - Milana A. Kulakova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| |
Collapse
|
16
|
Liu WB, Feng QJ, Li GS, Shen P, Li YN, Zhang FJ. Long non-coding RNA HOTAIRM1-1 silencing in cartilage tissue induces osteoarthritis through microRNA-125b. Exp Ther Med 2021; 22:933. [PMID: 34306202 PMCID: PMC8280714 DOI: 10.3892/etm.2021.10365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/11/2021] [Indexed: 11/29/2022] Open
Abstract
Aberrations in long noncoding RNA (lncRNA) expression have been recognized in numerous human diseases. In the present study, the of role the long noncoding RNA HOX antisense intergenic RNA myeloid 1 variant (HOTAIRM1-1) in regulating the pathological progression of osteoarthritis (OA) was investigated. The aberrant expression of HOTAIRM1-1 in OA was demonstrated, but the molecular mechanisms require further analysis. The aim of the present study was to explore the function of miR-125b in modulating chondrocyte viability and apoptosis, and to address the functional association between HOTAIRM1-1 and miR-125b as potential targets. A miR-125b inhibitor was used, which laid the foundation for the following investigation. The study confirmed that HOTAIRM1-1 and miR-125b are inversely expressed in chondrocytes. The expression of HOTAIRM1-1 was downregulated and the expression of miR-125b was upregulated in tissues from patients with OA. HOTAIRM1-1 directly interacted with miR-125b in chondrocytes. HOTAIRM1-1 knockdown was associated with chondrocyte proliferation and extracellular matrix degradation. Furthermore, miR-125b reversed the effect of HOTAIRM1-1 on cell proliferation and apoptosis. In conclusion, the present study indicates that the loss of HOTAIRM1-1 function leads to aberrant increases in the proliferation and apoptosis of chondrocytes. miR-125b may be a potential downstream mechanism that regulates the function of HOTAIRM1-1, and this finding provides a therapeutic strategy for OA.
Collapse
Affiliation(s)
- Wen-Bin Liu
- Department of Joint Surgery, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Qi-Jin Feng
- Department of Orthopedics, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300150, P.R. China
| | - Gui-Shi Li
- Department of Joint Surgery, Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Peng Shen
- Department of Rheumatology and Immunology, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Ya-Nan Li
- Department of Orthopedics, Tianjin Dongli Hospital, Tianjin 300300, P.R. China
| | - Fu-Jiang Zhang
- Department of Joint Surgery, Tianjin Hospital, Tianjin 300211, P.R. China
| |
Collapse
|
17
|
Liu B, Zhang Y, Suo J. Increased Expression of PDK4 Was Displayed in Gastric Cancer and Exhibited an Association With Glucose Metabolism. Front Genet 2021; 12:689585. [PMID: 34220962 PMCID: PMC8248380 DOI: 10.3389/fgene.2021.689585] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023] Open
Abstract
Previous studies reported that pyruvate dehydrogenase kinase 4 (PDK4) is closely related to diabetes, heart disease, and carcinomas. Nevertheless, the role of PDK4 in gastric cancer (GC) occurrence and development is yet poorly understood. Our experiments were taken to evaluate PDK4's function in GC. The Cancer Genome Atlas tumor genome map database was employed to validate the levels of PDK family in different grades and stages of GC. The survival ratio of PDK families in GC was detected by the Kaplan-Meier plotter database. The links existing in the expression of PDK family and the level of tumor-infiltrating immune cells were investigated by tumor immunity assessment resource (TIMER). PDK4-associated signal pathways in GC were analyzed by the Kyoto Encyclopedia of Genes and Genomes pathway analysis. PDK4 mRNA level in the GC cells was measured by qRT-PCR. Cell counting kit-8 and Transwell assays were separately carried out to evaluate PDK4-induced influence on GC cell proliferation, migration, and invasion. Our data suggested that GC cells highly expressed PDK4, and PDK4 expression presented a significant relation with the staging, grade, and survival rate of GC. PDK4 expression presented a positive correlation with the types of different infiltrating immune cells, comprising B cells, CD4+ T cells, and dendritic cells. Meanwhile, PDK4 expression exhibited a strong association with macrophages. Survival analysis revealed that the expression of PDK4 displayed a relationship with the prognosis of patients. Therefore, PDK4 was liable to be a biomarker for prognosis. Our results further displayed that PDK4 might modulate the glycolysis level in GC cells, and its expression was associated with GC cell proliferation, migration, and invasion. These data may provide insights into designing a new treatment strategy for GC.
