1
|
Liu X, Zhan Z, Zhang R, Wang Y, Xu Q. Network pharmacology-based prediction and molecular docking-based strategy to investigate the potential mechanism of Leonurus japonicus Houtt. Against myocardial ischemia reperfusion injury. J Cardiothorac Surg 2025; 20:204. [PMID: 40241120 PMCID: PMC12001406 DOI: 10.1186/s13019-025-03425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/06/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Leonurus japonicus Houtt. (LJH) has multiple pharmacological effects. OBJECTIVE To investigate the potential mechanism of LJH in the treatment of myocardial ischemia-reperfusion injury (MIRI) using network pharmacology, molecular docking technology, and in vitro experiments. METHODS Herbs for ischemic heart disease were identified with the help of herb-disease databases. The TCMSP database was used to find the potential targets of LJH. Disease targets of MIRI were identified with the help of Disgenet, Genecard, Alliance of Genome Resources databases. The common targets were obtained with the help of VENN diagram, and the common targets were analyzed by GO function and KEEG pathway enrichment to predict the potential mechanism of action of LJH in treating MIRI. With the help of STRING database and Cytoscape software, we constructed a visual protein-protein interaction (PPI) network model to screen the core targets and then docked the core targets with the corresponding ligand molecules. AC16 cells were used to simulate MIRI by glucose-oxygen deprivation, and apoptosis was detected by Annexin V-FITC/PI double staining; protein expression was detected by Western blot. RESULTS LJH was one of the herbal remedies for the treatment of ischemic heart disease. LJH had 247 potential targets of action and 26 targets in common with MIRI. These 26 targets were enriched in the TNF signaling pathway and NF-kappa B signaling pathway, and the core targets screened by the PPI results included TNF, VCAM1, and MMP9. Molecular docking results showed that the compounds in LJH docked well with the core target proteins. In vitro experiments showed that LJH could inhibit the elevation of TNF, VCAM1, and MMP9 after MIRI, reduce apoptosis, and inhibit inflammation. CONCLUSION The mechanism of LJH in the treatment of MIRI was mainly related to the activation of TNF signaling pathway and NF-kappa B signaling pathway, and the regulation of TNF, VCAM1, and MMP9 protein expression.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, No. 69, Zengchan Road, Hebei District, Tianjin, 300150, China
| | - Zilian Zhan
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, No. 69, Zengchan Road, Hebei District, Tianjin, 300150, China
| | - Rui Zhang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, No. 69, Zengchan Road, Hebei District, Tianjin, 300150, China
| | - Yadong Wang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, No. 69, Zengchan Road, Hebei District, Tianjin, 300150, China
| | - Qiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, No. 69, Zengchan Road, Hebei District, Tianjin, 300150, China.
| |
Collapse
|
2
|
Nowak I, Kubina R, Strzałka-Mrozik B. Therapeutic Potential of Hexahydrocurcumin in the Regeneration and Protection of the Retinal Pigment Epithelium. Pharmaceuticals (Basel) 2025; 18:554. [PMID: 40283989 PMCID: PMC12030554 DOI: 10.3390/ph18040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Hexahydrocurcumin (HHC), the primary metabolite of curcumin, shows promising therapeutic potential due to its antioxidant and anti-inflammatory properties. The retinal pigment epithelium (RPE) plays a crucial role in maintaining retinal homeostasis; however, its dysfunction-linked to oxidative stress and chronic inflammation-contributes to the progression of degenerative diseases such as age-related macular degeneration (AMD). This review highlights the therapeutic potential of HHC in protecting and regenerating RPE cells. It explores the effects of oxidative stress on the RPE, the mechanisms underlying its damage, and the involvement of reactive oxygen species (ROS) and inflammatory mediators. HHC has demonstrated the ability to modulate these pathways by activating nuclear factor erythroid 2-related factor 2 (NRF2), enhancing antioxidant defenses, and inhibiting pro-inflammatory cytokine production. Preclinical studies suggest that HHC mitigates vascular remodeling and endothelial dysfunction by reducing the expression of transforming growth factor β (TGF-β1) and matrix metalloproteinase-9 (MMP-9). Moreover, HHC improves nitric oxide bioavailability and promotes nitric oxide synthase expression, thereby counteracting oxidative stress-induced vascular damage. Emerging evidence indicates that HHC may be a promising candidate for the treatment of retinal degenerative diseases, particularly those associated with oxidative stress and inflammation. However, further studies, including clinical trials, are essential to confirm its efficacy and elucidate the precise mechanisms underlying HHC's protective effects on RPE cells.
