1
|
Stone SH, Rathmell JC, Bader JE. Macrophages make "sense" of obesity-driven acidity in the TME. Cell Chem Biol 2024; 31:2021-2023. [PMID: 39706167 DOI: 10.1016/j.chembiol.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024]
Abstract
Obesity is a leading risk factor and a negative prognostic indicator for many cancers. In a recent issue of Science Immunology, Bagchi et al. identified that tumor-associated macrophages upregulate GPR65 in response to obesity-driven intratumor acidity resulting in reduced effector function to promote tumor growth.1.
Collapse
Affiliation(s)
- Spenser H Stone
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jackie E Bader
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Shahgoli VK, Noorolyai S, Ahmadpour Youshanlui M, Saeidi H, Nasiri H, Mansoori B, Holmskov U, Baradaran B. Inflammatory bowel disease, colitis, and cancer: unmasking the chronic inflammation link. Int J Colorectal Dis 2024; 39:173. [PMID: 39465427 PMCID: PMC11513726 DOI: 10.1007/s00384-024-04748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Chronic inflammation is a significant driver in the development of various diseases, including cancer. Colitis-associated colorectal cancer (CA-CRC) refers to the increased risk of colorectal cancer in individuals with chronic inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease. METHODS This narrative review examines the link between chronic inflammation and CA-CRC. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science, focusing on studies published between 2000 and 2024. Studies were selected based on relevance to the role of inflammation in CA-CRC, specifically targeting molecular pathways and clinical implications. Both clinical and mechanistic studies were reviewed. CONCLUSION Sustained inflammation in the colon fosters a pro-tumorigenic environment, leading to the initiation and progression of CA-CRC. Prevention strategies must focus on controlling chronic inflammation, optimizing IBD management, and implementing regular screenings. Emerging therapies targeting key inflammatory pathways and immune responses, along with microbiome modulation, hold promise for reducing CA-CRC risk. Understanding these molecular mechanisms provides a path toward personalized treatment and better outcomes for patients with IBD at risk of colorectal cancer.
Collapse
Affiliation(s)
- Vahid Khaze Shahgoli
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Saeed Noorolyai
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Saeidi
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Uffe Holmskov
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Baradaran
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Keifi Bajestani A, Alavi MS, Etemad L, Roohbakhsh A. Role of orphan G-protein coupled receptors in tissue ischemia: A comprehensive review. Eur J Pharmacol 2024; 978:176762. [PMID: 38906238 DOI: 10.1016/j.ejphar.2024.176762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Ischemic events lead to many diseases and deaths worldwide. Ischemia/reperfusion (I/R) occurs due to reduced blood circulation in tissues followed by blood reflow. Reoxygenation of ischemic tissues is characterized by oxidative stress, inflammation, energy distress, and endoplasmic reticulum stress. There are still no adequate clinical protocols or pharmacological approaches to address the consequences of I/R damage. G protein-coupled receptors (GPCRs) are important therapeutic targets. They compose a large family of seven transmembrane-spanning proteins that are involved in many biological functions. Orphan GPCRs are a large subgroup of these receptors expressed in different organs. In the present review, we summarized the literature regarding the role of orphan GPCRs in I/R in different organs. We focused on the effect of these receptors on modulating cellular and molecular processes underlying ischemia including apoptosis, inflammation, and autophagy. The study showed that GPR3, GPR4, GPR17, GPR30, GPR31, GPR35, GPR37, GPR39, GPR55, GPR65, GPR68, GPR75, GPR81, and GPR91 are involved in ischemic events, mainly in the brain and heart. These receptors offer new possibilities for treating I/R injuries in the body.
Collapse
Affiliation(s)
- Alireza Keifi Bajestani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes (Basel) 2024; 15:1151. [PMID: 39336742 PMCID: PMC11431078 DOI: 10.3390/genes15091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The precise regulation of pH homeostasis is crucial for normal physiology. However, in tissue microenvironments, it can be impacted by pathological conditions such as inflammation and cancer. Due to the overproduction and accumulation of acids (protons), the extracellular pH is characteristically more acidic in inflamed tissues and tumors in comparison to normal tissues. A family of proton-sensing G-protein-coupled receptors (GPCRs) has been identified as molecular sensors for cells responding to acidic tissue microenvironments. Herein, we review the current research progress pertaining to these proton-sensing GPCRs, including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), in inflammation and cancer. Growing evidence suggests that GPR4 and GPR68 are mainly pro-inflammatory, whereas GPR65 is primarily anti-inflammatory, in various inflammatory disorders. Both anti- and pro-tumorigenic effects have been reported for this family of receptors. Moreover, antagonists and agonists targeting proton-sensing GPCRs have been developed and evaluated in preclinical models. Further research is warranted to better understand the roles of these proton-sensing GPCRs in pathophysiology and is required in order to exploit them as potential therapeutic targets for disease treatment.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
5
|
Abdelmaksoud NM, Abulsoud AI, Abdelghany TM, Elshaer SS, Rizk SM, Senousy MA, Maurice NW. Uncovering SIRT3 and SHMT2-dependent pathways as novel targets for apigenin in modulating colorectal cancer: In vitro and in vivo studies. Exp Cell Res 2024; 441:114150. [PMID: 38971519 DOI: 10.1016/j.yexcr.2024.114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Despite significant advances in the treatment of colorectal cancer (CRC), identification of novel targets and treatment options are imperative for improving its prognosis and survival rates. The mitochondrial SIRT3 and SHMT2 have key roles in metabolic reprogramming and cell proliferation. This study investigated the potential use of the natural product apigenin in CRC treatment employing both in vivo and in vitro models and explored the role of SIRT3 and SHMT2 in apigenin-induced CRC apoptosis. The role of SHMT2 in CRC patients' survival was verified using TCGA database. In vivo, apigenin treatment restored the normal colon appearance. On the molecular level, apigenin augmented the immunohistochemical expression of cleaved caspase-3 and attenuated SIRT3 and SHMT2 mRNA expression CRC patients with decreased SHMT2 expression had improved overall and disease-free survival rates. In vitro, apigenin reduced the cell viability in a time-dependent manner, induced G0/G1 cell cycle arrest, and increased the apoptotic cell population compared to the untreated control. Mechanistically, apigenin treatment mitigated the expression of SHMT2, SIRT3, and its upstream long intergenic noncoding RNA LINC01234 in CRC cells. Conclusively, apigenin induces caspase-3-dependent apoptosis in CRC through modulation of SIRT3-triggered mitochondrial pathway suggesting it as a promising therapeutic agent to improve patient outcomes.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11823, Egypt; Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt.
