1
|
Gao D, Chen T, Dong J, He Y, Ge N, Guo J, Sun S, Yang F. Ferroptosis at the crossroads: Insights and advances in non-neoplastic pancreatic diseases. Int Immunopharmacol 2025; 158:114870. [PMID: 40383100 DOI: 10.1016/j.intimp.2025.114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/26/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
Ferroptosis is a form of regulated cell death characterized by iron accumulation and increased lipid peroxidation, primarily counteracted by a range of antioxidant molecules, including glutathione (GSH), glutathione peroxidase 4 (GPX4), ubiquinone, tetrahydrofolate, and nuclear respiratory factor 2. Furthermore, the process of ferroptosis is intricately influenced by the opposing actions of the p53 tumor suppressor gene and activated transcription factors 3 and 4, which can either facilitate or hinder ferroptotic cell death depending on the cellular context. This form of cell death is significantly associated with various pancreatic disorders, including both acute and chronic pancreatitis, as well as diabetes mellitus. In this review, we thoroughly investigate the mechanisms underlying ferroptosis, focusing on iron overload, lipid peroxidation, and the regulatory molecules involved in ferroptosis modulation (notably the system xc-/GSH/GPX4 axis), along with the relevant signaling pathways. We also examine the role of ferroptosis in non-neoplastic pancreatic diseases such as pancreatitis and diabetes mellitus while identifying novel therapeutic agents that target ferroptosis, potentially paving the way for innovative treatment strategies for pancreatic conditions.
Collapse
Affiliation(s)
- Duolun Gao
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Tingting Chen
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Jize Dong
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Yanjie He
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York 10012, NY, USA
| | - Nan Ge
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Jintao Guo
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Siyu Sun
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China.
| | - Fan Yang
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Yu C, Qiu Y, Yan D, Zhou W, Wan J, Yu J. Berberine treatment inhibits ferroptosis in NIT-1 murine pancreatic cell line via inhibiting OGT expression levels. Sci Rep 2025; 15:18504. [PMID: 40425689 PMCID: PMC12117152 DOI: 10.1038/s41598-025-03537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 05/21/2025] [Indexed: 05/29/2025] Open
Abstract
Recently, the prevalence of diabetes mellitus (DM) in the world continues to rise, which has seriously threatened human health. Enhanced pancreatic β-cell death is one of the important factors in the pathogenesis of type 1 diabetes mellitus (T1DM). Berberine, an alkaloid, plays a series of pharmacological functions in many disease. The purpose of this study was to explore the specific mechanisms of berberine in the high glucose (HG) stimulated pancreatic β-cell. The 30 mM D-glucose stimulated mouse pancreatic β cells (NIT-1) was used to estabilish T1DM model in vitro. Then the cell viability was detected by CCK-8 assay. The lactic dehydrogenase (LDH), reactive oxygen species (ROS), Iron, malondialdehyde (MDA), glutathione (GSH), and glutathione peroxidase 4 (GPX4) levels were determined by corresponding kits. The cell death was evaluated by PI staining. Western blot was performed to measure the O-linked N-acetylglucosamine (O-GlcNAc) and O-GlcNAc transferase (OGT) protein levels. The results showed that berberine treatment significantly increased the cell viability, GPX4 activity and GSH levels, and decreased the ROS, Iron, MDA levels and PI positive cells in the HG stimulated NIT-1 cells. Additionally, the molecular docking analysis showed that berberine could bind to OGT. Berberine treatment significantly decreased the global O-GlcNAc levels and OGT protein expression in the HG stimulated NIT-1 cells. Furthermore, OGT overexpression reversed the role of berberine in the HG stimulated NIT-1 cells. This study demonstrated that berberine treatment inhibited the ferroptosis of pancreatic β-cell under high-glucose condition via decreasing the OGT expressions.
Collapse
Affiliation(s)
- Chengbi Yu
- Department of Endocrinology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, 332000, China
| | - Yue Qiu
- Department of Endocrinology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, 332000, China
| | - Dongbiao Yan
- Department of Endocrinology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, 332000, China
| | - Wendi Zhou
- Department of Endocrinology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, 332000, China
| | - Jin Wan
- Department of Endocrinology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, 332000, China
| | - Jiewei Yu
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, No.261, South Lushan Road, Jiujiang, 332000, China.
| |
Collapse
|
3
|
Prabhune NM, Ameen B, Prabhu S. Therapeutic potential of synthetic and natural iron chelators against ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3527-3555. [PMID: 39601820 DOI: 10.1007/s00210-024-03640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron accumulation that results in the production of reactive oxygen species. This further causes lipid peroxidation and damage to the cellular components, eventually culminating into oxidative stress. Recent studies have highlighted the pivotal role of ferroptosis in the pathophysiological development and progression of various diseases such as β-thalassemia, hemochromatosis, and neurodegenerative disorders like AD and PD. Extensive efforts are in progress to understand the molecular mechanisms governing the role of ferroptosis in these conditions, and chelation therapy stands out as a potential approach to mitigate ferroptosis and its related implications in their development. There are currently both synthetic and natural iron chelators that are being researched for their potential as ferroptosis inhibitors. While synthetic chelators are relatively well-established and studied, their short plasma half-life and toxic side effects necessitate the exploration and identification of natural products that can act as efficient and safe iron chelators. In this review, we comprehensively discuss both synthetic and natural iron chelators as potential therapeutic strategies against ferroptosis-induced pathologies.
Collapse
Affiliation(s)
- Nupura Manish Prabhune
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bilal Ameen
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sudharshan Prabhu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
Ježek P. Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Versus Lipotoxicity. Antioxid Redox Signal 2025; 42:566-622. [PMID: 39834189 DOI: 10.1089/ars.2024.0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Significance: Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recent Advances: Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons. This contrasts with the frequent lipotoxicity observed in rodents. Critical Issues: Overfeeding causes FASIS to overlap with GSIS providing repeating hyperinsulinemia, initiates prediabetic states by lipotoxic effects and low-grade inflammation. In contrast the protective effects of lipid droplets in human β-cells counteract excessive lipids. Insulin by FASIS allows FATP1 recruitment into adipocyte plasma membranes when postprandial chylomicrons come late at already low glycemia. Future Directions: Impaired states of pancreatic β-cells and peripheral organs at prediabetes and type 2 diabetes should be revealed, including the inter-organ crosstalk by extracellular vesicles. Details of FA/lipid molecular physiology are yet to be uncovered, such as complex phenomena of FA uptake into cells, postabsorptive inactivity of G-protein-coupled receptor 40, carnitine carrier substrate specificity, the role of carnitine-O-acetyltransferase in β-cells, and lipid droplet interactions with mitochondria. Antioxid. Redox Signal. 42, 566-622.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Dai L, Wang Q. Targeting ferroptosis: opportunities and challenges of mesenchymal stem cell therapy for type 1 diabetes mellitus. Stem Cell Res Ther 2025; 16:47. [PMID: 39901210 PMCID: PMC11792594 DOI: 10.1186/s13287-025-04188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by progressive β-cell death, leading to β-cell loss and insufficient insulin secretion. Mesenchymal stem cells (MSCs) transplantation is currently one of the most promising methods for β-cell replacement therapy. However, recent studies have shown that ferroptosis is not only one of the key mechanisms of β-cell death, but also one of the reasons for extensive cell death within a short period of time after MSCs transplantation. Ferroptosis is a new type of regulated cell death (RCD) characterized by iron-dependent accumulation of lipid peroxides. Due to the weak antioxidant capacity of β-cells, they are susceptible to cytotoxic stimuli such as oxidative stress (OS), and are therefore susceptible to ferroptosis. Transplanted MSCs are also extremely susceptible to perturbations in their microenvironment, especially OS, which can weaken their antioxidant capacity and induce MSCs death through ferroptosis. In the pathophysiological process of T1DM, a large amount of reactive oxygen species (ROS) are produced, causing OS. Therefore, targeting ferroptosis may be a key way to protect β-cells and improve the therapeutic effect of MSCs transplantation. This review reviews the research related to ferroptosis of β-cells and MSCs, and summarizes the currently developed strategies that help inhibit cell ferroptosis. This study aims to help understand the ferroptosis mechanism of β-cell death and MSCs death after transplantation, emphasize the importance of targeting ferroptosis for protecting β-cells and improving the survival and function of transplanted MSCs, and provide a new research direction for stem cells transplantation therapy of T1DM in the future.
Collapse
Affiliation(s)
- Le Dai
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, 126 Xiantai Avenue, Changchun City, Jilin Province, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, 126 Xiantai Avenue, Changchun City, Jilin Province, China.
| |
Collapse
|
6
|
Mohanram Ramkumar K, Thasu Susindran O, Ganesh GV, Kannan H, Paulmurugan R. Luciferase-Based Reporter System for Investigating GPx4-Mediated Ferroptosis and Its Therapeutic Implications in Diabetes. Anal Chem 2025; 97:1059-1069. [PMID: 39579117 DOI: 10.1021/acs.analchem.4c03065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Ferroptosis, a distinct form of regulated cell death, is characterized by iron-dependent lipid peroxide accumulation in cell membranes from dysregulated cellular iron homeostasis and compromised antioxidant defense mechanisms. Glutathione peroxidase 4 (GPx4) is crucial in the regulation of ferroptosis by controlling lipid peroxide accumulation. Recent research established the association of ferroptosis with several diseases, prompting investigation toward ferroptosis-targeted therapeutic approaches. However, there is a lack of sensor systems designed to evaluate ferroptosis modulation in intact cells. In this study, we developed a highly sensitive luciferase-based reporter system to study GPx4-mediated ferroptosis in cells. We constructed a novel vector flanking the GPx4 promoter driving luciferase gene expression, demonstrating ferroptosis-specific luciferase activity in transfected HEK293T cells. We established stable cells expressing the construct and optimized its suitability for high-throughput screening using well-established ferroptosis modulators. We identified eugenol, a phenolic compound, as a potent ferroptosis inhibitor using the developed reporter system. Eugenol demonstrated dose-dependent protection against ferroptosis-induced damage in pancreatic beta cells, as assessed by the expression of the key markers such as GPx4, SLC7A11, NRF2, and HO1. Further, we showed the regulation of iron levels and total iron-binding capacity of beta cells by eugenol in streptozotocin (STZ) -induced diabetic mice. Additionally, the diabetes-induced downregulation of GPx4 and antioxidant Nrf2 in pancreatic tissue was significantly mitigated by eugenol, as evidenced by both immunohistochemistry and gene expression analysis. This research validates the functionality of the ferroptosis sensor and offers an approach to develop antidiabetic therapy by targeting ferroptosis to protect beta-cell viability and function.