Collapse
Affiliation(s)
- Ilona Nowak
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia, 41-752 Katowice, Poland;
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia, 41-752 Katowice, Poland;
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland
| | - Barbara Strzałka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
3
|
Cui J, Li H, Zhang T, Lin F, Chen M, Zhang G, Feng Z. Research progress on the mechanism of curcumin anti-oxidative stress based on signaling pathway. Front Pharmacol 2025; 16:1548073. [PMID: 40260389 PMCID: PMC12009910 DOI: 10.3389/fphar.2025.1548073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Oxidative stress refers to an imbalance between oxidative capacity and antioxidant capacity, leading to oxidative damage to proteins, lipids, and DNA, which can result in cell senescence or death. It is closely associated with the occurrence and development of various diseases, including cardiovascular diseases, nephropathy, malignant tumors, neurodegenerative diseases, hypertension, diabetes, and inflammatory diseases. Curcumin is a natural polyphenol compound of β-diketone, which has a wide range of pharmacological activities such as anti-inflammatory, antibacterial, anti-oxidative stress, anti-tumor, anti-fibrosis, and hypolipidemic, demonstrating broad research and development value. It has a wide range of biological targets and can bind to various endogenous biomolecules. Additionally, it maintains the redox balance primarily by scavenging ROS, enhancing the activity of antioxidant enzymes, inhibiting lipid peroxidation, and chelating metal ions. This paper systematically describes the antioxidative stress mechanisms of curcumin from the perspective of signaling pathways, focusing on the Keap1-Nrf2/ARE, NF-κB, NOX, MAPK and other pathways. The study also discusses potential pathway targets and the complex crosstalk among these pathways, aiming to provide insights for further research on curcumin's antioxidant mechanisms and its clinical applications.
Collapse
Affiliation(s)
- Jie Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haonan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengli Lin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Zhong Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| |
Collapse
|
4
|
Tocharus C, Sutheerawattananonda M. Preventive and Therapeutic Effects of Sericin-Derived Oligopeptides (SDOs) from Yellow Silk Cocoons on Blood Pressure Lowering in L-NAME-Induced Hypertensive Rats. Foods 2025; 14:1256. [PMID: 40238512 PMCID: PMC11989225 DOI: 10.3390/foods14071256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/09/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Our previous research has shown that SDOs derived from yellow silk cocoons have hypotensive effects on rats in chronic toxicity testing. This study investigated the potential preventative and therapeutic benefits of SDOs on hypertensive rats induced by L-NAME. The experiment involved nine rat groups: (1) normal control, (2) normal + 200 mg kg-1 BW SDOs, (3) hypertensive (HT) control, (4) HT + 50 mg kg-1 BW SDOs, (5) HT + 100 mg kg-1 BW SDOs, (6) HT + 200 mg kg-1 BW SDOs, (7) HT + enalapril (Ena), (8) HT + soy protein isolate (SPI), and (9) HT + bovine serum albumin (BSA). In the preventative approach, rats received 40 mg kg-1 of L-NAME with the studied substances during the four-week investigation. SDOs given at doses of 100 and 200 mg kg-1 BW demonstrated a significant decrease in systolic blood pressure (SBP) without affecting heart rate (HR). In therapeutic studies, 40 mg kg-1 BW of L-NAME increased SBP in the experimental groups over the first four weeks, resulting in mean SBP values above 150 mmHg. Administering 100 and 200 mg kg-1 BW SDOs and 100 mg kg-1 BW SPI significantly reduced SBP. However, SDOs at 200 mg kg-1 BW exhibited SBP closer to the enalapril group. In functional vascular tests, rats given SDOs at a dose of 200 mg kg-1 BW had the highest relaxation and lowest contraction percentages, like the normal control groups. The research found that SDOs may inhibit and manage hypertension in both healthy and hypertensive rats by safeguarding endothelial cells.