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Sherine Maher Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Nadine W Maurice
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
6
|
Neale I, Reddy C, Tan ZY, Li B, Nag PP, Park J, Park J, Carey KL, Graham DB, Xavier RJ. Small-molecule probe for IBD risk variant GPR65 I231L alters cytokine signaling networks through positive allosteric modulation. SCIENCE ADVANCES 2024; 10:eadn2339. [PMID: 39028811 PMCID: PMC11259170 DOI: 10.1126/sciadv.adn2339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/13/2024] [Indexed: 07/21/2024]
Abstract
The proton-sensing heterotrimeric guanine nucleotide-binding protein-coupled receptor GPR65 is expressed in immune cells and regulates tissue homeostasis in response to decreased extracellular pH, which occurs in the context of inflammation and tumorigenesis. Genome-wide association studies linked GPR65 to several autoimmune and inflammatory diseases such as multiple sclerosis and inflammatory bowel disease (IBD). The loss-of-function GPR65 I231L IBD risk variant alters cellular metabolism, impairs protective tissue functions, and increases proinflammatory cytokine production. Hypothesizing that a small molecule designed to potentiate GPR65 at subphysiological pH could decrease inflammatory responses, we found positive allosteric modulators of GPR65 that engage and activate both human and mouse orthologs of the receptor. We observed that the chemical probe BRD5075 alters cytokine and chemokine programs in dendritic cells, establishing that immune signaling can be modulated by targeting GPR65. Our investigation offers improved chemical probes to further interrogate the biology of human GPR65 and its clinically relevant genetic variants.
Collapse
Affiliation(s)
- Ilona Neale
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clark Reddy
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zher Yin Tan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bihua Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Partha P. Nag
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jihye Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Daniel B. Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
7
|
Glitsch MD. Recent advances in acid sensing by G protein coupled receptors. Pflugers Arch 2024; 476:445-455. [PMID: 38340167 PMCID: PMC11006784 DOI: 10.1007/s00424-024-02919-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Changes in extracellular proton concentrations occur in a variety of tissues over a range of timescales under physiological conditions and also accompany virtually all pathologies, notably cancers, stroke, inflammation and trauma. Proton-activated, G protein coupled receptors are already partially active at physiological extracellular proton concentrations and their activity increases with rising proton concentrations. Their ability to monitor and report changes in extracellular proton concentrations and hence extracellular pH appears to be involved in a variety of processes, and it is likely to mirror and in some cases promote disease progression. Unsurprisingly, therefore, these pH-sensing receptors (pHR) receive increasing attention from researchers working in an expanding range of research areas, from cellular neurophysiology to systemic inflammatory processes. This review is looking at progress made in the field of pHRs over the past few years and also highlights outstanding issues.
Collapse
Affiliation(s)
- Maike D Glitsch
- Medical School Hamburg, Am Sandtorkai 1, 20457, Hamburg, Germany.
| |
Collapse
|
8
|
Hausmann M, Seuwen K, de Vallière C, Busch M, Ruiz PA, Rogler G. Role of pH-sensing receptors in colitis. Pflugers Arch 2024; 476:611-622. [PMID: 38514581 PMCID: PMC11006753 DOI: 10.1007/s00424-024-02943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Low pH in the gut is associated with severe inflammation, fibrosis, and colorectal cancer (CRC) and is a hallmark of active inflammatory bowel disease (IBD). Subsequently, pH-sensing mechanisms are of interest for the understanding of IBD pathophysiology. Tissue hypoxia and acidosis-two contributing factors to disease pathophysiology-are linked to IBD, and understanding their interplay is highly relevant for the development of new therapeutic options. One member of the proton-sensing G protein-coupled receptor (GPCR) family, GPR65 (T-cell death-associated gene 8, TDAG8), was identified as a susceptibility gene for IBD in a large genome-wide association study. In response to acidic extracellular pH, GPR65 induces an anti-inflammatory response, whereas the two other proton-sensing receptors, GPR4 and GPR68 (ovarian cancer G protein-coupled receptor 1, OGR1), mediate pro-inflammatory responses. Here, we review the current knowledge on the role of these proton-sensing receptors in IBD and IBD-associated fibrosis and cancer, as well as colitis-associated cancer (CAC). We also describe emerging small molecule modulators of these receptors as therapeutic opportunities for the treatment of IBD.