Collapse
Affiliation(s)
| | | | - Jian Suo
- Department of Gastrocolorectal Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Marker Genes Change of Synovial Fibroblasts in Rheumatoid Arthritis Patients. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5544264. [PMID: 34195267 PMCID: PMC8203351 DOI: 10.1155/2021/5544264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023]
Abstract
Background Rheumatoid arthritis (RA) is a chronic condition that manifests as inflammation of synovial joints, leading to joint destruction and deformity. Methods We identified single-cell RNA-seq data of synovial fibroblasts from RA and osteoarthritis (OA) patients in GSE109449 dataset. RA- and OA-specific cellular subpopulations were identified, and enrichment analysis was performed. Further, key genes for RA and OA were obtained by combined analysis with differentially expressed genes (DEGs) between RA and OA in GSE56409 dataset. The diagnostic role of key genes for RA was predicted using receiver operating characteristic (ROC) curve. Finally, we identified differences in immune cell infiltration between RA and OA patients, and utilized flow cytometry, qRT-PCR, and Western blot were used to examine the immune cell and key genes in RA patients. Results The cluster 0 matched OA and cluster 3 matched RA and significantly enriched for neutrophil-mediated immunity and ECM receptor interaction, respectively. We identified 478 DEGs. In the top 20 degrees of connection in the PPI network, the key genes for RA were obtained by comparing with the gene markers of cluster 0 and cluster 3, respectively. ROC curve showed that CCL2 and MMP13 might be diagnostic markers for RA. We found aberrant levels of CD8+T, neutrophil, and B cells in RA fibroblasts, which were validated in clinical samples. Importantly, we also validated the differential expression of key genes between RA and OA. Conclusion High expression of CCL2 and MMP13 in RA may be a diagnostic and therapeutic target.
Collapse
|
19
|
Lin Y, Yao Y, Wang Y, Wang L, Cui H. PD-L1 and Immune Infiltration of m 6A RNA Methylation Regulators and Its miRNA Regulators in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5516100. [PMID: 34055974 PMCID: PMC8147529 DOI: 10.1155/2021/5516100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/01/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND The aim of this study was to systematically evaluate the relationship between the expression of m6A RNA methylation regulators and prognosis in HCC. METHODS We compared the expression of m6A methylation modulators and PD-L1 between HCC and normal in TCGA database. HCC samples were divided into two subtypes by consensus clustering of data from m6A RNA methylation regulators. The differences in PD-L1, immune infiltration, and prognosis between the two subtypes were further compared. The LASSO regression was used to build a risk score for m6A modulators. In addition, we identified miRNAs that regulate m6A regulators. RESULTS We found that fourteen m6A regulatory genes were significantly differentially expressed between HCC and normal. HCC samples were divided into two clusters. Of these, there are higher PD-L1 expression and poorer overall survival (OS) in cluster 1. There was a significant difference in immune cell infiltration between cluster 1 and cluster 2. Through the LASSO model, we obtained 12 m6A methylation regulators to construct a prognostic risk score. Compared with patients with a high-risk score, patients with a low-risk score had upregulated PD-L1 expression and worse prognosis. There was a significant correlation between risk score and tumor-infiltrating immune cells. Finally, we found that miR-142 may be the important regulator for m6A RNA methylation in HCC. CONCLUSION Our results suggest that m6A RNA methylation modulators may affect the prognosis through PD-L1 and immune cell infiltration in HCC patients. In addition, the two clusters may be beneficial for prognostic stratification and improving immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Yingxue Lin
- Department of Medicine, Affiliated Hospital of Chengde Medical University, Nanyingzi Road, Shuangqiao District, Chengde, Hebei, China
| | - Yinhui Yao
- Department of Medicine, Affiliated Hospital of Chengde Medical University, Nanyingzi Road, Shuangqiao District, Chengde, Hebei, China
| | - Ying Wang
- Department of Medicine, Affiliated Hospital of Chengde Medical University, Nanyingzi Road, Shuangqiao District, Chengde, Hebei, China
| | - Lingdi Wang
- Department of Medicine, Affiliated Hospital of Chengde Medical University, Nanyingzi Road, Shuangqiao District, Chengde, Hebei, China
| | - Haipeng Cui
- Department of Pathophysiology, Chengde Medical University, Anyuan Road, Shuangqiao District, Chengde, Hebei, China
| |
Collapse
|
20
|
Li D, Lin H, Li L. Multiple Feature Selection Strategies Identified Novel Cardiac Gene Expression Signature for Heart Failure. Front Physiol 2020; 11:604241. [PMID: 33304275 PMCID: PMC7693561 DOI: 10.3389/fphys.2020.604241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 02/02/2023] Open
Abstract
Heart failure (HF) is a serious condition in which the support of blood pumped by the heart is insufficient to meet the demands of body at a normal cardiac filling pressure. Approximately 26 million patients worldwide are suffering from heart failure and about 17–45% of patients with heart failure die within 1-year, and the majority die within 5-years admitted to a hospital. The molecular mechanisms underlying the progression of heart failure have been poorly studied. We compared the gene expression profiles between patients with heart failure (n = 177) and without heart failure (n = 136) using multiple feature selection strategies and identified 38 HF signature genes. The support vector machine (SVM) classifier based on these 38 genes evaluated with leave-one-out cross validation (LOOCV) achieved great performance with sensitivity of 0.983 and specificity of 0.963. The network analysis suggested that the hub gene SMOC2 may play important roles in HF. Other genes, such as FCN3, HMGN2, and SERPINA3, also showed great promises. Our results can facilitate the early detection of heart failure and can reveal its molecular mechanisms.