Collapse
Affiliation(s)
- Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Manote Sutheerawattananonda
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
5
|
Gong R, Tan JL, Liu G, Liu XF, Ma L, Shi S. Mechanism of disturbed endothelial cell function on angiogenesis following ischemic brain stroke (Review). Exp Ther Med 2025; 29:61. [PMID: 39991719 PMCID: PMC11843205 DOI: 10.3892/etm.2025.12811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/10/2025] [Indexed: 02/25/2025] Open
Abstract
The present study focused on the mechanisms of post-ischemic stroke (IS) angiogenesis from the perspective of endothelial cells (ECs) dysfunction. First, it emphasized the importance of hypoxia-inducible factor-1α in the function of ECs under hypoxic conditions, particularly in promoting angiogenesis and improving cerebral blood supply. Secondly, inflammatory cytokines and adhesion factors (for example, selectins, the immunoglobulin superfamily and integrins) influence the function and angiogenesis of ECs through various mechanisms and signaling pathways following IS. In addition, the effects of oxidative stress on ECs function and angiogenesis were explored, along with the potential of antioxidant strategies to improve EC function and promote angiogenesis. Based on these insights, the present study proposed new therapeutic strategies to ameliorate endothelial dysfunction and promote angiogenesis following IS, including small-molecule drugs targeting specific molecules, gene therapy and traditional Chinese medicine treatments. Finally, the importance of translating these laboratory findings into clinical applications was emphasized, alongside the need for advanced imaging techniques to monitor the dynamic processes of post-IS angiogenesis and evaluate the efficacy of novel therapeutic interventions. These explorations aimed at providing a more comprehensive understanding of EC function and the regulatory mechanisms of a deeper understanding of angiogenesis following IS, offering new intervention strategies for IS treatment.
Collapse
Affiliation(s)
- Rui Gong
- Department of Rehabilitation of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Jin-Lang Tan
- Department of Rehabilitation of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Gang Liu
- Department of Acupuncture, Moxibustion and Tuina, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Xiao-Fang Liu
- Department of Acupuncture, Moxibustion and Tuina, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Le Ma
- Department of Rehabilitation of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Shuai Shi
- Department of Acupuncture, Moxibustion and Tuina, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
6
|
Chen YH, Chang YC, Wu WJ, Chen M, Yen CC, Lan YW, Cheng HC, Chen CM. Kefir peptides mitigate L-NAME-induced preeclampsia in rats through modulating hypertension and endothelial dysfunction. Biomed Pharmacother 2024; 180:117592. [PMID: 39490048 DOI: 10.1016/j.biopha.2024.117592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
AIM Preeclampsia is a complex and serious pregnancy disorder that leads to maternal and neonatal mortality worldwide. Kefir peptides (KPs), derived from various prebiotic fermentations in whole milk by kefir grains, were investigated for their potential therapeutic effects. In this study, we used the L-NAME in drinking water to induce a preeclampsia-like condition in spontaneous hypertension stroke-prone (SHRSP) pregnant rats. MAIN METHODS The rats were assigned to five groups: the normal group (WKY rats), the untreated group (SHRSP rat control pregnant), the L-NAME/Mock group (SHRSP rats fed with L-NAME water), the L-NAME/KPs-LD group (SHRSP rats fed with L-NAME water and low-dose KPs diets), and the L-NAME/KPs-HD group (SHRSP rats fed with L-NAME water and high-dose KPs diets) for a 20-day experiment. Chorioallantois membrane (CAM) assay was applied for ex vivo angiogenesis study of KPs treatment. KEY FINDINGS Data showed that rats in the L-NAME group developed severe hypertension, proteinuria, placental damage, and embryo resorption. Pre-administration of KPs significantly reduced hypertension, proteinuria, improved generalized endothelial dysfunction, and decreased levels of anti-HIF-1α, sFLT1, anti-TNF-α, and IL-6 in the placenta of SHRSP rats. In ex vivo CAM study, L-NAME administration in chicken embryos resulted in lower vessel density and hemorrhage; however, angiogenesis was observed after KPs-HD treatment. SIGNIFICANCE The results indicate that kefir peptides improve renal lesions, prevent renal parenchyma damage, and balance endothelial and angiogenic dysfunction in both maternal and fetal sites in L-NAME-induced SHRSP pregnant rats.