Collapse
Affiliation(s)
- Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland.
| | - Klaus Seuwen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Moana Busch
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| |
Collapse
|
9
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
10
|
Lee SW, Park HJ, Van Kaer L, Hong S. Role of CD1d and iNKT cells in regulating intestinal inflammation. Front Immunol 2024; 14:1343718. [PMID: 38274786 PMCID: PMC10808723 DOI: 10.3389/fimmu.2023.1343718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Invariant natural killer T (iNKT) cells, a subset of unconventional T cells that recognize glycolipid antigens in a CD1d-dependent manner, are crucial in regulating diverse immune responses such as autoimmunity. By engaging with CD1d-expressing non-immune cells (such as intestinal epithelial cells and enterochromaffin cells) and immune cells (such as type 3 innate lymphoid cells, B cells, monocytes and macrophages), iNKT cells contribute to the maintenance of immune homeostasis in the intestine. In this review, we discuss the impact of iNKT cells and CD1d in the regulation of intestinal inflammation, examining both cellular and molecular factors with the potential to influence the functions of iNKT cells in inflammatory bowel diseases such as Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju, Republic of Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Dzhalilova D, Zolotova N, Fokichev N, Makarova O. Murine models of colorectal cancer: the azoxymethane (AOM)/dextran sulfate sodium (DSS) model of colitis-associated cancer. PeerJ 2023; 11:e16159. [PMID: 37927787 PMCID: PMC10624171 DOI: 10.7717/peerj.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/31/2023] [Indexed: 11/07/2023] Open
Abstract
Background Colorectal cancer (CRC) is the third most common cancer. It is a heterogeneous disease, including both hereditary and sporadic types of tumors. CRC results from complex interactions between various genetic and environmental factors. Inflammatory bowel disease is an important risk factor for developing CRC. Despite growing understanding of the CRC biology, preclinical models are still needed to investigate the etiology and pathogenesis of the disease, as well as to find new methods of treatment and prevention. Objectives The purpose of this review is to describe existing murine models of CRC with a focus on the models of colitis-associated CRC. This manuscript could be relevant for experimental biologists and oncologists. Methodology We checked PubMed and Google from 01/2018 to 05/2023 for reviews of CRC models. In addition, we searched PubMed from 01/2022 to 01/2023 for articles using the azoxymethane (AOM)/dextran sulfate sodium (DSS) CRC model. Results Existing murine models of CRC include spontaneous, genetically engineered, transplantation, and chemically induced models. For the study of colitis-associated cancer (CAC), the AOM/DSS model is predominantly used. This model is very similar in histological and molecular characteristics to the human CAC, and is highly reproducible, inexpensive, and easy to use. Despite its popularity, the AOM/DSS model is not standardized, which makes it difficult to analyze and compare data from different studies. Conclusions Each model demonstrates particular advantages and disadvantages, and allows to reproduce different subtypes or aspects of the pathogenesis of CRC.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Natalia Zolotova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Nikolai Fokichev
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| |
Collapse
|
12
|
Marie MA, Sanderlin EJ, Hoffman AP, Cashwell KD, Satturwar S, Hong H, Sun Y, Yang LV. GPR4 Knockout Attenuates Intestinal Inflammation and Forestalls the Development of Colitis-Associated Colorectal Cancer in Murine Models. Cancers (Basel) 2023; 15:4974. [PMID: 37894341 PMCID: PMC10605520 DOI: 10.3390/cancers15204974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
GPR4 is a proton-sensing G protein-coupled receptor highly expressed in vascular endothelial cells and has been shown to potentiate intestinal inflammation in murine colitis models. Herein, we evaluated the proinflammatory role of GPR4 in the development of colitis-associated colorectal cancer (CAC) using the dextran sulfate sodium (DSS) and azoxymethane (AOM) mouse models in wild-type and GPR4 knockout mice. We found that GPR4 contributed to chronic intestinal inflammation and heightened DSS/AOM-induced intestinal tumor burden. Tumor blood vessel density was markedly reduced in mice deficient in GPR4, which correlated with increased tumor necrosis and reduced tumor cell proliferation. These data demonstrate that GPR4 ablation alleviates intestinal inflammation and reduces tumor angiogenesis, development, and progression in the AOM/DSS mouse model.
