1
|
Machado-Costa D, Miranda G, Correia-Pinto J, Moura RS. Exploring hyperglycemia's impact on embryonic development: Insights from the chicken embryo model. Tissue Cell 2025; 95:102925. [PMID: 40286730 DOI: 10.1016/j.tice.2025.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Hyperglycemia during pregnancy is a growing health concern due to its association with congenital anomalies. While rodent models have been used to study this condition, their variability and inability to control the embryonic microenvironment is a limitation. Having this in mind, this study explores the chicken embryo (Gallus gallus) as an alternative model for studying the effects of hyperglycemia on early embryonic development. For that purpose, fertilized chicken eggs were exposed to glucose (0.2 and 0.4 mmol) from embryonic day 1 (E1) onwards. On embryonic day 5 (E5), glucose levels, developmental outcomes, and molecular alterations were assessed in the embryos. Hyperglycemia led to a significant increase in glucose concentration in both the surrounding environment and the embryo's bloodstream. High glucose levels caused developmental toxicity, namely increased mortality and severe abnormalities such as defects in the optic organ, brain, heart, and neural tube. Molecular analysis demonstrated an increase in igf2 and a decrease in glut1 expression in the liver, which may point to a potential protective response to high glucose levels despite the absence of insulin. Superoxide Dismutase activity was reduced suggesting an oxidative stress response. In conclusion, this study retrieves the chicken embryo model for researching hyperglycemia's effect on embryonic development, providing insights into potential molecular mechanisms and highlighting its relevance for future teratogenic research.
Collapse
Affiliation(s)
- Daniela Machado-Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4710-057, Portugal
| | - Gonçalo Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4710-057, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto 4200-072, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4710-057, Portugal; Department of Pediatric Surgery, Hospital of Braga, Braga 4710-243, Portugal
| | - Rute S Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4710-057, Portugal.
| |
Collapse
|
2
|
McCauley N, Lawless L, Basra M, DePadova N, Loyola XA, Zhou H, Ko G, Zhang K, Xie L. In ovo exposure to cadmium causes right ventricle hyperplasia due to cell proliferation of cardiomyocytes. Toxicol Lett 2022; 366:1-6. [PMID: 35753640 PMCID: PMC10042311 DOI: 10.1016/j.toxlet.2022.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/03/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
Cadmium (Cd) is an environmental and occupational pollutant inhaled through smoking or ingested through contaminated food. Yet, little is known about its teratogenicity. In this study, the effects of Cd on embryonic heart development were investigated by exposing Cd to chicken embryos in ovo. Fertilized eggs were treated with Cd at Hamburger-Hamilton Stage (HH)16 and collected at HH35 for histological evaluation of the heart. Cd treatment of 100 μM at HH16 increased embryo mortality at HH35. Specific structural heart defects were not observed in any Cd treatment group, but the relative myocardial tissue area of the right ventricle was increased with Cd exposure. When the HH31 hearts were stained with p-H3S10, the right ventricle had an increased number of cells undergoing proliferation, which was associated with upregulation of Cdk1, Cdk6, CycA, CycD, and CycE detected by qPCR. These findings suggest that Cd exposure from HH16 upregulates proliferation genes and drives overgrowth of the right ventricle. These results grant further attention to Cd teratogenicity on embryonic heart development. Such morphological changes in the heart can potentially affect cardiac function and increase the risk for future cardiovascular diseases, such as heart failure.
Collapse
Affiliation(s)
- Naomi McCauley
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Lauren Lawless
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Mahi Basra
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Nicole DePadova
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Xochilt Albiter Loyola
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Huijuan Zhou
- Department of Statistics, Texas A&M University, College Station, TX, United States of America
| | - Gladys Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States of America
| | - Ke Zhang
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America; Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, United States of America.
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America.
| |
Collapse
|
3
|
Linglart L, Bonnet D. Epigenetics and Congenital Heart Diseases. J Cardiovasc Dev Dis 2022; 9:185. [PMID: 35735814 PMCID: PMC9225036 DOI: 10.3390/jcdd9060185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Congenital heart disease (CHD) is a frequent occurrence, with a prevalence rate of almost 1% in the general population. However, the pathophysiology of the anomalous heart development is still unclear in most patients screened. A definitive genetic origin, be it single-point mutation or larger chromosomal disruptions, only explains about 35% of identified cases. The precisely choreographed embryology of the heart relies on timed activation of developmental molecular cascades, spatially and temporally regulated through epigenetic regulation: chromatin conformation, DNA priming through methylation patterns, and spatial accessibility to transcription factors. This multi-level regulatory network is eminently susceptible to outside disruption, resulting in faulty cardiac development. Similarly, the heart is unique in its dynamic development: growth is intrinsically related to mechanical stimulation, and disruption of the intrauterine environment will have a direct impact on fetal embryology. These two converging axes offer new areas of research to characterize the cardiac epigenetic regulation and identify points of fragility in order to counteract its teratogenic consequences.