Collapse
Affiliation(s)
- Yu-Hsuan Chen
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yo-Cheng Chang
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| | - Wan-Ju Wu
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan.
| | - Min Chen
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan; Department of Genomic Medicine, Changhua Christian Hospital, Changhua 50046, Taiwan.
| | - Chih-Ching Yen
- Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| | - Ying-Wei Lan
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine, Phoenix 85004, USA.
| | - Hsu-Chen Cheng
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chuan-Mu Chen
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Center for General Educational, National Quemoy University, Kinmen 892, Taiwan.
| |
Collapse
|
7
|
Chaiyasaeng W, Hongwiset D, Tocharus C, Punyawudho B, Tocharus J, Chaichompoo W, Rojsitthisak P, Pabuprapap W, Yingyongnarongkul BE, Suksamrarn A. Comparative Pharmacokinetics and Tissue Distribution of Hexahydrocurcumin Following Intraperitoneal vs Oral Administration in Mice Using LC-MS/MS. ACS OMEGA 2024; 9:41032-41042. [PMID: 39372019 PMCID: PMC11447725 DOI: 10.1021/acsomega.4c06604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024]
Abstract
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to determine hexahydrocurcumin (HHC) levels in mouse plasma, brain, liver, and kidneys using a negative ion mode electrospray ionization (ESI) source. Demonstrating a lower limit of quantification (LLOQ) of 5 ng/mL, the method showed excellent linearity across a concentration range of 5-500 ng/mL in all tested matrices. Precision evaluations reported a coefficient of variation (CV%) of less than 13.19% for both intraday and interday measurements, while accuracy ranged from 95.13 to 105.07% across all quality control levels. HHC extraction recovery was consistently observed between 70.18 and 93.28%, with a CV% deviation of less than 15%. In the pharmacokinetic evaluation of HHC in mice following a single intraperitoneal (IP) or oral administration, a noncompartment analysis was utilized. After IP administration (40 mg/kg), the C max value was 47.90 times higher than that achieved via oral administration. Peak plasma concentrations were observed approximately 5 min post-IP and 15 min post-oral dosing. The observed half-lives after these administrations were approximately 1.52 and 2.17 h for IP and oral routes, respectively. Oral administration revealed a relative bioavailability of only 12.28% compared with the IP route. Furthermore, following IP administration, the half-life values in brain, liver, and kidney were not significantly different but more than the half-life value found in plasma. The liver and kidney exhibited the highest concentrations of HHC, while the brain showed the least, suggesting that the hydrophobic nature of HHC impedes its passage through the blood-brain barrier. This study is the first to provide detailed insights into the pharmacokinetics and tissue distribution characteristics of HHC following oral and IP administration in mice, setting the stage for further focus on HHC as a potential new drug candidate.