Collapse
Affiliation(s)
- Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Oviya Thasu Susindran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Goutham V Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Harithpriya Kannan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, California 94304, United States
| |
Collapse
|
7
|
Dong C, Huoshen W, Bai Y, Liu J, Li B, Guan Y, Luo P. Uncovering the molecular networks of ferroptosis in the pathogenesis of type 2 diabetes and its complications: a multi-omics investigation. Mol Med 2024; 30:268. [PMID: 39716081 DOI: 10.1186/s10020-024-01045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Diabetes is a multi-factorial disorder and related complications constitute one of the principal causes of global mortality and disability. The role of ferroptosis in diabetes and its complications is intricate and significant. This study endeavors to disclose the role of ferroptosis in the aforementioned diseases from multiple perspectives through multi-omics. METHODS We performed genetic correlation analyses via the Linkage Disequilibrium Score and High-Definition Likelihood approaches for type 2 diabetes (T2D) and its complications. The data concerning the expression of ferroptosis-related genes (FRGs) were obtained from the meta-analysis of studies on gene expression and protein abundance. Mendelian randomization analyses and cross-validation were implemented using the discovery cohort, replication cohort, and imaging genomics cohort of T2D and its complications. Moreover, we conducted colocalization analyses on T2D and tissue-specific single-cell RNA sequencing investigations on the complications to complement the results. RESULTS Genetic association analysis indicated that the selected datasets could be incorporated into a secondary analysis of T2D complications. In the primary analysis, six FRGs (CDKN1A, ENO3, FURIN, RARRES2, TYRO3, and YTHDC2) were found to be positively associated with T2D risk. Conversely, eight FRGs (ARNTL, CAMKK2, CTSB, FADS2, KDM5A, MEG3, SREBF1, and STAT3) were inversely associated with T2D risk. The 14 FRGs were included in the secondary analysis. Within the FRGs, which received full support from both the discovery and replication cohorts, and were further validated by imaging genomics, higher levels of CDKN1A were positively associated with DKD risk. Higher levels of CAMKK2 and KDM5A were associated with a decreased risk of DKD. For DCM, higher levels of CTSB were positively associated with DCM risk. And genetically predicted higher levels of ARNTL and SREBF1 were associated with a decreased risk of NAFLD. Finally, we validated the tissue-specific expression of each complication with scRNA-seq datasets. CONCLUSIONS This study identified FRGs in relation to T2D and its complications, which may enhance the understanding of the pathogenic mechanisms of their development. Meanwhile, it offers cross-validation for imaging genomics and further indicates the direction for non-invasive diagnosis.
Collapse
Affiliation(s)
- Changqing Dong
- Department of Nephrology, National Key Laboratory of Diabetes, The Second Hospital of Jilin University, No. 991 Yatai Street, Nanguan District, Changchun, Jilin, China
| | - Wuda Huoshen
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Yunfeng Bai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Jiaona Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Bing Li
- Department of Nephrology, National Key Laboratory of Diabetes, The Second Hospital of Jilin University, No. 991 Yatai Street, Nanguan District, Changchun, Jilin, China
| | - Yucan Guan
- Department of Nephrology, National Key Laboratory of Diabetes, The Second Hospital of Jilin University, No. 991 Yatai Street, Nanguan District, Changchun, Jilin, China
| | - Ping Luo
- Department of Nephrology, National Key Laboratory of Diabetes, The Second Hospital of Jilin University, No. 991 Yatai Street, Nanguan District, Changchun, Jilin, China.
| |
Collapse
|
8
|
Li H, Zhang H, Wang T, Zhang L, Wang H, Lu H, Yang R, Ding Y. Grape Seed Proanthocyanidins Protect Pancreatic β Cells Against Ferroptosis via the Nrf2 Pathway in Type 2 Diabetes. Biol Trace Elem Res 2024; 202:5531-5544. [PMID: 38367173 PMCID: PMC11502604 DOI: 10.1007/s12011-024-04093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Pancreatic β cell damage is the primary contributor to type 2 diabetes mellitus (T2DM); however, the underlying mechanism remains nebulous. This study explored the role of ferroptosis in pancreatic β cell damage and the protective effects of grape seed proanthocyanidin extract (GSPE). In T2DM model rats, the blood glucose, water intake, urine volume, HbA1c, and homeostasis model assessment-insulin resistance were significantly increased, while the body weight and the insulin level were significantly decreased, indicating the successful establishment of the T2DM model. MIN6 mouse insulinoma β cells were cultured in high glucose and sodium palmitate conditions to obtain a glycolipid damage model, which was administered with GSPE, ferrostatin-1 (Fer-1), or nuclear factor erythroid 2-related factor 2 (Nrf2) small interfering (si) RNA. GSPE and Fer-1 treatment significantly improved pancreatic β-cell dysfunction and protected against cell death. Both treatments increased the superoxide dismutase and glutathione activity, reduced the malondialdehyde and reactive oxygen species levels, and improved iron metabolism. Furthermore, the treatments reversed the expression of ferroptosis markers cysteine/glutamate transporter (XCT) and glutathione peroxidase 4 (GPX4) caused by glycolipid toxicity. GSPE treatments activated the expression of Nrf2 and related proteins. These effects were reversed when co-transfected with si-Nrf2. GSPE inhibits ferroptosis by activating the Nrf2 signaling pathway, thus reducing β-cell damage and dysfunction in T2DM. Therefore, GSPE is a potential treatment strategy against T2DM.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Environmental Exposome, Xinjiang Medical University, No.393 Xinyi Road, Urumqi, 830011, China
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Haowei Zhang
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Tongling Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Liyuan Zhang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Hao Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Heng Lu
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Ruirui Yang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Yusong Ding
- Key Laboratory of Environmental Exposome, Xinjiang Medical University, No.393 Xinyi Road, Urumqi, 830011, China.
| |
Collapse
|
9
|
Firouzjaei AA, Mohammadi-Yeganeh S. The intricate interplay between ferroptosis and efferocytosis in cancer: unraveling novel insights and therapeutic opportunities. Front Oncol 2024; 14:1424218. [PMID: 39544291 PMCID: PMC11560889 DOI: 10.3389/fonc.2024.1424218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
The complex interplay between ferroptosis and efferocytosis in cancer has attracted significant interest recently. Efferocytosis, the process of eliminating apoptotic cells, is essential for preserving tissue homeostasis and reducing inflammation. However, dysregulation of efferocytosis can have profound effects on cancer. Apoptotic cells accumulate because of impaired efferocytosis, which triggers chronic inflammation and the release of pro-inflammatory chemicals. Surprisingly, accumulating evidence suggests that dysregulation of ferroptosis- a form of controlled cell death characterized by lipid peroxidation and the buildup iron-dependent reactive oxygen species (ROS)-can influence efferocytic activities within the tumor microenvironment. Dysfunctional iron metabolism and increased lipid peroxidation, are associated with ferroptosis, resulting in inadequate apoptotic cell clearance. Conversely, apoptotic cells can activate ferroptotic pathways, increasing oxidative stress and inducing cell death in cancer cells. This reciprocal interaction emphasizes the complex relationship between efferocytosis and ferroptosis in cancer biology. Understanding and managing the delicate balance between cell clearance and cell death pathways holds significant therapeutic potential in cancer treatment. Targeting the efferocytosis and ferroptosis pathways may offer new opportunities for improving tumor clearance, reducing inflammation, and sensitizing cancer cells to therapeutic interventions. Further research into the interaction between efferocytosis and ferroptosis in cancer will provide valuable insights for the development of novel therapies aimed at restoring tissue homeostasis and improving patient outcomes.
Collapse
|
10
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Lin J, Chen X, Du Y, Li J, Guo T, Luo S. Mitophagy in Cell Death Regulation: Insights into Mechanisms and Disease Implications. Biomolecules 2024; 14:1270. [PMID: 39456203 PMCID: PMC11506020 DOI: 10.3390/biom14101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Mitophagy, a selective form of autophagy, plays a crucial role in maintaining optimal mitochondrial populations, normal function, and intracellular homeostasis by monitoring and removing damaged or excess mitochondria. Furthermore, mitophagy promotes mitochondrial degradation via the lysosomal pathway, and not only eliminates damaged mitochondria but also regulates programmed cell death-associated genes, thus preventing cell death. The interaction between mitophagy and various forms of cell death has recently gained increasing attention in relation to the pathogenesis of clinical diseases, such as cancers and osteoarthritis, neurodegenerative, cardiovascular, and renal diseases. However, despite the abundant literature on this subject, there is a lack of understanding regarding the interaction between mitophagy and cell death. In this review, we discuss the main pathways of mitophagy, those related to cell death mechanisms (including apoptosis, ferroptosis, and pyroptosis), and the relationship between mitophagy and cell death uncovered in recent years. Our study offers potential directions for therapeutic intervention and disease diagnosis, and contributes to understanding the molecular mechanism of mitophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Sai Luo
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150000, China; (J.L.); (X.C.); (Y.D.); (J.L.); (T.G.)
| |
Collapse
|
12
|
Saedi S, Tan Y, Watson SE, Wintergerst KA, Cai L. Potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in individuals with diabetes. Front Endocrinol (Lausanne) 2024; 15:1461171. [PMID: 39415790 PMCID: PMC11479913 DOI: 10.3389/fendo.2024.1461171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes and its complications are major diseases that affect human health. Diabetic cardiovascular complications such as cardiovascular diseases (CVDs) are the major complications of diabetes, which are associated with the loss of cardiovascular cells. Pathogenically the role of ferroptosis, an iron-dependent cell death, and cuproptosis, a copper-dependent cell death has recently been receiving attention for the pathogenesis of diabetes and its cardiovascular complications. How exposure to environmental metals affects these two metal-dependent cell deaths in cardiovascular pathogenesis under diabetic and nondiabetic conditions remains largely unknown. As an omnipresent environmental metal, cadmium exposure can cause oxidative stress in the diabetic cardiomyocytes, leading to iron accumulation, glutathione depletion, lipid peroxidation, and finally exacerbate ferroptosis and disrupt the cardiac. Moreover, cadmium-induced hyperglycemia can enhance the circulation of advanced glycation end products (AGEs). Excessive AGEs in diabetes promote the upregulation of copper importer solute carrier family 31 member 1 through activating transcription factor 3/transcription factor PU.1, thereby increasing intracellular Cu+ accumulation in cardiomyocytes and disturbing Cu+ homeostasis, leading to a decline of Fe-S cluster protein and reactive oxygen species accumulation in cardiomyocytes mitochondria. In this review, we summarize the available evidence and the most recent advances exploring the underlying mechanisms of ferroptosis and cuproptosis in CVDs and diabetic cardiovascular complications, to provide critical perspectives on the potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sara E. Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
| | - Kupper A. Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
13
|
Chen H, Zhang Y, Miao Y, Song H, Tang L, Liu W, Li W, Miao J, Li X. Vitamin D inhibits ferroptosis and mitigates the kidney injury of prediabetic mice by activating the Klotho/p53 signaling pathway. Apoptosis 2024; 29:1780-1792. [PMID: 38558206 DOI: 10.1007/s10495-024-01955-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Diabetic nephropathy (DN) is a serious public health problem worldwide, and ferroptosis is deeply involved in the pathogenesis of DN. Prediabetes is a critical period in the prevention and control of diabetes and its complications, in which kidney injury occurs. This study aimed to explore whether ferroptosis would induce kidney injury in prediabetic mice, and whether vitamin D (VD) supplementation is capable of preventing kidney injury by inhibiting ferroptosis, while discussing the potential mechanisms. High-fat diet (HFD) fed KKAy mice and high glucose (HG) treated HK-2 cells were used as experimental subjects in the current study. Our results revealed that serious injury and ferroptosis take place in the kidney tissue of prediabetic mice; furthermore, VD intervention significantly improved the kidney structure and function in prediabetic mice and inhibited ferroptosis, showing ameliorated iron deposition, enhanced antioxidant capability, reduced reactive oxygen species (ROS) and lipid peroxidation accumulation. Meanwhile, VD up-regulated Klotho, solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression, and down-regulated p53, transferrin receptor 1 (TFR1) and Acyl-Coenzyme A synthetase long-chain family member 4 (ACSL4) expression. Moreover, we demonstrated that HG-induced ferroptosis is antagonized by treatment of VD and knockdown of Klotho attenuates the protective effect of VD on ferroptosis in vitro. In conclusion, ferroptosis occurs in the kidney of prediabetic mice and VD owns a protective effect on prediabetic kidney injury, possibly by via the Klotho/p53 pathway, thus inhibiting hyperglycemia-induced ferroptosis.