Collapse
Affiliation(s)
- Mona A. Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.A.M.)
| | - Edward J. Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.A.M.)
| | - Alexander P. Hoffman
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.A.M.)
| | - Kylie D. Cashwell
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.A.M.)
| | - Swati Satturwar
- Department of Pathology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Heng Hong
- Department of Pathology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Department of Pathology, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Ying Sun
- Department of Pathology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V. Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.A.M.)
| |
Collapse
|
13
|
Perren L, Busch M, Schuler C, Ruiz PA, Foti F, Weibel N, de Vallière C, Morsy Y, Seuwen K, Hausmann M, Rogler G. OGR1 (GPR68) and TDAG8 (GPR65) Have Antagonistic Effects in Models of Colonic Inflammation. Int J Mol Sci 2023; 24:14855. [PMID: 37834303 PMCID: PMC10573511 DOI: 10.3390/ijms241914855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
G-protein-coupled receptors (GPRs), including pro-inflammatory ovarian cancer GPR1 (OGR1/GPR68) and anti-inflammatory T cell death-associated gene 8 (TDAG8/GPR65), are involved in pH sensing and linked to inflammatory bowel disease (IBD). OGR1 and TDAG8 show opposite effects. To determine which effect is predominant or physiologically more relevant, we deleted both receptors in models of intestinal inflammation. Combined Ogr1 and Tdag8 deficiency was assessed in spontaneous and acute murine colitis models. Disease severity was assessed using clinical scores. Colon samples were analyzed using quantitative polymerase chain reaction (qPCR) and flow cytometry (FACS). In acute colitis, Ogr1-deficient mice showed significantly decreased clinical scores compared with wildtype (WT) mice, while Tdag8-deficient mice and double knockout (KO) mice presented similar scores to WT. In Il-10-spontaneous colitis, Ogr1-deficient mice presented significantly decreased, and Tdag8-deficient mice had increased inflammation. In the Il10-/- × Ogr1-/- × Tdag8-/- triple KO mice, inflammation was significantly decreased compared with Tdag8-/-. Absence of Ogr1 reduced pro-inflammatory cytokines in Tdag8-deficient mice. Tdag8-/- had significantly more IFNγ+ T-lymphocytes and IL-23 T-helper cells in the colon compared with WT. The absence of OGR1 significantly alleviates the intestinal damage mediated by the lack of functional TDAG8. Both OGR1 and TDAG8 represent potential new targets for therapeutic intervention.
Collapse
|
14
|
Li S, Chen X, Chen J, Wu B, Liu J, Guo Y, Li M, Pu X. Multi-omics integration analysis of GPCRs in pan-cancer to uncover inter-omics relationships and potential driver genes. Comput Biol Med 2023; 161:106988. [PMID: 37201441 DOI: 10.1016/j.compbiomed.2023.106988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest drug target family. Unfortunately, applications of GPCRs in cancer therapy are scarce due to very limited knowledge regarding their correlations with cancers. Multi-omics data enables systematic investigations of GPCRs, yet their effective integration remains a challenge due to the complexity of the data. Here, we adopt two types of integration strategies, multi-staged and meta-dimensional approaches, to fully characterize somatic mutations, somatic copy number alterations (SCNAs), DNA methylations, and mRNA expressions of GPCRs in 33 cancers. Results from the multi-staged integration reveal that GPCR mutations cannot well predict expression dysregulation. The correlations between expressions and SCNAs are primarily positive, while correlations of the methylations with expressions and SCNAs are bimodal with negative correlations predominating. Based on these correlations, 32 and 144 potential cancer-related GPCRs driven by aberrant SCNA and methylation are identified, respectively. In addition, the meta-dimensional integration analysis is carried out by using deep learning models, which predict more than one hundred GPCRs as potential oncogenes. When comparing results between the two integration strategies, 165 cancer-related GPCRs are common in both, suggesting that they should be prioritized in future studies. However, 172 GPCRs emerge in only one, indicating that the two integration strategies should be considered concurrently to complement the information missed by the other such that obtain a more comprehensive understanding. Finally, correlation analysis further reveals that GPCRs, in particular for the class A and adhesion receptors, are generally immune-related. In a whole, the work is for the first time to reveal the associations between different omics layers and highlight the necessity of combing the two strategies in identifying cancer-related GPCRs.
Collapse
Affiliation(s)
- Shiqi Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xin Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Binjian Wu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jing Liu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
15
|
Tang H, Zhou T, Jin W, Zong S, Mamtimin T, Salama ES, Jeon BH, Liu P, Han H, Li X. Tumor-targeting engineered probiotic Escherichia coli Nissle 1917 inhibits colorectal tumorigenesis and modulates gut microbiota homeostasis in mice. Life Sci 2023; 324:121709. [PMID: 37100380 DOI: 10.1016/j.lfs.2023.121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023]
Abstract
AIMS Preliminary studies have identified the use of probiotics as a potential treatment strategy against colorectal cancer (CRC). However, natural probiotics lack direct tumor-targeting and tumor-killing activity in the intestine. This study aimed to construct a tumor-targeting engineered probiotic to combat CRC. MAIN METHODS Standard adhesion assay was performed to analyze the adherence ability of tumor-binding protein HlpA to CT26 cells. CCK-8 assay, Hoechst 33258 staining and flow cytometry analysis were used for examining cytotoxicity of tumoricidal protein azurin toward CT26 cells. An engineered probiotic Ep-AH harboring azurin and hlpA genes was developed using Escherichia coli Nissle 1917 (EcN) chassis. Antitumor effects of Ep-AH were evaluated in the azoxymethane (AOM) and dextran sodium sulfate salt (DSS)-induced CRC mice. Moreover, analysis of gut microbiota was conducted via fecal 16S rRNA gene sequencing and shotgun metagenomic sequencing. KEY FINDINGS Azurin caused a dose-dependent increase of apoptosis in CT26 cells. Ep-AH treatment reversed weight loss (p < 0.001), fecal occult blood (p < 0.01), and shortening of colon length (p < 0.001) than model group, as well as reducing tumorigenesis by 36 % (p < 0.001). Both Ep-H and Ep-A (EcN expressing HlpA or azurin) were less effective than Ep-AH. Furthermore, Ep-AH enriched the members of beneficial bacteria (e.g., Blautia and Bifidobacterium) and reversed abnormal changes of genes associated with several metabolic pathways (e.g., lipopolysaccharide biosynthesis). SIGNIFICANCE These results demonstrated that Ep-AH had excellent therapeutic benefits on cancer remission and gut microbiota modulation. Our study provides an effective strategy for anti-CRC treatment.