Collapse
Affiliation(s)
- Worawut Chaiyasaeng
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok 10240, Thailand
| | - Darunee Hongwiset
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Chainarong Tocharus
- Department
of Anatomy, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Baralee Punyawudho
- Department
of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department
of Physiology, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Waraluck Chaichompoo
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok 10240, Thailand
| | - Pornchai Rojsitthisak
- Department
of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wachirachai Pabuprapap
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok 10240, Thailand
| | - Boon-ek Yingyongnarongkul
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok 10240, Thailand
| | - Apichart Suksamrarn
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok 10240, Thailand
| |
Collapse
|
8
|
Jearjaroen P, Thangwong P, Tocharus C, Chaichompoo W, Suksamrarn A, Tocharus J. Hexahydrocurcumin attenuated demyelination and improved cognitive impairment in chronic cerebral hypoperfusion rats. Inflammopharmacology 2024; 32:1531-1544. [PMID: 38153537 DOI: 10.1007/s10787-023-01406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Age-related white matter lesions (WML) frequently present vascular problems by decreasing cerebral blood supply, resulting in the condition known as chronic cerebral hypoperfusion (CCH). This study aimed to investigate the effect of hexahydrocurcumin (HHC) on the processes of demyelination and remyelination induced by the model of the Bilateral Common Carotid Artery Occlusion (BCCAO) for 29 days to mimic the CCH condition. The pathological appearance of myelin integrity was significantly altered by CCH, as evidenced by Transmission Electron Microscopy (TEM) and Luxol Fast Blue (LFB) staining. In addition, CCH activated A1-astrocytes and reactive-microglia by increasing the expression of Glial fibrillary acidic protein (GFAP), complement 3 (C3d) and pro-inflammatory cytokines. However, S100a10 expression, a marker of neuroprotective astrocytes, was suppressed, as were regenerative factors including (IGF-1) and Transglutaminase 2 (TGM2). Therefore, the maturation step was obstructed as shown by decreases in the levels of myelin basic protein (MBP) and the proteins related with lipid synthesis. Cognitive function was therefore impaired in the CCH model, as evidenced by the Morris water maze test. By contrast, HHC treatment significantly improved myelin integrity, and inhibited A1-astrocytes and reactive-microglial activity. Consequently, pro-inflammatory cytokines and A1-astrocytes were attenuated, and regenerative factors increased assisting myelin maturation and hence improving cognitive performance. In conclusion, HHC improves cognitive function and also the integrity of white matter in CCH rats by reducing demyelination, and pro-inflammatory cytokine production and promoting the process of remyelination.
Collapse
Affiliation(s)
- Pranglada Jearjaroen
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phakkawat Thangwong
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chianqg Mai, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
9
|
Li N, Su S, Xie X, Yang Z, Li Z, Lu D. Tsantan Sumtang, a traditional Tibetan medicine, protects pulmonary vascular endothelial function of hypoxia-induced pulmonary hypertension rats through AKT/eNOS signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117436. [PMID: 37979813 DOI: 10.1016/j.jep.2023.117436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tsantan Sumtang (TS), originated from the Four Tantras, is an empirical Tibetan medicine prescription, which has been widely used for treating cardiovascular diseases in the clinic in Qinghai Province of China. Our previous studies found that TS alleviated hypoxia-induced pulmonary hypertension (HPH) in rats. However, the effect and bioactive fractions of TS on hypoxia-injured pulmonary vascular endothelium are unknown. AIM OF THE STUDY To investigate the effect, bioactive fractions and pharmacological mechanism of TS on hypoxia-injured pulmonary vascular endothelium in vivo and in vitro. MATERIALS AND METHODS In vivo studies, HPH animal model was established, and TS was administrated for four weeks. Then, hemodynamic indexes, ex vivo pulmonary artery perfusion experiment, morphological characteristics, nitric oxide (NO) production, and the protein expression of protein kinase B (AKT)/endothelial nitric oxide synthase (eNOS) and AMP-activated protein kinase (AMPK)/eNOS signaling were determined. In vitro studies, 1% O2-induced pulmonary artery endothelial cells (PAECs) injury model was applied for screening bioactive fractions of TS by cell proliferation assay and NO production measurement. The associated proteins of AKT/eNOS signaling were further measured to elucidate underlying mechanism of bioactive fraction of TS via using phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002. Ultra-high performance liquid chromatography with hybrid quadrupole-orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS) was used to reveal the chemical profile of bioactive fraction of TS. RESULTS TS showed protective effect on the integrity of distal pulmonary arterial endothelium in HPH rats. Tsantan Sumtang dilated pulmonary arterial rings in HPH rats. TS enhanced NO bioavailability in lung tissue via regulating AKT/eNOS signaling. Furthermore, in the cellular level, cell viability as well as NO content of hypoxia-injured PAECs were elevated by fraction 17 of water extract of TS (WTS), through activating the AKT/eNOS signaling. Ellagic acid could be one of compositions in fraction 17 of WTS to produce NO in hypoxia-injured PAECs. CONCLUSION TS restored pulmonary arterial endothelial function in HPH rats. The bioactive fraction 17 was screened, which protected hypoxia-injured PAECs via upregulating AKT/eNOS signaling.