Collapse
Affiliation(s)
- Hao Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yujing Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yufan Miao
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hanlu Song
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lulu Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wenyi Liu
- President's Office, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jinxin Miao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
14
|
Jin B, Zhang Z, Zhang Y, Yang M, Wang C, Xu J, Zhu Y, Mi Y, Jiang J, Sun Z. Ferroptosis and myocardial ischemia-reperfusion: mechanistic insights and new therapeutic perspectives. Front Pharmacol 2024; 15:1482986. [PMID: 39411064 PMCID: PMC11473306 DOI: 10.3389/fphar.2024.1482986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a significant factor in the development of cardiac dysfunction following a myocardial infarction. Ferroptosis, a type of regulated cell death driven by iron and marked by lipid peroxidation, has garnered growing interest for its crucial involvement in the pathogenesis of MIRI.This review comprehensively examines the mechanisms of ferroptosis, focusing on its regulation through iron metabolism, lipid peroxidation, VDAC signaling, and antioxidant system dysregulation. We also compare ferroptosis with other forms of cell death to highlight its distinct characteristics. Furthermore, the involvement of ferroptosis in MIRI is examined with a focus on recent discoveries concerning ROS generation, mitochondrial impairment, autophagic processes, ER stress, and non-coding RNA regulation. Lastly, emerging therapeutic strategies that inhibit ferroptosis to mitigate MIRI are reviewed, providing new insights into potential clinical applications.
Collapse
Affiliation(s)
- Binwei Jin
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhiming Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yang Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Minjun Yang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Cheng Wang
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Cardiology, Taizhou hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Jiayi Xu
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Cardiology, Taizhou hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Yu Zhu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Yafei Mi
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Cardiology, Taizhou hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
15
|
Xia L, Yang M, Zang N, Song J, Chen J, Hu H, Wang K, Xiang Y, Yang J, Wang L, Zou Y, Lv X, Hou X, Chen L. PEGylated β-Cell-Targeting Exosomes from Mesenchymal Stem Cells Improve β Cell Function and Quantity by Suppressing NRF2-Mediated Ferroptosis. Int J Nanomedicine 2024; 19:9575-9596. [PMID: 39296939 PMCID: PMC11410040 DOI: 10.2147/ijn.s459077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Background The depletion of β cell mass is widely recognized as a significant contributor to the progression of type 2 diabetes mellitus (T2DM). Exosomes derived from mesenchymal stem cells (MSC-EXOs) hold promise as cell-free therapies for treating T2DM. However, the precise effects and mechanisms through which MSC-EXO affects β cell function remain incompletely understood, and the limited ability of MSC-EXO to target β cells and the short blood circulation time hampers its therapeutic effectiveness. Methods The effects of MSC-EXO were investigated in T2DM mice induced by a high-fat diet combined with STZ. Additionally, the high glucose-stimulated INS-1 cell line was used to investigate the potential mechanism of MSC-EXO. Michael addition reaction-mediated chemical coupling was used to modify the surface of the exosome membrane with a β-cell-targeting aptamer and polyethylene glycol (PEG). The β-cell targeting and blood circulation time were evaluated, and whether this modification enhanced the islet-protective effect of MSC-EXO was further analyzed. Results We observed that the therapeutic effects of MSC-EXO on T2DM manifested through the reduction of random blood glucose levels, enhancement of glucose and insulin tolerance, and increased insulin secretion. These effects were achieved by augmenting β cell mass via inhibiting nuclear factor erythroid 2-related factor 2 (NRF2)-mediated ferroptosis. Mechanistically, MSC-EXOs play a role in the NRF2-mediated anti-ferroptosis mechanism by transporting active proteins that are abundant in the AKT and ERK pathways. Moreover, compared to MSC-EXOs, aptamer- and PEG-modified exosomes (Apt-EXOs) were more effective in islet protection through PEG-mediated cycle prolongation and aptamer-mediated β-cell targeting. Conclusion MSC-EXO suppresses NRF2-mediated ferroptosis by delivering bioactive proteins to regulate the AKT/ERK signaling pathway, thereby improving the function and quantity of β cells. Additionally, Apt-EXO may serve as a novel drug carrier for islet-targeted therapy.
Collapse
Affiliation(s)
- Longqing Xia
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Mengmeng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Nan Zang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, People's Republic of China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, People's Republic of China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, People's Republic of China
| | - Huiqing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Kewei Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Yingyue Xiang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Jingwen Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Liming Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Xiaoyu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, People's Republic of China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, People's Republic of China
| |
Collapse
|
16
|
Zheng Y, Yang W, Wu W, Jin F, Lu D, Gao J, Wang S. Diagnostic and predictive significance of the ferroptosis-related gene TXNIP in lung adenocarcinoma stem cells based on multi-omics. Transl Oncol 2024; 45:101926. [PMID: 38615437 PMCID: PMC11033204 DOI: 10.1016/j.tranon.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Lung cancer stands as the foremost cause of cancer-related fatalities globally. The presence of cancer stem cells (CSCs) poses a challenge, rendering current targeted tumor therapies ineffective. This study endeavors to investigate a novel therapeutic approach focusing on ferroptosis and delves into the expression of ferroptosis-related genes within lung CSCs. METHODS We systematically examined RNA-seq datasets derived from lung tumor cells (LTCs) and lung cancer stem cells (LSCs), as previously investigated in our research. Our focus was on analyzing differentially expressed genes (DEGs) related to ferroptosis. Utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), we conducted functional analysis of these ferroptosis-related DEGs. Additionally, we employed protein‒protein interaction networks to identify hub genes. LC‒MS/MS analysis of LTCs and LSCs was conducted to pinpoint the crucial ferroptosis-related gene-thioredoxin-interacting protein (TXNIP).Further, we delved into the immune cell infiltration landscape of LTCs and LSCs, examining the correlation between TXNIP and lung adenocarcinoma (LUAD) using data from The Cancer Genome Atlas (TCGA) database. To complement these findings, we measured the expression levels of TXNIP, glutathione peroxidase 4(GPX4), nuclear receptor coactivator 4 (NCOA4) in LUAD tissues through immunohistochemistry (IHC) staining. RESULTS A total of 651 DEGs were identified, with 17 of them being ferroptosis-related DEGs. These seventeen genes were categorized into four groups: driver genes, suppressor genes, unclassified genes, and inducer genes. Enrichment analysis revealed significant associations with oxidative stress, cell differentiation, tissue development, and cell death processes. The RNA-seq analysis demonstrated consistent gene expression patterns with protein expression, as evidenced by mass spectrometry analysis. Among the identified genes, SFN and TXNIP were singled out as hub genes, with TXNIP showing particularly noteworthy expression. The expression of the ferroptosis-related gene TXNIP exhibited correlations with the presence of an immunosuppressive microenvironment, TNM stages, and the degree of histological differentiation.Also, the ferroptosis-markers GPX4 and NCOA4 displayed correlations with LUAD. This comprehensive analysis underscores the significance of TXNIP in the context of ferroptosis-related processes and their potential implications in cancer development and progression. CONCLUSION The investigation conducted in this study systematically delved into the role of the ferroptosis-related gene TXNIP in Lung CSCs. The identification of TXNIP as a potentially valuable biomarker in this context could have significant implications for refining prognostic assessments and optimizing therapeutic strategies for advanced lung cancer.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China.
| | - Wei Yang
- GeneMind Biosciences Company Limited, Shenzhen 518000, China
| | - Weixuan Wu
- Department of General Practice, The Second Clinical Medical College (Shenzhen People's Hospital),Jinan University, Shenzhen 518020, China
| | - Feng Jin
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Dehua Lu
- Department of Radiation Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Jing Gao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China.
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China.
| |
Collapse
|
17
|
Chen Y, Zhao W, Hu A, Lin S, Chen P, Yang B, Fan Z, Qi J, Zhang W, Gao H, Yu X, Chen H, Chen L, Wang H. Type 2 diabetic mellitus related osteoporosis: focusing on ferroptosis. J Transl Med 2024; 22:409. [PMID: 38693581 PMCID: PMC11064363 DOI: 10.1186/s12967-024-05191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
With the aging global population, type 2 diabetes mellitus (T2DM) and osteoporosis(OP) are becoming increasingly prevalent. Diabetic osteoporosis (DOP) is a metabolic bone disorder characterized by abnormal bone tissue structure and reduced bone strength in patients with diabetes. Studies have revealed a close association among diabetes, increased fracture risk, and disturbances in iron metabolism. This review explores the concept of ferroptosis, a non-apoptotic cell death process dependent on intracellular iron, focusing on its role in DOP. Iron-dependent lipid peroxidation, particularly impacting pancreatic β-cells, osteoblasts (OBs) and osteoclasts (OCs), contributes to DOP. The intricate interplay between iron dysregulation, which comprises deficiency and overload, and DOP has been discussed, emphasizing how excessive iron accumulation triggers ferroptosis in DOP. This concise overview highlights the need to understand the complex relationship between T2DM and OP, particularly ferroptosis. This review aimed to elucidate the pathogenesis of ferroptosis in DOP and provide a prospective for future research targeting interventions in the field of ferroptosis.
Collapse
Affiliation(s)
- Yili Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wen Zhao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - An Hu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Shi Lin
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Ping Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bing Yang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhirong Fan
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ji Qi
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenhui Zhang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huanhuan Gao
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiubing Yu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haiyun Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Luyuan Chen
- Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China.
| | - Haizhou Wang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Pareek N, Mendiratta S, Kalita N, Sivaramakrishnan S, Khan RS, Samanta A. Unraveling Ferroptosis Mechanisms: Tracking Cellular Viscosity with Small Molecular Fluorescent Probes. Chem Asian J 2024; 19:e202400056. [PMID: 38430218 DOI: 10.1002/asia.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Ferroptosis is a recently identified form of regulated cell death characterized by iron accumulation and lipid peroxidation. Numerous functions for ferroptosis have been identified in physiological as well as pathological processes, most notably in the treatment of cancer. The intricate balance of redox homeostasis is profoundly altered during ferroptosis, leading to alteration in cellular microenvironment. One such microenvironment is viscosity among others such as pH, polarity, and temperature. Therefore, understanding the dynamics of ferroptosis associated viscosity levels within organelles is crucial. To date, there are a very few reviews that detects ferroptosis assessing reactive species. In this review, we have summarized organelle's specific fluorescent probes that detects dynamics of microviscosity during ferroptosis. Also, we offer the readers an insight of their design strategy, photophysics and associated bioimaging concluding with the future perspective and challenges in the related field.