Collapse
Affiliation(s)
- Haibo Tang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Weilin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Simin Zong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China.
| |
Collapse
|
16
|
von Breitenbuch P, Kurz B, Wallner S, Zeman F, Brochhausen C, Schlitt HJ, Schreml S. Expression of pH-Sensitive GPCRs in Peritoneal Carcinomatosis of Colorectal Cancer-First Results. J Clin Med 2023; 12:jcm12051803. [PMID: 36902589 PMCID: PMC10003041 DOI: 10.3390/jcm12051803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Solid tumors have an altered metabolism with a so-called inside-out pH gradient (decreased pHe < increased pHi). This also signals back to tumor cells via proton-sensitive ion channels or G protein-coupled receptors (pH-GPCRs) to alter migration and proliferation. Nothing, however, is known about the expression of pH-GPCRs in the rare form of peritoneal carcinomatosis. Paraffin-embedded tissue samples of a series of 10 patients with peritoneal carcinomatosis of colorectal (including appendix) origin were used for immunohistochemistry to study the expression of GPR4, GPR65, GPR68, GPR132, and GPR151. GPR4 was just expressed weakly in 30% of samples and expression was significantly reduced as compared to GPR56, GPR132, and GPR151. Furthermore, GPR68 was only expressed in 60% of tumors and showed significantly reduced expression as compared to GPR65 and GPR151. This is the first study on pH-GPCRs in peritoneal carcinomatosis, which shows lower expression of GPR4 and GPR68 as compared to other pH-GPCRs in this type of cancer. It may give rise to future therapies targeting either the TME or these GPCRs directly.
Collapse
Affiliation(s)
| | - Bernadett Kurz
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Susanne Wallner
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Florian Zeman
- Center for Clinical Studies, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Hans-Jürgen Schlitt
- Department of Surgery, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
17
|
Wang L, Sun L, Sun H, Xing Y, Zhou S, An G, Li J, Ren K, Sun J. GPR65 as a potential immune checkpoint regulates the immune microenvironment according to pan-cancer analysis. Heliyon 2023; 9:e13617. [PMID: 36852075 PMCID: PMC9957717 DOI: 10.1016/j.heliyon.2023.e13617] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
It has been reported that inhibition of GPR65 may be effective for the treatment of certain cancers. Nevertheless, the role of GPR65 in various cancers remains unknown. We conducted an exhaustive pan-cancer analysis of GPR65 using multiple databases, including TCGA, GTEx, BioGPS, HPA, cBioPortal, and GeneCards. GPR65 was found to be differentially expressed in various cancers and linked to tumor mutational burden (TMB), microsatellite instability (MSI), and Ploidy, playing a key function in the tumor microenvironment (TME). It is closely linked to the development of Th17 cells as well as Th1 and Th2 cells in certain cancers. Our findings indicate that the expression of GPR65 is highly linked with clinical prognosis, mutations, and immune cell infiltration. It was revealed as an indicator of patient prognosis as well as a possible immunomodulatory role. As a possible new immunological checkpoint, GPR65 could be a target for tumor immunotherapy.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Lele Sun
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Hao Sun
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Yunhong Xing
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Shidong Zhou
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Guoshuai An
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Jian Li
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Kang Ren
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Junhong Sun
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| |
Collapse
|
18
|
Shore D, Griggs N, Graffeo V, Amin ARMR, Zha XM, Xu Y, McAleer JP. GPR68 limits the severity of chemical-induced oral epithelial dysplasia. Sci Rep 2023; 13:353. [PMID: 36611126 PMCID: PMC9825365 DOI: 10.1038/s41598-023-27546-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Head and neck cancer is the sixth most common malignancy, and there is an urgent need to identify physiological processes contributing to tumorigenesis. Extracellular acidification caused by aerobic glycolysis within tumor microenvironments can stimulate proton-sensing receptors. GPR68, or ovarian cancer G protein-coupled receptor 1, responds to extracellular acidity and is highly expressed in head and neck squamous cell carcinoma (HNSCC) as well as normal esophageal tissue. To study the role of GPR68 in oral dysplasia, wild-type and GPR68-/- mice were treated with 4-Nitroquinoline N-oxide (4NQO) in drinking water for 11-13 weeks, followed by normal water for 11-12 weeks. 4NQO treatment resulted in 45 percent of GPR68-/- mice developing severe dysplasia or squamous cell carcinoma compared to only 10.5 percent of GPR68+/+ mice. This correlated with increased frequencies of regulatory T cells in the spleens of male GPR68-/- mice. Dysplastic regions of the tongue had increased CD31 staining compared to normal regions in both GPR68-/- and GPR68+/+ mice, suggesting that angiogenesis was GPR68-independent. RNA knockdown studies using HNSCC cell lines demonstrated no direct effect of GPR68 on survival or growth. Overall, we demonstrate that GPR68-deficiency worsens the severity of chemical-induced oral dysplasia, suggesting a protective role for this gene in tumorigenesis.