Collapse
Affiliation(s)
- Na Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China; Affiliated Hospital of Qinghai University, Xining, 810001, PR China
| | - Shanshan Su
- Technical Center of Xining Customs, Key Laboratory of Food Safety Research in Qinghai Province, Xining, 810003, PR China
| | - Xin Xie
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China
| | - Zhanting Yang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China.
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China; Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610086, PR China.
| |
Collapse
|
10
|
Abolfazli S, Mortazavi P, Kheirandish A, Butler AE, Jamialahmadi T, Sahebkar A. Regulatory effects of curcumin on nitric oxide signaling in the cardiovascular system. Nitric Oxide 2024; 143:16-28. [PMID: 38141926 DOI: 10.1016/j.niox.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The continuously rising prevalence of cardiovascular disease (CVD) globally substantially impacts the economic growth of developing countries. Indeed, one of the leading causes of death worldwide is unfavorable cardiovascular events. Reduced nitric oxide (NO) generation is the pathogenic foundation of endothelial dysfunction, which is regarded as the first stage in the development of a number of CVDs. Nitric oxide exerts an array of biological effects, including vasodilation, the suppression of vascular smooth muscle cell proliferation and the functional control of cardiac cells. Numerous treatment strategies aim to increase NO synthesis or upregulate downstream NO signaling pathways. The major component of Curcuma longa, curcumin, has long been utilized in traditional medicine to treat various illnesses, especially CVDs. Curcumin improves CV function as well as having important pleiotropic effects, such as anti-inflammatory and antioxidant, through its ability to increase the bioavailability of NO and to positively impact NO-related signaling pathways. In this review, we discuss the scientific literature relating to curcumin's positive effects on NO signaling and vascular endothelial function.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Parham Mortazavi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Kheirandish
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, PO Box, 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Li R, Liang Q, Yang Q, Dai W, Xiao Y, Pan H, Zhang Z, Liu L, Li X. Hexahydrocurcumin from Zingiberis rhizoma attenuates lipopolysaccharide-induced acute pneumonia through JAK1/STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155141. [PMID: 37837898 DOI: 10.1016/j.phymed.2023.155141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Pneumonia is one of the major causes of death after pathogens infection. Zingiberis rhizoma (GAN JIANG) is a herb that used in combination with other Chinese medicines to treat pathogen such as virus induced pneumonia. However, the affect of hexahydrocurcumin (HHC), a component from Zingiberis rhizoma, on pneumonia remains unknown. PURPOSE This study aims to explore the effects of HHC on lipopolysaccharide (LPS)-induced acute pneumonia, and to clarify the underlying mechanism. METHODS The pneumonia model of C57BL/6 mice was established by intratracheal injection of LPS to evaluate the therapeutic effect of HHC on lung injury and inflammation in vivo. RAW264.7 macrophages were utilized to illustrate the cellular mechanism of HHC in vitro. RESULTS HHC alleviated lung injury, ROS and inflammatory cytokine IL-6 production in pneumonia mice in vivo. Molecular docking results disclosed the binding of HHC to JAK1 protein. The study further showed that HHC suppressed the inflammatory cytokines such as IL-6, TNF-α, IL-1β gene expression, inhibited the phosphorylation of JAK1 but not JAK3, and the subsequent STAT3 phosphorylation in LPS-activated macrophages. HHC exhibited no effects on the protein levels of JAK1 and STAT3 in vitro. Consistently, HHC also attenuated the JAK1, STAT3 phosphorylation in pneumonia mice in vivo. CONCLUSION The results reveal that HHC attenuates pneumonia by targeted inhibition of JAK1/STAT3 signaling pathway. It indicates the novel role of HHC to treat pneumonia, and its potential applications for JAK inhibitor-treated diseases.