Collapse
Affiliation(s)
- Niharika Pareek
- Department of Chemistry, School of Natural Sciences Institution, Shiv Nadar Institution of Eminence (SNIoE), Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Sana Mendiratta
- Department of Chemistry, School of Natural Sciences Institution, Shiv Nadar Institution of Eminence (SNIoE), Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Nripankar Kalita
- Department of Chemistry, School of Natural Sciences Institution, Shiv Nadar Institution of Eminence (SNIoE), Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Shreya Sivaramakrishnan
- Department of Chemistry, School of Natural Sciences Institution, Shiv Nadar Institution of Eminence (SNIoE), Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Rafique Sanu Khan
- Department of Chemistry, School of Natural Sciences Institution, Shiv Nadar Institution of Eminence (SNIoE), Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Animesh Samanta
- Department of Chemistry, School of Natural Sciences Institution, Shiv Nadar Institution of Eminence (SNIoE), Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| |
Collapse
|
19
|
Pang H, Huang G, Xie Z, Zhou Z. The role of regulated necrosis in diabetes and its complications. J Mol Med (Berl) 2024; 102:495-505. [PMID: 38393662 DOI: 10.1007/s00109-024-02421-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
Morphologically, cell death can be divided into apoptosis and necrosis. Apoptosis, which is a type of regulated cell death, is well tolerated by the immune system and is responsible for hemostasis and cellular turnover under physiological conditions. In contrast, necrosis is defined as a form of passive cell death that leads to a dramatic inflammatory response (also referred to as necroinflammation) and causes organ dysfunction under pathological conditions. Recently, a novel form of cell death named regulated necrosis (such as necroptosis, pyroptosis, and ferroptosis) was discovered. Distinct from apoptosis, regulated necrosis is modulated by multiple internal or external factors, but meanwhile, it results in inflammation and immune response. Accumulating evidence has indicated that regulated necrosis is associated with multiple diseases, including diabetes. Diabetes is characterized by hyperglycemia caused by insulin deficiency and/or insulin resistance, and long-term high glucose leads to various diabetes-related complications. Here, we summarize the mechanisms of necroptosis, pyroptosis, and ferroptosis, and introduce recent advances in characterizing the associations between these three types of regulated necrosis and diabetes and its complications.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
20
|
Cao Y, Jin Z, Xi Y, Cheng J, Fang Z, Zhao Q, Weng J, Zhu J, Tang Y, Zhang Z, Jiang H. Roles of ferroptosis in type 1 diabetes induced spermatogenic dysfunction. Free Radic Biol Med 2024; 214:193-205. [PMID: 38369075 DOI: 10.1016/j.freeradbiomed.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Diabetes mellitus (DM) is a widespread metabolic disease presenting with various complications, including spermatogenic dysfunction. However, the underlying mechanisms are still unclear. Ferroptosis, a novel type of programmed cell death, is associated with much metabolic diseases. Here, we investigated the role of ferroptosis in spermatogenic dysfunction of streptozotocin (STZ)-induced type 1 diabetic mice (diabetic mice), high glucose (HG)-treated GC-2 cells (HG cells) as well as testicular tissues of diabetic patients. We found an accumulation of iron, elevated malondialdehyde level and reduced glutathione level in the testis tissues of diabetic mice and HG cells. Histological examination showed a decrease in spermatogenic cells and spermatids within the seminiferous tubules as well as mitochondrial shrinkage in the testis tissues of diabetic mice. Ferrostatin-1 (Fer-1), the inhibitor of ferroptosis, mitigated ferroptosis-associated iron overload, lipid peroxidation accumulation and spermatogenic dysfunction of diabetic mice. Furthermore, we observed a downregulation of GPX4, FTL and SLC7A11 in diabetic mice and HG cells. Fer-1 treatment and GPX4 overexpression counteracted the effects of HG on cell viability, reactive oxygen species, lipid peroxidation and glutathione via inhibition of ferroptosis. Moreover, we found an elevation of ferroptosis in testicular tissues of diabetic patients. Taken together, our results identify the crucial role of ferroptosis in diabetic spermatogenic dysfunction and ferroptosis may be a promising therapeutic target to improve spermatogenesis in diabetic patients.
Collapse
Affiliation(s)
- Yalei Cao
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Zirun Jin
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, Beijing, China; Department of andrology, Peking University First Hospital, Beijing, China
| | - Yu Xi
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Jianxing Cheng
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Zishui Fang
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, Beijing, China; Department of andrology, Peking University First Hospital, Beijing, China
| | - Qiancheng Zhao
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, Beijing, China; Department of andrology, Peking University First Hospital, Beijing, China
| | - Jiaming Weng
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Jun Zhu
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, Beijing, China; Department of andrology, Peking University First Hospital, Beijing, China
| | - Yanlin Tang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Zhe Zhang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.
| | - Hui Jiang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China; Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, Beijing, China; Department of andrology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
21
|
Gao Y, Mi N, Wu W, Zhao Y, Fan F, Liao W, Ming Y, Guan W, Bai C. Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis. J Extracell Vesicles 2024; 13:e12410. [PMID: 38320981 PMCID: PMC10847061 DOI: 10.1002/jev2.12410] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Extracellular vesicles (EVs) exert a significant influence not only on the pathogenesis of diseases but also on their therapeutic interventions, contingent upon the variances observed in their originating cells. Mitochondria can be transported between cells via EVs to promote pathological changes. In this study, we found that EVs derived from M1 macrophages (M1-EVs), which encapsulate inflammatory mitochondria, can penetrate pancreatic beta cells. Inflammatory mitochondria fuse with the mitochondria of pancreatic beta cells, resulting in lipid peroxidation and mitochondrial disruption. Furthermore, fragments of mitochondrial DNA (mtDNA) are released into the cytosol, activating the STING pathway and ultimately inducing apoptosis. The potential of adipose-derived stem cell (ADSC)-released EVs in suppressing M1 macrophage reactions shows promise. Subsequently, ADSC-EVs were utilized and modified with an F4/80 antibody to specifically target macrophages, aiming to treat ferroptosis of pancreatic beta cells in vivo. In summary, our data further demonstrate that EVs secreted from M1 phenotype macrophages play major roles in beta cell ferroptosis, and the modified ADSC-EVs exhibit considerable potential for development as a vehicle for targeted delivery to macrophages.
Collapse
Affiliation(s)
- Yuhua Gao
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongChina
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Ningning Mi
- College of Animal Science and Technology, College of Veterinary MedicineZhejiang A&F UniversityLin'anChina
| | - Wenxiang Wu
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongChina
| | - Yuxuan Zhao
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongChina
| | - Fangzhou Fan
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongChina
| | - Wangwei Liao
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongChina
| | - Yongliang Ming
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongChina
| | - Weijun Guan
- College of Animal Science and Technology, College of Veterinary MedicineZhejiang A&F UniversityLin'anChina
| | - Chunyu Bai
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongChina
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
22
|
do Carmo Santos ML, Santos TA, Dos Santos Lopes N, Macedo Ferreira M, Martins Alves AM, Pirovani CP, Micheli F. The selenium-independent phospholipid hydroperoxide glutathione peroxidase from Theobroma cacao (TcPHGPX) protects plant cells against damages and cell death. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108332. [PMID: 38224638 DOI: 10.1016/j.plaphy.2023.108332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/02/2023] [Accepted: 12/31/2023] [Indexed: 01/17/2024]
Abstract
Proteins from the glutathione peroxidase (GPX) family, such as GPX4 or PHGPX in animals, are extensively studied for their antioxidant functions and apoptosis inhibition. GPXs can be selenium-independent or selenium-dependent, with selenium acting as a potential cofactor for GPX activity. However, the relationship of plant GPXs to these functions remains unclear. Recent research indicated an upregulation of Theobroma cacao phospholipid hydroperoxide glutathione peroxidase gene (TcPHGPX) expression during early witches' broom disease stages, suggesting the use of antioxidant mechanisms as a plant defense strategy to reduce disease progression. Witches' broom disease, caused by the hemibiotrophic fungus Moniliophthora perniciosa, induces cell death through elicitors like MpNEP2 in advanced infection stages. In this context, in silico and in vitro analyses of TcPHGPX's physicochemical and functional characteristics may elucidate its antioxidant potential and effects against cell death, enhancing understanding of plant GPXs and informing strategies to control witches' broom disease. Results indicated TcPHGPX interaction with selenium compounds, mainly sodium selenite, but without improving the protein function. Protein-protein interaction network suggested cacao GPXs association with glutathione and thioredoxin metabolism, engaging in pathways like signaling, peroxide detection for ABA pathway components, and anthocyanin transport. Tests on tobacco cells revealed that TcPHGPX reduced cell death, associated with decreased membrane damage and H2O2 production induced by MpNEP2. This study is the first functional analysis of TcPHGPX, contributing to knowledge about plant GPXs and supporting studies for witches' broom disease control.
Collapse
Affiliation(s)
- Maria Luíza do Carmo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Taís Araújo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Natasha Dos Santos Lopes
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Monaliza Macedo Ferreira
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Akyla Maria Martins Alves
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Carlos Priminho Pirovani
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil; CIRAD, UMR AGAP, F-34398, Montpellier, France.
| |
Collapse
|
23
|
Liu P, Zhang Z, Cai Y, Li Z, Zhou Q, Chen Q. Ferroptosis: Mechanisms and role in diabetes mellitus and its complications. Ageing Res Rev 2024; 94:102201. [PMID: 38242213 DOI: 10.1016/j.arr.2024.102201] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Diabetes mellitus (DM) and its complications are major diseases that affect human health and pose a serious threat to global public health. Although the prevention and treatment of DM and its complications are constantly being revised, optimal treatment strategies remain unavailable. Further exploration of new anti-diabetic strategies is an arduous task. Revealing the pathological changes and molecular mechanisms of DM and its complications is the cornerstone for exploring new therapeutic strategies. Ferroptosis is a type of newly discovered iron-dependent regulated cell death. Notably, the role of ferroptosis in the occurrence, development, and pathogenesis of DM and its complications has gradually been revealed. Numerous studies have shown that ferroptosis plays an important role in the pathophysiology and pathogenesis of DM and its associated complications. The aim of this review is to discuss the known underlying mechanisms of ferroptosis, the relationship between ferroptosis and DM, and the relationship between ferroptosis as a mode of cell death and diabetic kidney disease, diabetic retinopathy, diabetic cardiomyopathy, diabetic osteoporosis, diabetes-associated cognitive dysfunction, DM-induced erectile dysfunction, and diabetic atherosclerosis.
Collapse
Affiliation(s)
- Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, PR China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan, PR China; Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, PR China
| | - Yichen Cai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, PR China
| | - Zhaoying Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, PR China
| | - Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, PR China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, PR China.
| |
Collapse
|
24
|
Liang J, He Y, Huang C, Ji F, Zhou X, Yin Y. The Regulation of Selenoproteins in Diabetes: A New Way to Treat Diabetes. Curr Pharm Des 2024; 30:1541-1547. [PMID: 38706350 DOI: 10.2174/0113816128302667240422110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/31/2024] [Indexed: 05/07/2024]
Abstract
Selenium is an essential micronutrient required for the synthesis and function of selenoproteins, most of which are enzymes involved in maintaining oxidative balance in the body. Diabetes is a group of metabolic disorders characterized by high blood glucose levels over a prolonged period of time. There are three main types of diabetes: type 1, type 2, and gestational diabetes. This review summarizes recent advances in the field of diabetes research with an emphasis on the roles of selenoproteins on metabolic disturbance in diabetes. We also discuss the interaction between selenoproteins and glucose and lipid metabolism to provide new insights into the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Jing Liang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Chunxia Huang
- School of Stomatology, Changsha Medical University, Changsha 410219, China
| | - Fengjie Ji
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Zhang H, Gao Y, Wang C, Huang X, Li T, Li K, Peng R, Li F, Li L, Zhang X, Yin L, Zhang S, Zhang J. NCOA4-mediated ferritinophagy aggravate intestinal oxidative stress and ferroptosis after traumatic brain injury. Biochem Biophys Res Commun 2023; 688:149065. [PMID: 37979398 DOI: 10.1016/j.bbrc.2023.09.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 11/20/2023]
Abstract
Intestinal injury caused by traumatic brain injury (TBI) seriously affects patient prognosis; however, the underlying mechanisms are unknown. Recent studies have demonstrated that ferritinophagy-mediated ferroptosis is involved in several intestinal disorders. However, uncertainty persists regarding the role of ferritinophagy-mediated ferroptosis in the intestinal damage caused by TBI. High-throughput transcriptional sequencing was used to identify the genes that were differentially expressed in the intestine after TBI. The intestinal tissues were harvested for hematoxylin and eosin staining (HE), immunofluorescence, and western blot (WB). Lipid peroxide markers and iron content in the intestines were determined using the corresponding kits. High throughput sequencing revealed that the ferroptosis signaling pathway was enriched, demonstrating that intestinal damage caused by TBI may include ferroptosis. Chiu's score, tight junction proteins, and lipid peroxide indicators demonstrated that TBI caused an intestinal mucosal injury that persisted for several days. The ferroptosis pathway-related proteins, ferritin heavy polypeptide 1 (Fth1) and glutathione peroxidase 4 (GPX4), exhibited dynamic changes. The results indicated that lipid peroxide products were markedly increased, whereas antioxidant enzymes were markedly decreased. WB analysis demonstrated that the expression levels of nuclear receptor coactivator 4 (NCOA4), LC3II/LC3I, and p62 were markedly upregulated, whereas those of GPX4 and Fth1 were markedly downregulated. In addition, ferrostatin-1 attenuates intestinal ferroptosis and injury post-TBI in vivo. Intriguingly, 3-methyladenine (3-MA) reduces intestinal ferritin decomposition, iron accumulation, and ferroptosis after TBI. Moreover, 3-MA markedly reduced intestinal apoptosis. In conclusion, NCOA4 mediated ferritinophagy and ferroptosis play roles in intestinal oxidative stress injury post-TBI. This study provides a deeper understanding of the mechanisms underlying intestinal damage following TBI.