Collapse
Affiliation(s)
- Dan Li
- Department of Cardiovascular Medicine, First Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Hong Lin
- Internal Medicine-Cardiovascular Department, Harbin Chest Hospital, Harbin, China
| | - Luyifei Li
- Department of Cardiovascular Medicine, First Hospital Affiliated to Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Xu W, Li K, Song C, Wang X, Li Y, Xu B, Liang X, Deng W, Wang J, Liu J. Knockdown of lncRNA LINC01234 Suppresses the Tumorigenesis of Liver Cancer via Sponging miR-513a-5p. Front Oncol 2020; 10:571565. [PMID: 33178601 PMCID: PMC7597595 DOI: 10.3389/fonc.2020.571565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background Liver cancer is a frequent malignancy with poor prognosis and high mortality all over the world. It has been reported many lncRNAs could modulate the tumorigenesis of liver cancer. To identify novel potential targets for liver cancer, the differential expressed lncRNAs between liver cancer and adjacent normal tissues was analyzed with bioinformatics tool. Methods The differential expressed lncRNAs between liver cancer and adjacent normal tissues were analyzed with bioinformatics tool. Cell viability and proliferation was tested by CCK8 and Ki67, respectively. Apoptosis of liver cancer cells was tested by flow cytometry. Gene and protein expressions in liver cancer cells were measured by qRT-PCR and western blot, respectively. In vivo model of liver cancer was established to detect the effect of LINC01234 on liver cancer in vivo. Results LINC01234 was found to be negatively correlated with the survival rate of patients with liver cancer. Moreover, knockdown of LINC01234 significantly suppressed the proliferation and invasion of liver cancer cells via inducing the apoptosis. Meanwhile, miR-513a-5p was sponged by LINC01234, and USP4 was found to be a direct target of miR-513a-5p. In addition, LINC01234 knockdown inhibited the tumorigenesis of liver cancer via inactivating TGF-β signaling. Furthermore, silencing of LINC01234 notably inhibited the tumor growth of liver cancer in vivo. Conclusion Downregulation of LINC01234 could inhibit the tumorigenesis of liver cancer via mediation of miR-513a-5p/USP4/TGF-β axis. Thus, LINC01234 might serve as a new target for the treatment of liver cancer.
Collapse
Affiliation(s)
- Wen Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Kesang Li
- Department of Hematology and Oncology, Hwa Mei Hospital, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Changfeng Song
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaotong Wang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yueqi Li
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Baixue Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wanli Deng
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
22
|
Fang Y, Xu Y, Wang R, Hu L, Guo D, Xue F, Guo W, Zhang D, Hu J, Li Y, Zhang W, Zhang M. Recent advances on the roles of LncRNAs in cardiovascular disease. J Cell Mol Med 2020; 24:12246-12257. [PMID: 32969576 PMCID: PMC7686979 DOI: 10.1111/jcmm.15880] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular diseases are a main cause of mortality whose prevalence continues to increase worldwide. Long non-coding RNAs (lncRNAs) regulate a variety of biological processes by modifying and regulating transcription of coding genes, directly binding to proteins and even coding proteins themselves. LncRNAs play key roles in the occurrence and development of myocardial infarction, heart failure, myocardial hypertrophy, arrhythmias and other pathological processes that significantly affect the prognosis and survival of patients with cardiovascular diseases. We here review the latest research on lncRNAs in cardiovascular diseases as a basis to formulate future research on prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yexian Fang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuerong Xu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Runze Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lang Hu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dong Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Feng Xue
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wangang Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dongwei Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
23
|
Genetics and Epigenetics of Atrial Fibrillation. Int J Mol Sci 2020; 21:ijms21165717. [PMID: 32784971 PMCID: PMC7460853 DOI: 10.3390/ijms21165717] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is known to be the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence exponentially increases with age and could reach up to 8% in the elderly population. The management of AF is a complex issue that is addressed by extensive ongoing basic and clinical research. AF centers around different types of disturbances, including ion channel dysfunction, Ca2+-handling abnormalities, and structural remodeling. Genome-wide association studies (GWAS) have uncovered over 100 genetic loci associated with AF. Most of these loci point to ion channels, distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Recently, the discovery of post-transcriptional regulatory mechanisms, involving non-coding RNAs (especially microRNAs), DNA methylation, and histone modification, has allowed to decipher how a normal heart develops and which modifications are involved in reshaping the processes leading to arrhythmias. This review aims to provide a current state of the field regarding the identification and functional characterization of AF-related epigenetic regulatory networks
Collapse
|