Collapse
Affiliation(s)
- Ruopeng Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinghe Liang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenqi Dai
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yao Xiao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hudan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhongde Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
12
|
Dawuti A, Sun S, Wang R, Gong D, Liu R, Kong D, Yuan T, Zhou J, Lu Y, Wang S, Du G, Fang L. Salvianolic acid A alleviates heart failure with preserved ejection fraction via regulating TLR/Myd88/TRAF/NF-κB and p38MAPK/CREB signaling pathways. Biomed Pharmacother 2023; 168:115837. [PMID: 37931518 DOI: 10.1016/j.biopha.2023.115837] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a morbid, fatal, and common syndrome for which lack of evidence-based therapies. Salvianolic acid A (SAA), a major active ingredient of Salvia miltiorrhiza Burge, has shown potential to protect against cardiovascular diseases. This study aims to elucidate whether SAA possessed therapeutic activity against HFpEF and explore the potential mechanism. HFpEF mouse model was established infusing a combination of high-fat diet (HFD) and Nω-nitro-L-arginine methyl ester (L-NAME) for 14 weeks. After 10 weeks of feeding, HFpEF mice were given SAA (2.5, 5, 10 mg/kg) via oral gavage for four weeks. Body weight, blood pressure, blood lipids, glucose tolerance, exercise performance, cardiac systolic/diastolic function, cardiac pathophysiological changes, and inflammatory factors were assessed. Experimental results showed that SAA reduced HFpEF risk factors, such as body weight gain, glucose intolerance, lipid disorders, and increased exercise tolerance in HFpEF mice. Moreover, SAA not only relieved myocardial hypertrophy and fibrosis by reducing interventricular septal wall thickness, left ventricular posterior wall thickness, left ventricular mass, heart index, cardiomyocyte cross-sectional area and cardiac collagen content, but also improved cardiac diastolic function via reducing E/E' ratio. Finally, SAA inhibited TLR2/TLR4-mediated Myd88 activation and its downstream molecules TRAF6 and IRAK4, which decreases the release of proinflammatory cytokines and mediators through NF-κB and p38 MAPK pathways. In conclusion, SAA could attenuate cardiac inflammation and cardiac disfunction by TLR/Myd88/TRAF/NF-κB and p38MAPK/CREB signaling pathways in HFpEF mice, which provides evidence for SAA as a potential drug for treatment of HFpEF in clinic.
Collapse
Affiliation(s)
- Awaguli Dawuti
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuchan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ranran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Difei Gong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruiqi Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dewen Kong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Lu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shoubao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
13
|
Sun Z, Wang W, Liu J, Zou S, Yin D, Lyu C, Yu J, Wei Y. Bioactive Peptides from Ruditapes philippinarum Attenuate Hypertension and Cardiorenal Damage in Deoxycorticosterone Acetate-Salt Hypertensive Rats. Molecules 2023; 28:7610. [PMID: 38005332 PMCID: PMC10675683 DOI: 10.3390/molecules28227610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Hypertension is a common disease that affects human health and can lead to damage to the heart, kidneys, and other important organs. In this study, we investigated the regulatory effects of bioactive peptides derived from Ruditapes philippinarum (RPP) on hypertension and organ protection in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. We found that RPPs exhibited significant blood pressure-lowering properties. Furthermore, the results showed that RPPs positively influenced vascular remodeling and effectively maintained a balanced water-sodium equilibrium. Meanwhile, RPPs demonstrated anti-inflammatory potential by reducing the serum levels of inflammatory cytokines (TNF-α, IL-2, and IL-6). Moreover, we observed the strong antioxidant activity of RPPs, which played a critical role in reducing oxidative stress and alleviating hypertension-induced damage to the aorta, heart, and kidneys. Additionally, our study explored the regulatory effects of RPPs on the gut microbiota, suggesting a possible correlation between their antihypertensive effects and the modulation of gut microbiota. Our previous studies have demonstrated that RPPs can significantly reduce blood pressure in SHR rats. This suggests that RPPs can significantly improve both essential hypertension and DOAC-salt-induced secondary hypertension and can ameliorate cardiorenal damage caused by hypertension. These findings further support the possibility of RPPs as an active ingredient in functional anti-hypertensive foods.