Collapse
Affiliation(s)
- Hejun Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province, 066000, PR China
| | - Yalong Gao
- Department of Neurosurgery, Tianjin Huanhu Hospital, 6 Jizhao Road, Tianjin, 300350, PR China
| | - Cong Wang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China
| | - Xingqi Huang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China
| | - Tuo Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai, Shandong Province, 264000, PR China
| | - Kaiji Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China
| | - Ruilong Peng
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China
| | - Fanjian Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China
| | - Lei Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China
| | - Xu Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Medical College of Nankai University, Tianjin, 300000, PR China
| | - Lichuan Yin
- Characteristic Medical Center of Chinese People's Armed Police Force, PR China
| | - Shu Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China.
| | - Jianning Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China.
| |
Collapse
|
26
|
An F, Zhang J, Gao P, Xiao Z, Chang W, Song J, Wang Y, Ma H, Zhang R, Chen Z, Yan C. New insight of the pathogenesis in osteoarthritis: the intricate interplay of ferroptosis and autophagy mediated by mitophagy/chaperone-mediated autophagy. Front Cell Dev Biol 2023; 11:1297024. [PMID: 38143922 PMCID: PMC10748422 DOI: 10.3389/fcell.2023.1297024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Ferroptosis, characterized by iron accumulation and lipid peroxidation, is a form of iron-driven cell death. Mitophagy is a type of selective autophagy, where degradation of damaged mitochondria is the key mechanism for maintaining mitochondrial homeostasis. Additionally, Chaperone-mediated autophagy (CMA) is a biological process that transports individual cytoplasmic proteins to lysosomes for degradation through companion molecules such as heat shock proteins. Research has demonstrated the involvement of ferroptosis, mitophagy, and CMA in the pathological progression of Osteoarthritis (OA). Furthermore, research has indicated a significant correlation between alterations in the expression of reactive oxygen species (ROS), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factors (HIFs) and the occurrence of OA, particularly in relation to ferroptosis and mitophagy. In light of these findings, our study aims to assess the regulatory functions of ferroptosis and mitophagy/CMA in the pathogenesis of OA. Additionally, we propose a mechanism of crosstalk between ferroptosis and mitophagy, while also examining potential pharmacological interventions for targeted therapy in OA. Ultimately, our research endeavors to offer novel insights and directions for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haizhen Ma
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Rui Zhang
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhendong Chen
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
27
|
Li J, Li L, Zhang Z, Chen P, Shu H, Yang C, Chu Y, Liu J. Ferroptosis: an important player in the inflammatory response in diabetic nephropathy. Front Immunol 2023; 14:1294317. [PMID: 38111578 PMCID: PMC10725962 DOI: 10.3389/fimmu.2023.1294317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Diabetic nephropathy (DN) is a chronic inflammatory disease that affects millions of diabetic patients worldwide. The key to treating of DN is early diagnosis and prevention. Once the patient enters the clinical proteinuria stage, renal damage is difficult to reverse. Therefore, developing early treatment methods is critical. DN pathogenesis results from various factors, among which the immune response and inflammation play major roles. Ferroptosis is a newly discovered type of programmed cell death characterized by iron-dependent lipid peroxidation and excessive ROS production. Recent studies have demonstrated that inflammation activation is closely related to the occurrence and development of ferroptosis. Moreover, hyperglycemia induces iron overload, lipid peroxidation, oxidative stress, inflammation, and renal fibrosis, all of which are related to DN pathogenesis, indicating that ferroptosis plays a key role in the development of DN. Therefore, this review focuses on the regulatory mechanisms of ferroptosis, and the mutual regulatory processes involved in the occurrence and development of DN and inflammation. By discussing and analyzing the relationship between ferroptosis and inflammation in the occurrence and development of DN, we can deepen our understanding of DN pathogenesis and develop new therapeutics targeting ferroptosis or inflammation-related regulatory mechanisms for patients with DN.
Collapse
Affiliation(s)
- Jialing Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Haiying Shu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
28
|
Bao T, Zhang X, Xie W, Wang Y, Li X, Tang C, Yang Y, Sun J, Gao J, Yu T, Zhao L, Tong X. Natural compounds efficacy in complicated diabetes: A new twist impacting ferroptosis. Biomed Pharmacother 2023; 168:115544. [PMID: 37820566 DOI: 10.1016/j.biopha.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis, as a way of cell death, participates in the body's normal physiological and pathological regulation. Recent studies have shown that ferroptosis may damage glucose-stimulated islets β Insulin secretion and programmed cell death of T2DM target organs are involved in the pathogenesis of T2DM and its complications. Targeting suppression of ferroptosis with specific inhibitors may provide new therapeutic opportunities for previously untreated T2DM and its target organs. Current studies suggest that natural bioactive compounds, which are abundantly available in drugs, foods, and medicinal plants for the treatment of T2DM and its target organs, have recently received significant attention for their various biological activities and minimal toxicity, and that many natural compounds appear to have a significant role in the regulation of ferroptosis in T2DM and its target organs. Therefore, this review summarized the potential treatment strategies of natural compounds as ferroptosis inhibitors to treat T2DM and its complications, providing potential lead compounds and natural phytochemical molecular nuclei for future drug research and development to intervene in ferroptosis in T2DM.
Collapse
Affiliation(s)
- Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xiangyuan Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Ying Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Yingying Yang
- National Center for Integrated Traditional and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, No. 1478, Gongnong Road, Chaoyang District, Changchun 130021, China
| | - Jiaqi Gao
- School of Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd Ring East Roa, Chaoyang Distric, Beijing 10010, China
| | - Tongyue Yu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
29
|
Zhu B, Wei Y, Zhang M, Yang S, Tong R, Li W, Long E. Metabolic dysfunction-associated steatotic liver disease: ferroptosis related mechanisms and potential drugs. Front Pharmacol 2023; 14:1286449. [PMID: 38027027 PMCID: PMC10665502 DOI: 10.3389/fphar.2023.1286449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered a "multisystem" disease that simultaneously suffers from metabolic diseases and hepatic steatosis. Some may develop into liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Given the close connection between metabolic diseases and fatty liver, it is urgent to identify drugs that can control metabolic diseases and fatty liver as a whole and delay disease progression. Ferroptosis, characterized by iron overload and lipid peroxidation resulting from abnormal iron metabolism, is a programmed cell death mechanism. It is an important pathogenic mechanism in metabolic diseases or fatty liver, and may become a key direction for improving MASLD. In this article, we have summarized the physiological and pathological mechanisms of iron metabolism and ferroptosis, as well as the connections established between metabolic diseases and fatty liver through ferroptosis. We have also summarized MASLD therapeutic drugs and potential active substances targeting ferroptosis, in order to provide readers with new insights. At the same time, in future clinical trials involving subjects with MASLD (especially with the intervention of the therapeutic drugs), the detection of serum iron metabolism levels and ferroptosis markers in patients should be increased to further explore the efficacy of potential drugs on ferroptosis.
Collapse
Affiliation(s)
- Baoqiang Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuankui Wei
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingming Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiyu Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenyuan Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Enwu Long
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
30
|
Roohi TF, Faizan S, Parray ZA, Baig MDAI, Mehdi S, Kinattingal N, Krishna KL. Beyond Glucose: The Dual Assault of Oxidative and ER Stress in Diabetic Disorders. High Blood Press Cardiovasc Prev 2023; 30:513-531. [PMID: 38041772 DOI: 10.1007/s40292-023-00611-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Diabetes mellitus, a prevalent global health concern, is characterized by hyperglycemia. However, recent research reveals a more intricate landscape where oxidative stress and endoplasmic reticulum (ER) stress orchestrate a dual assault, profoundly impacting diabetic disorders. This review elucidates the interplay between these two stress pathways and their collective consequences on diabetes. Oxidative stress emanates from mitochondria, where reactive oxygen species (ROS) production spirals out of control, leading to cellular damage. We explore ROS-mediated signaling pathways, which trigger β-cell dysfunction, insulin resistance, and endothelial dysfunction the quintessential features of diabetes. Simultaneously, ER stress unravels, unveiling how protein folding disturbances activate the unfolded protein response (UPR). We dissect the UPR's dual role, oscillating between cellular adaptation and apoptosis, significantly influencing pancreatic β-cells and peripheral insulin-sensitive tissues. Crucially, this review exposes the synergy between oxidative and ER stress pathways. ROS-induced UPR activation and ER stress-induced oxidative stress create a detrimental feedback loop, exacerbating diabetic complications. Moreover, we spotlight promising therapeutic strategies that target both stress pathways. Antioxidants, molecular chaperones, and novel pharmacological agents offer potential avenues for diabetes management. As the global diabetes burden escalates, comprehending the dual assault of oxidative and ER stress is paramount. This review not only unveils the intricate molecular mechanisms governing diabetic pathophysiology but also advocates a holistic therapeutic approach. By addressing both stress pathways concurrently, we may forge innovative solutions for diabetic disorders, ultimately alleviating the burden of this pervasive health issue.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Zahoor Ahmad Parray
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas Campus, New Delhi, 110016, India
| | - M D Awaise Iqbal Baig
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Nabeel Kinattingal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - K L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India.
| |
Collapse
|
31
|
Sun Y, Guo LQ, Wang DG, Xing YJ, Bai YP, Zhang T, Wang W, Zhou SM, Yao XM, Cheng JH, Chang WW, Lv K, Li CX, Kong X. Metformin alleviates glucolipotoxicity-induced pancreatic β cell ferroptosis through regulation of the GPX4/ACSL4 axis. Eur J Pharmacol 2023; 956:175967. [PMID: 37549729 DOI: 10.1016/j.ejphar.2023.175967] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Ferroptosis, a new type of cell death, is associated with pancreatic β cell damage. However, the role of glucolipotoxicity in inducing β cell ferroptosis remains unclear. Metformin (Met), exenatide (Exe), and saxagliptin (Sax) are frequently used anti-hyperglycaemic drugs. However, their protective effects on β cells through ferroptosis modulation are not well-established. In this study, we observed significant ferroptosis in NIT-1 cells and primary mouse islets after exposure to high glucose and palmitate (HG/PA). Compared to Exe and Sax, Met significantly alleviated glucolipotoxicity-induced pancreatic β cell ferroptosis. Blocking the activity of glutathione peroxidase 4 (GPX4) with Ras-selective lethal 3 or inhibiting its expression by small interfering RNA transfection significantly attenuated the anti-ferroptosis effects of Met. Mechanistically, Met alleviates HG/PA-induced β cell ferroptosis by regulating the GPX4/ACSL4 axis. Collectively, our findings highlight the significance of ferroptosis in pancreatic β cell glucolipotoxicity-induced injury and provide novel insights into the protective effects of Met on islet β cells.