Collapse
Affiliation(s)
- David Shore
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Nosakhere Griggs
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Vincent Graffeo
- grid.36425.360000 0001 2216 9681Marshall University Joan C. Edwards School of Medicine, Huntington, WV USA
| | - A. R. M. Ruhul Amin
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Xiang-ming Zha
- grid.266756.60000 0001 2179 926XUniversity of Missouri-Kansas City School of Pharmacy, Kansas City, MO USA
| | - Yan Xu
- grid.257413.60000 0001 2287 3919Indiana University School of Medicine, Indianapolis, IN USA
| | - Jeremy P. McAleer
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| |
Collapse
|
19
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. Transwell In Vitro Cell Migration and Invasion Assays. Methods Mol Biol 2023; 2644:349-359. [PMID: 37142933 PMCID: PMC10335869 DOI: 10.1007/978-1-0716-3052-5_22] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cell migration and invasion have essential roles in both normal physiology and disease. As such, methodologies to assess cell migratory and invasive capacities are necessary to elucidate normal cell processes and underlying mechanisms of disease. Here, we describe commonly used transwell in vitro methods for the study of cell migration and invasion. The transwell migration assay involves the chemotaxis of cells through a porous membrane after the establishment of a chemoattractant gradient using two medium-filled compartments. The transwell invasion assay involves the addition of an extracellular matrix on top of the porous membrane which only permits chemotaxis of cells which possess invasive properties such as tumor cells.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
20
|
Zhu H, Zheng C, Liu H, Kong F, Kong S, Chen F, Tian Y. Significance of macrophage infiltration in the prognosis of lung adenocarcinoma patients evaluated by scRNA and bulkRNA analysis. Front Immunol 2022; 13:1028440. [PMID: 36311801 PMCID: PMC9597471 DOI: 10.3389/fimmu.2022.1028440] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate the significance of macrophage infiltration to the prognosis of lung adenocarcinoma. Methods R language bioinformatics analysis technology, was used to obtain macrophage infiltration-related module genes through WGCNA (Weighted Gene Co-Expression Network Analysis). Marker genes of macrophage subtypes were identified using single-cell sequencing of lung adenocarcinoma tissue. Risk score models were constructed and validated using external data cohorts and clinical samples. Results Analysis of cohorts TCGA-LUAD, GSE11969, GSE31210, GSE50081, GSE72094 and GSE8894, revealed a negative correlation between macrophage infiltration and survival. Immunohistochemical analyses of clinical samples were consistent with these data. Based on cell-cluster-markers and TAMs-related-genes, TOP8 genes were obtained (C1QTNF6, CCNB1, FSCN1, HMMR, KPNA2, PRC1, RRM2, and TK1) with a significant association to prognosis. Risk score models including 9 factors (C1QTNF6, FSCN1, KPNA2, GLI2, TYMS, BIRC3, RBBP7, KRT8, GPR65) for prognosis were constructed. The efficacy, stability and generalizability of the risk score models were validated using multiple data cohorts (GSE19188, GSE26939, GSE31210, GSE50081, GSE42127, and GSE72094). Conclusions Macrophage infiltration negatively correlates with prognosis in patients with lung adenocarcinoma. Based on cell-cluster-markers and TAMs-related-genes, both TOP8 genes (C1QTNF6, CCNB1, FSCN1, HMMR, KPNA2, PRC1, RRM2, TK1) and risk score models using C1QTNF6, FSCN1, KPNA2, GLI2, TYMS, BIRC3, RBBP7, KRT8, GPR65 could predict disease prognosis.
Collapse
Affiliation(s)
- Huaiyang Zhu
- Department of Thoracic Surgery, Shandong Second Provincial General Hospital, Jinan, China
| | - Chunning Zheng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Hongtao Liu
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pathology, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, China
| | - Fanhua Kong
- Department of Thoracic Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, China
| | - Shuai Kong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Feng Chen
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuan Tian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, China
| |
Collapse
|
21
|
Rackow AR, Nagel DJ, Zapas G, Clough RS, Sime PJ, Kottmann RM. The Novel Small Molecule BTB Inhibits Pro-Fibrotic Fibroblast Behavior though Inhibition of RhoA Activity. Int J Mol Sci 2022; 23:11946. [PMID: 36233248 PMCID: PMC9569993 DOI: 10.3390/ijms231911946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, interstitial lung disease with a poor prognosis. Although specific anti-fibrotic medications are now available, the median survival time following diagnosis remains very low, and new therapies are urgently needed. To uncover novel therapeutic targets, we examined how biochemical properties of the fibrotic lung are different from the healthy lung. Previous work identified lactate as a metabolite that is upregulated in IPF lung tissue. Importantly, inhibition of the enzyme responsible for lactate production prevents fibrosis in vivo. Further studies revealed that fibrotic lesions of the lung experience a significant decline in tissue pH, likely due to the overproduction of lactate. It is not entirely clear how cells in the lung respond to changes in extracellular pH, but a family of proton sensing G-protein coupled receptors has been shown to be activated by reductions in extracellular pH. This work examines the expression profiles of proton sensing GPCRs in non-fibrotic and IPF-derived primary human lung fibroblasts. We identify TDAG8 as a proton sensing GPCR that is upregulated in IPF fibroblasts and that knockdown of TDAG8 dampens myofibroblast differentiation. To our surprise, BTB, a proposed positive allosteric modulator of TDAG8, inhibits myofibroblast differentiation. Our data suggest that BTB does not require TDAG8 to inhibit myofibroblast differentiation, but rather inhibits myofibroblast differentiation through suppression of RhoA mediated signaling. Our work highlights the therapeutic potential of BTB as an anti-fibrotic treatment and expands upon the importance of RhoA-mediated signaling pathways in the context of myofibroblast differentiation. Furthermore, this works also suggests that TDAG8 inhibition may have therapeutic relevance in the treatment of IPF.