Collapse
Affiliation(s)
- Léa Linglart
- M3C-Necker, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France;
| | - Damien Bonnet
- M3C-Necker, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France;
- School of Medicine, Université de Paris Cité, 75006 Paris, France
| |
Collapse
|
4
|
Das R, Mishra P, Jha R. In ovo Feeding as a Tool for Improving Performance and Gut Health of Poultry: A Review. Front Vet Sci 2021; 8:754246. [PMID: 34859087 PMCID: PMC8632539 DOI: 10.3389/fvets.2021.754246] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Early growth and development of the gastrointestinal tract are of critical importance to enhance nutrients' utilization and optimize the growth of poultry. In the current production system, chicks do not have access to feed for about 48-72 h during transportation between hatchery and production farms. This lag time affects early nutrient intake, natural exposure to the microbiome, and the initiation of beneficial stimulation of the immune system of chicks. In ovo feeding can provide early nutrients and additives to embryos, stimulate gut microflora, and mitigate the adverse effects of starvation during pre-and post-hatch periods. Depending on the interests, the compounds are delivered to the embryo either around day 12 or 17 to 18 of incubation and via air sac or amnion. In ovo applications of bioactive compounds like vaccines, nutrients, antibiotics, prebiotics, probiotics, synbiotics, creatine, follistatin, L-carnitine, CpG oligodeoxynucleotide, growth hormone, polyclonal antimyostatin antibody, peptide YY, and insulin-like growth factor-1 have been studied. These compounds affect hatchability, body weight at hatch, physiological functions, immune responses, gut morphology, gut microbiome, production performance, and overall health of birds. However, the route, dose, method, and time of in ovo injection and host factors can cause variation, and thereby inconsistencies in results. Studies using this method have manifested the benefits of injection of different single bioactive compounds. But for excelling in poultry production, researchers should precisely know the proper route and time of injection, optimum dose, and effective combination of different compounds. This review paper will provide an insight into current practices and available findings related to in ovo feeding on performance and health parameters of poultry, along with challenges and future perspectives of this technique.
Collapse
Affiliation(s)
- Razib Das
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Pravin Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
5
|
Ma X, Zhang Y, Guan M, Zhang W, Tian H, Jiang C, Tan X, Kang W. Genotoxicity of chloroacetamide herbicides and their metabolites in vitro and in vivo. Int J Mol Med 2021; 47:103. [PMID: 33907828 PMCID: PMC8054635 DOI: 10.3892/ijmm.2021.4936] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
The toxicity of chloroacetamide herbicide in embryo development remains unclear. Acetochlor (AC) is a chloroacetamide that metabolizes into 2‑ethyl‑6‑methyl-2-chloroacetanilide (CMEPA) and 6‑ethyl‑o‑toluidine (MEA). The present study determined the potential effect of AC and its metabolites on embryo development. Both HepG2 cells and zebrafish embryos were exposed to AC, CMEPA and MEA in the presence or absence of co‑treatment with anti‑reactive oxygen species (ROS) reagent N‑acetylcysteine. The generation of ROS, levels of superoxide dismutase (SOD) and glutathione (GSH) in HepG2 cells and lactate dehydrogenase (LDH) leakage from HepG2 cells were investigated. The effects of AC, CMEPA and MEA on DNA breakage, MAPK/ERK pathway activity, viability and apoptosis of HepG2 cells were examined by comet assay, western blotting, MTT assay and flow cytometry, respectively. Levels of LDH, SOD and GSH in zebrafish embryos exposed to AC, CMEPA and MEA were measured. The hatching and survival rates of zebrafish embryos exposed to AC, CMEPA and MEA, were determined, and apoptosis of hatched fish was investigated using acridine orange staining. The present data showed AC, CMEPA and MEA induced generation of ROS and decreased levels of SOD and GSH in HepG2 cells, which in turn promoted DNA breakage and LDH leakage from cells, ultimately inhibiting cell viability and inducing apoptosis, as well as phosphorylation of JNK and P38. However, co‑treatment with N‑acetylcysteine alleviated the pro‑apoptosis effect of AC and its metabolites. Moreover, exposure to AC, CMEPA and MEA lead to toxicity of zebrafish embryos with decreased SOD and GSH and increased LDH levels and cell apoptosis, ultimately decreasing the hatching and survival rates of zebrafish, all of which was attenuated by treatment with N‑acetylcysteine. Therefore, AC and its metabolites (CMEPA and MEA) showed cytotoxicity and embryo development toxicity.
Collapse
Affiliation(s)
- Xinyan Ma
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Ying Zhang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei 050011, P.R. China
| | - Mingyang Guan
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei 050011, P.R. China
| | - Weidong Zhang
- The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Huifang Tian
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei 050011, P.R. China
| | - Caixiao Jiang
- Hebei Center for Disease Control and Prevention, Shijiazhuang, Hebei 050021, P.R. China
| | - Xiaoxin Tan
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Weijun Kang
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|