Collapse
Affiliation(s)
- Yue Sun
- Department of Gerontology, Geriatric Endocrinology Unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China; Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China.
| | - Li-Qun Guo
- Department of Pharmacology, Wannan Medical College, Wuhu, 241002, China.
| | - De-Guo Wang
- Department of Gerontology, Geriatric Endocrinology Unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China.
| | - Yu-Jie Xing
- Department of Gerontology, Geriatric Endocrinology Unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China; Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China.
| | - Ya-Ping Bai
- Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China; Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Teng Zhang
- Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China.
| | - Wen Wang
- Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China.
| | - Si-Min Zhou
- Department of Gerontology, Geriatric Endocrinology Unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China; Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China.
| | - Xin-Ming Yao
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China.
| | - Jin-Han Cheng
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China.
| | - Wei-Wei Chang
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China.
| | - Kun Lv
- Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China; Central Laboratory of Yijishan Hospital, Wuhu, 241001, China; Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Chun-Xiao Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Xiang Kong
- Department of Gerontology, Geriatric Endocrinology Unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China; Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China; Central Laboratory of Yijishan Hospital, Wuhu, 241001, China; Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
32
|
Markelic M, Stancic A, Saksida T, Grigorov I, Micanovic D, Velickovic K, Martinovic V, Savic N, Gudelj A, Otasevic V. Defining the ferroptotic phenotype of beta cells in type 1 diabetes and its inhibition as a potential antidiabetic strategy. Front Endocrinol (Lausanne) 2023; 14:1227498. [PMID: 37600723 PMCID: PMC10437050 DOI: 10.3389/fendo.2023.1227498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Recently, the involvement of ferroptotic cell death in the reduction of β-cell mass in diabetes has been demonstrated. To elucidate the mechanisms of β-cell ferroptosis and potential antidiabetic effects of the ferroptosis inhibitor ferrostatin-1 (Fer-1) in vivo, a mouse model of type 1 diabetes (T1D) was used. Methods Animals were divided into three groups: control (vehicle-treated), diabetic (streptozotocin-treated, 40 mg/kg, from days 1-5), and diabetic treated with Fer-1 (1 mg/kg, from days 1-21). On day 22, glycemia and insulinemia were measured and pancreases were isolated for microscopic analyses. Results Diabetes disturbed general parameters of β-cell mass (islet size, β-cell abundance and distribution) and health (insulin and PDX-1 expression), increased lipid peroxidation in islet cells, and phagocytic removal of iron-containing material. It also downregulated the main players of the antiferroptotic pathway - Nrf2, GPX4, and xCT. In contrast, Fer-1 ameliorated the signs of deterioration of β-cell/islets, decreased lipid peroxidation, and reduced phagocytic activity, while upregulated expression of Nrf2 (and its nuclear translocation), GPX4, and xCT in β-cell/islets. Discussion Overall, our study confirms ferroptosis as an important mode of β-cell death in T1D and suggests antiferroptotic agents as a promising strategy for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Milica Markelic
- Department of Cell and Tissue Biology, Faculty of Biology, University of Belgrade, Serbia
| | - Ana Stancic
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ilijana Grigorov
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dragica Micanovic
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ksenija Velickovic
- Department of Cell and Tissue Biology, Faculty of Biology, University of Belgrade, Serbia
| | - Vesna Martinovic
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nevena Savic
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andjelija Gudelj
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Otasevic
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
33
|
Shen L, Wang X, Zhai C, Chen Y. Ferroptosis: A potential therapeutic target in autoimmune disease (Review). Exp Ther Med 2023; 26:368. [PMID: 37408857 PMCID: PMC10318600 DOI: 10.3892/etm.2023.12067] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Ferroptosis is a distinct type of regulated cell death characterized by iron overload and lipid peroxidation. Ferroptosis is regulated by numerous factors and controlled by several mechanisms. This cell death type has a relationship with the immune system, which may be regulated by damage-associated molecular patterns. Ferroptosis participates in the progression of autoimmune diseases, including autoimmune hepatitis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, multiple sclerosis, Parkinson's Disease, psoriasis and insulin-dependent diabetes mellitus. The present review summarizes the role of ferroptosis in autoimmune disorders and discusses ferroptosis as a potential therapeutic target for autoimmune disease.
Collapse
Affiliation(s)
- Liang Shen
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaohan Wang
- Department of Gastroenterology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Changlin Zhai
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yunqing Chen
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
34
|
Zhirong Z, Li H, Yi L, Lichen Z, Ruiwu D. Ferroptosis in pancreatic diseases: potential opportunities and challenges that require attention. Hum Cell 2023; 36:1233-1243. [PMID: 36929283 DOI: 10.1007/s13577-023-00894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
The pancreas is an abdominal organ with both endocrine and exocrine functions, and patients with pancreatic diseases suffer tremendously. The regulated cell death of various cells in the pancreas is thought to play a key role in disease development. As one of the newly discovered regulated cell death modalities, ferroptosis has the potential for therapeutic applications in the study of multiple diseases. Ferroptosis has been observed in several pancreatic diseases, but its role in pancreatic diseases has not been systematically elucidated or reviewed. Understanding the occurrence of ferroptosis in various pancreatic diseases after damage to the different cell types is crucial in determining disease progression, evaluating targeted therapies, and predicting disease prognosis. Herein, we summarize the research progress associated with ferroptosis in four common pancreatic diseases, namely acute pancreatitis, chronic pancreatitis, pancreatic ductal adenocarcinoma, and diabetes mellitus. Furthermore, the elucidation of ferroptosis in rare pancreatic diseases may provide sociological benefits in the future.
Collapse
Affiliation(s)
- Zhao Zhirong
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Han Li
- Ultrasound Medical Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liu Yi
- School of Medicine, Jianghan University, Wuhan, 430056, Hubei, China
| | - Zhou Lichen
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Dai Ruiwu
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China.
- College of Medicine, Southwest Jiaotong University, Chengdu, China.
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| |
Collapse
|
35
|
Ma A, Feng Z, Li Y, Wu Q, Xiong H, Dong M, Cheng J, Wang Z, Yang J, Kang Y. Ferroptosis-related signature and immune infiltration characterization in acute lung injury/acute respiratory distress syndrome. Respir Res 2023; 24:154. [PMID: 37301835 DOI: 10.1186/s12931-023-02429-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/19/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the most life-threatening diseases in the intensive care unit with high mortality and morbidity. Ferroptosis is a newly discovered immune related cell death that is associated with various lung diseases. However, the role of immune-mediated ferroptosis in ALI/ARDS has not been elucidated. METHOD We analyzed two Gene Expression Omnibus (GEO) datasets (GSE2411 and GSE109913) and extracted characteristic ferroptosis-related genes (FRGs) between the control and ALI groups through bioinformatic analysis. Then, we prospectively collected bronchoalveolar lavage fluid (BALF) from patients with ARDS and verified the expression of characteristic FRGs. Lastly, we constructed the ALI/ARDS model induced by LPS and isolated the primary neutrophils of mice. Erastin, an ferroptosis inducer, was used at the cellular level to verify the effect of neutrophils on ferroptosis in lung epithelium cells. RESULT We identified three characteristic FRGs, Cp, Slc39a14 and Slc7a11, by analyzing two gene expression profiling datasets. Immune infiltration analysis showed that the three characteristic genes were significantly positively correlated with the infiltration levels of neutrophils. We collected BALF from 59 ARDS patients to verify the expression of Cp, Slc7a11 and Slc39a14 in humans. The results showed that Cp was elevated in patients with severe ARDS (p = 0.019), Slc7a11 was significantly elevated in patients with moderate ARDS (p = 0.021) relative to patients with mild ARDS. The levels of neutrophils in the peripheral blood of ARDS patients were positively correlated with the expression levels of Slc7a11 (Pearson's R2 = 0.086, p = 0.033). Three characteristic FRGs were significantly activated after the onset of ferroptosis (6 h) early in LPS induced ALI model, and that ferroptosis was alleviated after the organism compensated within 12 to 48 h. We extracted primary activated neutrophils from mice and co-cultured them with MLE-12 in transwell, Slc7a11, Cp and Slc39a14 in MLE-12 cells were significantly upregulated as the number of neutrophils increased. The results showed that neutrophil infiltration alleviated erastin-induced MDA accumulation, GSH depletion, and divalent iron accumulation, accompanied by upregulation of Slc7a11 and Gpx4, implying the existence of a compensatory effect of lipid oxidation in neutrophils after acute lung injury in the organism. CONCLUSION We identified three immune-mediated ferroptosis genes, namely, Cp, Slc7a11 and Slc39a14, which possibly regulated by neutrophils during the development of ALI, and their pathways may be involved in anti-oxidative stress and anti-lipid metabolism. Thus, the present study contributes to the understanding of ALI/ARDS and provide novel targets for future immunotherapeutic.
Collapse
Affiliation(s)
- Aijia Ma
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zhongxue Feng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yang Li
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qin Wu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Huaiyu Xiong
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Meiling Dong
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Jiangli Cheng
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zhenling Wang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
36
|
Prasad MK, Mohandas S, Ramkumar KM. Dysfunctions, molecular mechanisms, and therapeutic strategies of pancreatic β-cells in diabetes. Apoptosis 2023:10.1007/s10495-023-01854-0. [PMID: 37273039 DOI: 10.1007/s10495-023-01854-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/06/2023]
Abstract
Pancreatic beta-cell death has been established as a critical mediator in the progression of type 1 and type 2 diabetes mellitus. Beta-cell death is associated with exacerbating hyperglycemia and insulin resistance and paves the way for the progression of DM and its complications. Apoptosis has been considered the primary mechanism of beta-cell death in diabetes. However, recent pieces of evidence have implicated the substantial involvement of several other novel modes of cell death, including autophagy, pyroptosis, necroptosis, and ferroptosis. These distinct mechanisms are characterized by their unique biochemical features and often precipitate damage through the induction of cellular stressors, including endoplasmic reticulum stress, oxidative stress, and inflammation. Experimental studies were identified from PubMed literature on different modes of beta cell death during the onset of diabetes mellitus. This review summarizes current knowledge on the crucial pathways implicated in pancreatic beta cell death. The article also focuses on applying natural compounds as potential treatment strategies in inhibiting these cell death pathways.
Collapse
Affiliation(s)
- Murali Krishna Prasad
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
37
|
Zhou Z, Li J, Zhang X. Natural Flavonoids and Ferroptosis: Potential Therapeutic Opportunities for Human Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37027486 DOI: 10.1021/acs.jafc.2c08128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Flavonoids are a class of bioactive phytochemicals containing a core 2-phenylchromone skeleton and are widely found in fruits, vegetables, and herbs. Such natural compounds have gained significant attention due to their various health benefits. Ferroptosis is a recently discovered unique iron-dependent mode of cell death. Unlike traditional regulated cell death (RCD), ferroptosis is associated with excessive lipid peroxidation on cellular membranes. Accumulating evidence suggests that this form of RCD is involved in a variety of physiological and pathological processes. Notably, multiple flavonoids have been shown to be effective in preventing and treating diverse human diseases by regulating ferroptosis. In this review, we introduce the key molecular mechanisms of ferroptosis, including iron metabolism, lipid metabolism, and several major antioxidant systems. Additionally, we summarize the promising flavonoids targeting ferroptosis, which provides novel ideas for the management of diseases such as cancer, acute liver injury, neurodegenerative diseases, and ischemia/reperfusion (I/R) injury.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Jiye Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiaochuan Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
38
|
Dludla PV, Mabhida SE, Ziqubu K, Nkambule BB, Mazibuko-Mbeje SE, Hanser S, Basson AK, Pheiffer C, Kengne AP. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World J Diabetes 2023; 14:130-146. [PMID: 37035220 PMCID: PMC10075035 DOI: 10.4239/wjd.v14.i3.130] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Insulin resistance and pancreatic β-cell dysfunction are major pathological mechanisms implicated in the development and progression of type 2 diabetes (T2D). Beyond the detrimental effects of insulin resistance, inflammation and oxidative stress have emerged as critical features of T2D that define β-cell dysfunction. Predominant markers of inflammation such as C-reactive protein, tumor necrosis factor alpha, and interleukin-1β are consistently associated with β-cell failure in preclinical models and in people with T2D. Similarly, important markers of oxidative stress, such as increased reactive oxygen species and depleted intracellular antioxidants, are consistent with pancreatic β-cell damage in conditions of T2D. Such effects illustrate a pathological relationship between an abnormal inflammatory response and generation of oxidative stress during the progression of T2D. The current review explores preclinical and clinical research on the patho-logical implications of inflammation and oxidative stress during the development of β-cell dysfunction in T2D. Moreover, important molecular mechanisms and relevant biomarkers involved in this process are discussed to divulge a pathological link between inflammation and oxidative stress during β-cell failure in T2D. Underpinning the clinical relevance of the review, a systematic analysis of evidence from randomized controlled trials is covered, on the potential therapeutic effects of some commonly used antidiabetic agents in modulating inflammatory makers to improve β-cell function.