Collapse
Affiliation(s)
- Ashley R. Rackow
- Division of Pulmonary Disease and Critical Care Medicine, University of Rochester Medical Center Rochester, Rochester, NY 14642, USA
| | - David J. Nagel
- Division of Pulmonary Disease and Critical Care Medicine, University of Rochester Medical Center Rochester, Rochester, NY 14642, USA
| | - Gregory Zapas
- Division of Pulmonary Disease and Critical Care Medicine, University of Rochester Medical Center Rochester, Rochester, NY 14642, USA
| | - Ryan S. Clough
- Department of Human Genetics, University of Utah Salt Lake City, Salt Lake City, UT 84112, USA
| | - Patricia J. Sime
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University Richmond, Richmond, VA 23284, USA
| | - R. Matthew Kottmann
- Division of Pulmonary Disease and Critical Care Medicine, University of Rochester Medical Center Rochester, Rochester, NY 14642, USA
| |
Collapse
|
22
|
Wumei Pill Ameliorates AOM/DSS-Induced Colitis-Associated Colon Cancer through Inhibition of Inflammation and Oxidative Stress by Regulating S-Adenosylhomocysteine Hydrolase- (AHCY-) Mediated Hedgehog Signaling in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4061713. [PMID: 35927991 PMCID: PMC9345734 DOI: 10.1155/2022/4061713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Wumei Pill (WMP) is a traditional Chinese herbal formulation and widely used to treat digestive system diseases in clinical. S-Adenosylhomocysteine hydrolase (AHCY) can catalyze the hydrolysis of S-adenosylhomocysteine to adenosine and homocysteine in living organisms, and its abnormal expression is linked to the pathogenesis of many diseases including colorectal cancer (CRC). A previous study reported that WMP could prevent CRC in mice; however, the underlying mechanisms especially the roles of AHCY in WMP-induced anti-CRC remain largely unknown. Here, we investigated the regulatory roles and potential mechanisms of AHCY in WMP-induced anti-CRC. WMP notably alleviated the azoxymethane/dextran sulfate sodium- (AOM/DSS-) induced colitis-associated colon cancer (CAC) in mice. Besides, WMP inhibited the inflammation and oxidative stress in AOM/DSS-induced CAC mice. AHCY was high expression in clinical samples of colon cancer compared to the adjacent tissues. WMP inhibited the AHCY expression in AOM/DSS-induced CAC mice. An in vitro study found that AHCY overexpression induced cell proliferation, colony formation, invasion, and tumor angiogenesis, whereas its knockdown impaired its oncogenic function. AHCY overexpression enhanced, while its knockdown weakened the inflammation and oxidative stress in colon cancer cells. Interestingly, WMP potently suppressed the hedgehog (Hh) signaling in AOM/DSS-induced CAC mice. A further study showed that AHCY overexpression activated the Hh signaling while AHCY knockdown inactivated the Hh signaling. Moreover, activation of the Hh signaling reversed the effect of AHCY silencing on inflammation and oxidative stress in vitro. In conclusion, WMP alleviated the AOM/DSS-induced CAC through inhibition of inflammation and oxidative stress by regulating AHCY-mediated hedgehog signaling in mice. These findings uncovered a potential molecular mechanism underlying the anti-CAC effect of WMP and suggested WMP as a promising therapeutic candidate for CRC.