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Sihle E Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | | | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga 0727, South Africa
| | - Albert Kotze Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
| | - Andre Pascal Kengne
- Department of Medicine, University of Cape Town, Cape Town 7500, South Africa
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| |
Collapse
|
39
|
Bao L, Jin Y, Han J, Wang W, Qian L, Wu W. Berberine Regulates GPX4 to Inhibit Ferroptosis of Islet β Cells. PLANTA MEDICA 2023; 89:254-261. [PMID: 36351441 DOI: 10.1055/a-1939-7417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferroptosis, as a kind of non-apoptotic cell death, is involved in the pathogenesis of type 1 diabetes mellitus (T1DM). Islet B cells mainly produce insulin that is used to treat diabetes. Berberine (BBR) can ameliorate type 2 diabetes and insulin resistance in many ways. However, a few clues concerning the mechanism of BBR regulating ferroptosis of islet β cells in T1DM have been detected so far. We measured the effects of BBR and GPX4 on islet β cell viability and proliferation by MTT and colony formation assays. Western blot and qRT-PCR were utilized to examine GPX4 expression in islet β cells with distinct treatments. The influence of BBR and GPX4 on ferroptosis of islet β cells was investigated by evaluating the content of Fe2+ and reactive oxygen species (ROS) in cells. The mechanism of BBR targeting GPX4 to inhibit ferroptosis of islet β cells was further revealed by the rescue experiment. Our results showed that BBR and overexpression of GPX4 could notably accelerate cell viability and the proliferative abilities of islet β cells. Moreover, BBR stimulated GPX4 expression to reduce the content of Fe2+ and ROS, thereby repressing the ferroptosis of islet β cells, which functioned similarly as ferroptosis inhibitor Fer-1. In conclusion, BBR suppressed ferroptosis of islet β cells via promoting GPX4 expression, providing new insights into the mechanism of BBR for islet β cells.
Collapse
Affiliation(s)
- Lei Bao
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu Province, China
| | - Yixuan Jin
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu Province, China
| | - Jiani Han
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu Province, China
| | - Wanqiu Wang
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu Province, China
| | - Lingling Qian
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu Province, China
| | - Weiming Wu
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu Province, China
| |
Collapse
|
40
|
Delghingaro-Augusto V, Hosaka A, Estaphan S, Richardson A, Dahlstrom JE, Nolan CJ. High Dietary Iron in Western Diet-Fed Male Rats Causes Pancreatic Islet Injury and Acute Pancreatitis. J Nutr 2023; 153:723-732. [PMID: 36931751 DOI: 10.1016/j.tjnut.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND High dietary iron has been linked to an increased type 2 diabetes risk. We have previously shown that intrauterine growth restriction (IUGR) and feeding a Western diet (WD) to male Sprague-Dawley rats independently, as well as together, cause pancreatic islet inflammation, fibrosis, and hemosiderosis. OBJECTIVES To investigate whether iron has a role in the pathogenesis of this inflammatory islet injury caused by IUGR and WD intake. METHODS Male Sprague-Dawley offspring of bilateral uterine artery ligated (IUGR) and sham-operated (Sham) dams, fostered to nonoperated dams, were fed a WD [45% sucrose, 19.4% protein and 23% fat (w/w)] containing low iron (LI, 20 mg/kg) or high iron (HI, 500 mg/kg) from weaning. Four groups were studied: Sham-LI, Sham-HI, IUGR-LI, and IUGR-HI. Serial measurements of rat body weight, blood glucose, lipids and insulin, an intraperitoneal glucose tolerance test (age 13 wk), and histological analysis of pancreas and liver (age 14 wk) were recorded. The effects of iron, IUGR, and their interaction, on these measurements have been analyzed. RESULTS WD with HI compared with LI caused an 11% greater weight gain by age 14 wk (P < 0.001), impaired glucose tolerance [AUC for glucose (G-AUC) 17% higher; P < 0.001), acute pancreatitis (17/18, HI; 6/17, LI; P < 0.001), pancreas-associated fat necrosis and saponification (7/18, HI; 0/17 LI; P < 0.01), and a trend to islet fibrotic injury (7/18, HI; 1/17 LI; P = 0.051). Although pancreatic and hepatic steatosis was evident in almost all WD-fed rats, pancreatic and hepatic iron accumulation was prevalent only in HI-fed rats (P < 0.0001 for both), being only mild in the livers. IUGR, independent of dietary iron, also caused impairment in glucose tolerance (G-AUC: 17% higher; P < 0.05). CONCLUSIONS A postweaning WD containing HI, independent of IUGR, causes acute pancreatitis and islet injury in Sprague-Dawley rats suggesting a role of dietary iron in the development of steatopancreatitis.
Collapse
Affiliation(s)
- Viviane Delghingaro-Augusto
- Australian National University Medical School, Australian National University, Canberra, Australia; Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | - Ayumi Hosaka
- Faculty of Veterinary Science, University of Sydney, Camperdown, Australia; Pre-Clinical Research Services and Education, The Canberra Hospital, Garran, Australia
| | - Suzanne Estaphan
- Australian National University Medical School, Australian National University, Canberra, Australia
| | - Alice Richardson
- Statistical Support Network, Australian National University, Canberra, Australia
| | - Jane E Dahlstrom
- Australian National University Medical School, Australian National University, Canberra, Australia; Department of Anatomical Pathology, ACT Pathology, The Canberra Hospital, Australia
| | - Christopher J Nolan
- Australian National University Medical School, Australian National University, Canberra, Australia; Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia; Department of Endocrinology, The Canberra Hospital, Garran, Australia
| |
Collapse
|
41
|
Feng J, Li Y, He F, Zhang F. RBM15 silencing promotes ferroptosis by regulating the TGF-β/Smad2 pathway in lung cancer. ENVIRONMENTAL TOXICOLOGY 2023; 38:950-961. [PMID: 36715115 DOI: 10.1002/tox.23741] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE We assessed the function and mechanism of RNA binding motif protein 15 (RBM15) silencing in lung cancer development. METHODS The effects of RBM15 knockdown on A549 and H1299 cells were evaluated by MTT, EdU, wound healing, and transwell assay. We then detected the functions of RBM15 silencing on lipid peroxidation, labile iron pool (LIP), ferrous iron (Fe2+ ), and ferroptosis-related genes. RNA sequencing was performed after RBM15 knockout in lung cancer cells, followed by differentially expressed genes (DEGs), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. Finally, the expression of RBM15 and pathway-related genes was determined by western blot. RESULTS RBM15 was highly expressed in lung cancer cells. RBM15 silencing reduced the viability, inhibited cell proliferation, invasion, and migration, and suppressed tumor growth in the xenograft mouse model. Knockout of RBM15 regulated ferroptosis-related gene expression. LIP, Fe2+ , and lipid peroxidation were distinctly increased by the knockout of RBM15. RNA-seq sequencing revealed that there are 367 up-regulated and 368 down-regulated DEGs, which were enriched in molecular functions, biological processes, and cellular components. RBM15 silencing reduced the expression of TGF-β/Smad2, and TGF-β activator (SRI-011381) reversed the inhibitory effect of RBM15 silencing on tumor cell growth. CONCLUSION We demonstrated that RBM15 silencing promoted ferroptosis in lung cancer cells by TGF-β/Smad2 pathway, thereby inhibiting lung cancer cell growth, which may provide new light for lung cancer treatment.
Collapse
Affiliation(s)
- Jing Feng
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Yaling Li
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Fen He
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Fuwei Zhang
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| |
Collapse
|
42
|
Wang Y, Xia S. Relationship Between ACSL4-Mediated Ferroptosis and Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:99-111. [PMID: 36817367 PMCID: PMC9930680 DOI: 10.2147/copd.s391129] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/11/2023] [Indexed: 02/12/2023] Open
Abstract
Purpose Although cigarette smoke exposure is the major risk factor for chronic obstructive pulmonary disease (COPD), the mechanism is not completely understood. The aim of the present study was to investigate whether ACSL4-mediated ferroptosis in lung epithelial cells plays a part in the COPD development process and its association. Patients and Methods In this study, animal and cell models of COPD were modelled using cigarette smoke extracts (CSEs), and cell viability, lipid ROS, iron ion deposition, and ferroptosis-related markers were measured in lung tissue and lung epithelial cells following CSE exposure. Morphological changes in mitochondria were observed in lung tissue and epithelial cells of the lung by transmission electron microscope. The expression levels of ACSL4 mRNA and protein in lung tissue and epithelial cells were measured by real-time PCR and Western blotting. In addition, animal-interfering lentivirus and cell-interfering RNA against ACSL4 were constructed in this study, ferroptosis in lung tissue and lung epithelial cells after ACSL4 interference was detected, and ACSL4 mRNA and protein expression levels were detected. Results CSE induced ferroptosis in lung tissues and lung epithelial cells, and the expression levels of ACSL4 were elevated in CSE-treated lung tissues and lung epithelial cells. After ACSL4 interference, the expression of ACSL4 decreased, mitochondrial morphology was restored, and ferroptosis in lung tissues and lung epithelial cells was alleviated. Both respiratory frequency and enhanced pause of COPD mice models decreased after ACSL4 interference. Conclusion ACSL4-mediated ferroptosis in lung epithelial cells is associated with COPD and positively correlated with ferroptosis in epithelial cells.
Collapse
Affiliation(s)
- Yingxi Wang
- Graduate School, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Shuyue Xia
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, People’s Republic of China,Correspondence: Shuyue Xia, Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110075, People’s Republic of China, Tel/Fax +86-24-85715588, Email
| |
Collapse
|
43
|
Abstract
High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.
Collapse
Affiliation(s)
- Alexandria V Harrison
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
| | - Felipe Ramos Lorenzo
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| | - Donald A McClain
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| |
Collapse
|
44
|
Marrano N, Biondi G, Borrelli A, Rella M, Zambetta T, Di Gioia L, Caporusso M, Logroscino G, Perrini S, Giorgino F, Natalicchio A. Type 2 Diabetes and Alzheimer's Disease: The Emerging Role of Cellular Lipotoxicity. Biomolecules 2023; 13:183. [PMID: 36671568 PMCID: PMC9855893 DOI: 10.3390/biom13010183] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Type 2 diabetes (T2D) and Alzheimer's diseases (AD) represent major health issues that have reached alarming levels in the last decades. Although growing evidence demonstrates that AD is a significant comorbidity of T2D, and there is a ~1.4-2-fold increase in the risk of developing AD among T2D patients, the involvement of possible common triggers in the pathogenesis of these two diseases remains largely unknown. Of note, recent mechanistic insights suggest that lipotoxicity could represent the missing ring in the pathogenetic mechanisms linking T2D to AD. Indeed, obesity, which represents the main cause of lipotoxicity, has been recognized as a major risk factor for both pathological conditions. Lipotoxicity can lead to inflammation, insulin resistance, oxidative stress, ceramide and amyloid accumulation, endoplasmic reticulum stress, ferroptosis, and autophagy, which are shared biological events in the pathogenesis of T2D and AD. In the current review, we try to provide a critical and comprehensive view of the common molecular pathways activated by lipotoxicity in T2D and AD, attempting to summarize how these mechanisms can drive future research and open the way to new therapeutic perspectives.
Collapse
Affiliation(s)
- Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Borrelli
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Martina Rella
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Tommaso Zambetta
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ludovico Di Gioia
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mariangela Caporusso
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giancarlo Logroscino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione Cardinale G. Panico, 73039 Lecce, Italy
| | - Sebastio Perrini
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
45
|
Sun H, Chen D, Xin W, Ren L, LI Q, Han X. Targeting ferroptosis as a promising therapeutic strategy to treat cardiomyopathy. Front Pharmacol 2023; 14:1146651. [PMID: 37138856 PMCID: PMC10150641 DOI: 10.3389/fphar.2023.1146651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Cardiomyopathies are a clinically heterogeneous group of cardiac diseases characterized by heart muscle damage, resulting in myocardium disorders, diminished cardiac function, heart failure, and even sudden cardiac death. The molecular mechanisms underlying the damage to cardiomyocytes remain unclear. Emerging studies have demonstrated that ferroptosis, an iron-dependent non-apoptotic regulated form of cell death characterized by iron dyshomeostasis and lipid peroxidation, contributes to the development of ischemic cardiomyopathy, diabetic cardiomyopathy, doxorubicin-induced cardiomyopathy, and septic cardiomyopathy. Numerous compounds have exerted potential therapeutic effects on cardiomyopathies by inhibiting ferroptosis. In this review, we summarize the core mechanism by which ferroptosis leads to the development of these cardiomyopathies. We emphasize the emerging types of therapeutic compounds that can inhibit ferroptosis and delineate their beneficial effects in treating cardiomyopathies. This review suggests that inhibiting ferroptosis pharmacologically may be a potential therapeutic strategy for cardiomyopathy treatment.
Collapse
Affiliation(s)
- Huiyan Sun
- Health Science Center, Chifeng University, Chifeng, China
- Key Laboratory of Human Genetic Diseases in Inner Mongolia, Chifeng, China
| | - Dandan Chen
- Department of Endocrinology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Wenjing Xin
- Chifeng Clinical Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Lixue Ren
- Chifeng Clinical Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Qiang LI
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
- *Correspondence: Qiang LI, ; Xuchen Han,
| | - Xuchen Han
- Department of Cardiology, The Affiliated Hospital of Chifeng University, Chifeng, China
- *Correspondence: Qiang LI, ; Xuchen Han,
| |
Collapse
|
46
|
Deng L, Mo MQ, Zhong J, Li Z, Li G, Liang Y. Iron overload induces islet β cell ferroptosis by activating ASK1/P-P38/CHOP signaling pathway. PeerJ 2023; 11:e15206. [PMID: 37090106 PMCID: PMC10120586 DOI: 10.7717/peerj.15206] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/19/2023] [Indexed: 04/25/2023] Open
Abstract
Background Recent studies have shown that the accumulation of free iron and lipid peroxides will trigger a new form of cell death-ferroptosis. This form of cell death is associated with a variety of diseases, including type 2 diabetes. We hypothesize that iron overload may play a role in driving glucose metabolism abnormalities by inducing endoplasmic reticulum stress that mediates ferroptosis in islet β cells. In this study, we tested this conjecture from in vivo and in vitro experiments. Methods We established a mouse iron overload model by intraperitoneal injection of iron dextrose (50 mg/kg) and an iron overload cell model by treating MIN6 cells with ferric ammonium citrate (640 μmol/L, 48 h) in vitro. The iron deposition in pancreatic tissue was observed by Prussian blue staining, and the pathological changes in pancreatic tissues by HE staining and the protein expression level by pancreatic immunohistochemistry. In the cellular experiments, we detected the cell viability by CCK8 and observed the cellular ultrastructure by transmission electron microscopy. We also used MDA and ROS kits to detect the level of oxidative stress and lipid peroxidation in cells. Western blotting was performed to detect the expression levels of target proteins. Results Iron overload induces MIN6 cell dysfunction, leading to increased fasting blood glucose, impaired glucose tolerance, and significantly decreased insulin sensitivity in mice. This process may be related to the ferroptosis of islet β cells and the activation of ASK1/P-P38/CHOP signaling pathway.
Collapse
Affiliation(s)
- Ling Deng
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Man-Qiu Mo
- Department of Geriatric Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinling Zhong
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengming Li
- Department of Endocrinology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guoqiao Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuzhen Liang
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
47
|
Liu X, Yang Q, Sui Y, Yue Q, Yan S, Li C, Hong M. Monitoring and Regulating Intracellular GPX4 mRNA Using Gold Nanoflare Probes and Enhancing Erastin-Induced Ferroptosis. BIOSENSORS 2022; 12:1178. [PMID: 36551145 PMCID: PMC9776005 DOI: 10.3390/bios12121178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Glutathione peroxidase 4 (GPX4) plays an important effect on ferroptosis. Down-regulating the expression of GPX4 mRNA can decrease the content of GPX4. In this work, a gold nanoflare (AuNF) probe loaded with anti-sense sequences targeting for GPX4 mRNA was designed to monitor and down-regulate intracellular GPX4 mRNA using fluorescence imaging in situ and using anti-sense technology. The results revealed that there was a marked difference for the expression of GPX4 mRNA in different cell lines, and the survival rate of cancer cells was not significantly effected when the relative mRNA and protein expression levels of GPX4 was down-regulated by AuNF probes. However, when co-treated with AuNF probes, the low expression of GPX4 strengthened erastin-induced ferroptosis, and this synergy showed a better effect on inhibiting the proliferation of cancer cells.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Qiangqiang Yang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yanan Sui
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Shuqing Yan
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Chuan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
- Shandong Harway Pharma Co., Ltd., Dongying 257000, China
| |
Collapse
|
48
|
Wang S, Zheng Y, Jin S, Fu Y, Liu Y. Dioscin Protects against Cisplatin-Induced Acute Kidney Injury by Reducing Ferroptosis and Apoptosis through Activating Nrf2/HO-1 Signaling. Antioxidants (Basel) 2022; 11:antiox11122443. [PMID: 36552651 PMCID: PMC9774127 DOI: 10.3390/antiox11122443] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality worldwide, and there is currently no effective means to prevent it. Dioscin is naturally present in the dioscoreaceae plants and has antioxidant and anti-inflammatory effects. Here, we found that dioscin is protective against cisplatin-induced AKI. Pathological and ultrastructural observations revealed that dioscin reduced renal tissue lesions and mitochondrial damage. Furthermore, dioscin markedly suppressed reactive oxygen species and malondialdehyde levels in the kidneys of AKI rats and increased the contents of glutathione and catalase. In addition, dioscin dramatically reduced the number of apoptotic cells and the expression of pro-apoptotic proteins in rat kidneys and human renal tubular epithelial cells (HK2). Conversely, the protein levels of anti-ferroptosis including GPX4 and FSP1 in vivo and in vitro were significantly enhanced after dioscin treatment. Mechanistically, dioscin promotes the entry of Nrf2 into the nucleus and regulates the expression of downstream HO-1 to exert renal protection. However, the nephroprotective effect of dioscin was weakened after inhibiting Nrf2 in vitro and in vivo. In conclusion, dioscin exerts a reno-protective effect by decreasing renal oxidative injury, apoptosis and ferroptosis through the Nrf2/HO-1 signaling pathway, providing a new insight into AKI prevention.
Collapse
Affiliation(s)
- Shuang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yingce Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yunwei Fu
- Northeast Agricultural University Animal Hospital, Harbin 150030, China
- Heilongjiang Province Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Province Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Correspondence:
| |
Collapse
|
49
|
Ye S, Lin R, Guo X, Xing J, Liu K, Yang W, Guo N. Bioinformatics analysis on the expression of GPX family in gastric cancer and its correlation with the prognosis of gastric cancer. Heliyon 2022; 8:e12214. [PMID: 36636221 PMCID: PMC9830173 DOI: 10.1016/j.heliyon.2022.e12214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers of the digestive tract, with the fifth-highest incidence and third highest mortality rate in the world. Methods In this study, the Kaplan-Meier Plotter database was used to analyze the correlation between the expression of the glutathione peroxidase (GPX) family and the clinical prognosis of gastric cancer (GC). The prognostic value of increased GPX family mRNA expression in GC patients in different clinical stages, with different differentiation degrees, in different genders and human epidermal growth factor receptor-2 (HER2) status, and treated with different therapeutic regimens was also studied. Results The results showed that with the increase of GPX1 and GPX2 mRNA low expression levels, the overall survival (OS) of gastric cancer patients was longer. However, when the high expression levels of GPX3, GPX5 and GPX6 mRNA increased, gastric cancer patients presented good OS, while the increase of GPX4 mRNA expression level had no significant correlation with OS in gastric cancer patients. Conclusion The results of this study are expected to provide a reliable basis for the clinical treatment of GC and lay a foundation for the development of a novel GC treatment approach.
Collapse
Affiliation(s)
- Siping Ye
- School of Pharmacy, Beihua University, Jilin 132012, China
| | - Rui Lin
- School of Pharmacy, Beihua University, Jilin 132012, China
| | - Xiao Guo
- School of Pharmacy, Beihua University, Jilin 132012, China,Gongqing Institute of Science and Technology, Jiujiang 332020, China,Corresponding author.
| | - Jiaying Xing
- School of Pharmacy, Beihua University, Jilin 132012, China
| | - Keyi Liu
- School of Pharmacy, Beihua University, Jilin 132012, China
| | - Wenchuang Yang
- School of Pharmacy, Beihua University, Jilin 132012, China
| | - Naiyuan Guo
- School of Pharmacy, Beihua University, Jilin 132012, China
| |
Collapse
|
50
|
Prasad M K, Mohandas S, Kunka Mohanram R. Role of ferroptosis inhibitors in the management of diabetes. Biofactors 2022; 49:270-296. [PMID: 36468443 DOI: 10.1002/biof.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Ferroptosis, the iron-dependent, lipid peroxide-mediated cell death, has garnered attention due to its critical involvement in crucial physiological and pathological cellular processes. Indeed, several studies have attributed its role in developing a range of disorders, including diabetes. As accumulating evidence further the understanding of ferroptotic mechanisms, the impact this specialized mode of cell death has on diabetic pathogenesis is still unclear. Several in vivo and in vitro studies have highlighted the association of ferroptosis with beta-cell death and insulin resistance, supported by observations of marked alterations in ferroptotic markers in experimental diabetes models. The constant improvement in understanding ferroptosis in diabetes has demonstrated it as a potential therapeutic target in diabetic management. In this regard, ferroptosis inhibitors promise to rescue pancreatic beta-cell function and alleviate diabetes and its complications. This review article elucidates the key ferroptotic pathways that mediate beta-cell death in diabetes, and its complications. In particular, we share our insight into the cross talk between ferroptosis and other hallmark pathogenic mediators such as oxidative and endoplasmic reticulum stress regulators relevant to diabetes progression. Further, we extensively summarize the recent developments on the role of ferroptosis inhibitors and their therapeutic action in alleviating diabetes and its complications.
Collapse
Affiliation(s)
- Krishna Prasad M
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ramkumar Kunka Mohanram
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|