Collapse
|
23
|
Imenez Silva PH, Câmara NO, Wagner CA. Role of proton-activated G protein-coupled receptors in pathophysiology. Am J Physiol Cell Physiol 2022; 323:C400-C414. [PMID: 35759438 DOI: 10.1152/ajpcell.00114.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Local acidification is a common feature of many disease processes such as inflammation, infarction, or solid tumor growth. Acidic pH is not merely a sequelae of disease but contributes to recruitment and regulation of immune cells, modifies metabolism of parenchymal, immune and tumor cells, modulates fibrosis, vascular permeability, oxygen availability and consumption, invasiveness of tumor cells, and impacts on cell survival. Thus, multiple pH-sensing mechanisms must exist in cells involved in these processes. These pH-sensors play important roles in normal physiology and pathophysiology, and hence might be attractive targets for pharmacological interventions. Among the pH-sensing mechanisms, OGR1 (GPR68), GPR4 (GPR4), and TDAG8 (GPR65) have emerged as important molecules. These G protein-coupled receptors are widely expressed, are upregulated in inflammation and tumors, sense changes in extracellular pH in the range between pH 8 and 6, and are involved in modulating key processes in inflammation, tumor biology, and fibrosis. This review discusses key features of these receptors and highlights important disease states and pathways affected by their activity.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Niels Olsen Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| |
Collapse
|
24
|
Lin R, Wu W, Chen H, Gao H, Wu X, Li G, He Q, Lu H, Sun M, Liu Z. GPR65 promotes intestinal mucosal Th1 and Th17 cell differentiation and gut inflammation through downregulating NUAK2. Clin Transl Med 2022; 12:e771. [PMID: 35343079 PMCID: PMC8958354 DOI: 10.1002/ctm2.771] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/15/2023] Open
Abstract
G protein-coupled receptor 65 (GPR65), a susceptibility gene for inflammatory bowel diseases (IBD), has been identified to promote Th17 cell pathogenicity and induce T cell apoptosis. However, the potential role of GPR65 in modulating CD4+ T cell immune responses in the pathogenesis of IBD stills not entirely understood. Here, we displayed that GPR65 expression was increased in inflamed intestinal mucosa of IBD patients and positively associated with disease activity. It was expressed in CD4+ T cells and robustly upregulated through the TNF-α-caspase 3/8 signalling pathway. Ectopic expression of GPR65 significantly promoted the differentiation of peripheral blood (PB) CD4+ T cells from IBD patients and HC to Th1 and Th17 cells in vitro. Importantly, conditional knockout of Gpr65 in CD4+ T cells ameliorated trinitrobenzene sulfonic acid (TNBS)-induced acute murine colitis and a chronic colitis in Rag1-/- mice reconstituted with CD45RBhigh CD4+ T cells in vivo, characterised by attenuated Th1 and Th17 cell immune response in colon mucosa and decreased infiltration of CD4+ T cells, neutrophils and macrophages. RNA-seq analysis of Gpr65ΔCD4 and Gpr65flx/flx CD4+ T cells revealed that NUAK family kinase 2 (Nuak2) acts as a functional target of Gpr65 to restrict Th1 and Th17 cell immune response. Mechanistically, GPR65 deficiency promoted NUAK2 expression via the cAMP-PKA-C-Raf-ERK1/2-LKB1-mediated signalling pathway. Consistently, silencing of Nuak2 facilitated the differentiation of Gpr65ΔCD4 and Gpr65flx/flx CD4+ T cells into Th1 and Th17 cells. Therefore, our data point out that GPR65 promotes Th1 and Th17 cell immune response and intestinal mucosal inflammation by suppressing NUAK2 expression, and that targeting GPR65 and NUAK2 in CD4+ T cells may represent a novel therapeutic approach for IBD.
Collapse
Affiliation(s)
- Ritian Lin
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Wei Wu
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Huimin Chen
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Han Gao
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Xiaohan Wu
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Gengfeng Li
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Qiong He
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Huiying Lu
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Mingming Sun
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| |
Collapse
|
25
|
IBD-associated G protein-coupled receptor 65 variant compromises signalling and impairs key functions involved in inflammation. Cell Signal 2022; 93:110294. [PMID: 35218908 PMCID: PMC9536022 DOI: 10.1016/j.cellsig.2022.110294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases (IBD) result in chronic inflammation of the gastrointestinal tract. Genetic studies have shown that the GPR65 gene, as well as its missense coding variant, GPR65*Ile231Leu, is associated with IBD. We aimed to define the signalling and biological pathways downstream of GPR65 activation and evaluate the impact of GPR65*231Leu on these. METHODS We used HEK 293 cells stably expressing GPR65 and deficient for either Gαs, Gαq/11 or Gα12/13, to define GPR65 signalling pathways, IBD patient biopsies and a panel of human tissues, primary immune cells and cell lines to determine biologic context, and genetic modulation of human THP-1-derived macrophages to examine the impact of GPR65 in bacterial phagocytosis and NLRP3 inflammasome activation. RESULTS We confirmed that GPR65 signals via the Gαs pathway, leading to cAMP accumulation. GPR65 can also signal via the Gα12/13 pathway leading to formation of stress fibers, actin remodeling and RhoA activation; all impaired by the IBD-associated GPR65*231Leu allele. Gene expression profiling revealed greater expression of GPR65 in biopsies from inflamed compared to non-inflamed tissues from IBD patients or control individuals, potentially explained by infiltration of inflammatory immune cells. Decreased GPR65 expression in THP-1-derived macrophages leads to impaired bacterial phagocytosis, increased NLRP3 inflammasome activation and IL-1β secretion in response to an inflammatory stimulus. CONCLUSIONS We demonstrate that GPR65 exerts its effects through Gαs- and Gα12/13-mediated pathways, that the IBD-associated GPR65*231Leu allele has compromised interactions with Gα12/13 and that KD of GPR65 leads to impaired bacterial phagocytosis and increased inflammatory signalling via the NLRP3 inflammasome. This work identifies a target for development of small molecule therapies.
Collapse
|