Collapse
Affiliation(s)
- Zonghui Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| | - Weixia Wang
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Jinli Liu
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Shengcan Zou
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Dongli Yin
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Chenghan Lyu
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| |
Collapse
|
14
|
Huang Y, Liu Q, Liu M, Xu L, Li Y, Chen Q, Guan D, Xu J, Lin C, Wang S. System pharmacology-based determination of the functional components and mechanisms in chronic heart failure treatment: an example of Zhenwu decoction. J Biomol Struct Dyn 2023; 42:12935-12953. [PMID: 37921741 DOI: 10.1080/07391102.2023.2274515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
Chronic heart failure (CHF) is the primary cause of death among patients with cardiovascular diseases, representing the advanced stage in the development of several cardiovascular conditions. Zhenwu decoction (ZWD) has gained widespread recognition as an efficacious remedy for CHF due to its potent therapeutic properties and absence of adverse effects. Nevertheless, the precise molecular mechanisms underlying its actions remain elusive. This study endeavors to unravel the intricate pharmacological underpinnings of five herbs within ZWD concerning CHF through an integrated approach. Initially, pertinent data regarding ZWD and CHF were compiled from established databases, forming the foundation for constructing an intricate network of active component-target interactions. Subsequently, a pioneering method for evaluating node significance was formulated, culminating in the creation of core functional association space (CFAS). To discern vital components, a novel dynamic programming algorithm was devised and used to determine the core component group (CCG) within the CFAS. Enrichment analysis of the CCG targets unveiled the potential coordinated molecular mechanisms of ZWD, illuminating its capacity to ameliorate CHF by modulating genes and related signaling pathways involved in pathological remodeling. Notable pathways encompass PI3K-Akt, diabetic cardiomyopathy, cAMP and MAPK signaling. Concluding the computational analyses, in vitro experiments were executed to assess the effects of vanillic acid, paradol, 10-gingerol and methyl cinnamate. Remarkably, these compounds demonstrated efficacy in reducing the production of ANP and BNP within isoprenaline-induced AC 16 cells, further validating their potential therapeutic utility. This investigation underscores the efficacy of the proposed model in enhancing the precision and reliability of CCG selection within ZWD, thereby presenting a novel avenue for mechanistic inquiries, compound refinement and the secondary development of TCM herbs.
Collapse
Affiliation(s)
- Yisheng Huang
- Department of Anesthesiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Meiyu Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liqian Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Quanlin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Jindong Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Chunshui Lin
- Department of Anesthesiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Sheng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Chen M, Hu Q, Wang S, Tao L, Hu X, Shen X. 1,8-Cineole ameliorates endothelial injury and hypertension induced by L-NAME through regulation of autophagy via PI3K/mTOR signaling pathway. Eur J Pharmacol 2023; 954:175863. [PMID: 37380045 DOI: 10.1016/j.ejphar.2023.175863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Our previous data confirmed that 1,8-Cineole had an antihypertensive effect in animal models. However, it is unclear whether antihypertension is dependent on the protective effect of 1,8-Cineole on endothelial function and structure. At present, the purpose was to investigate the protective effects of 1,8-Cineole on vascular endothelial tissue in hypertensive rats and human umbilical vein endothelial cells (HUVECs). Our results showed that 1,8-Cineole significantly reduced the blood pressure and improved the vascular endothelial lesion, attenuated vascular oxidative stress and inflammation induced by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) in rats. Pretreatment with 1,8-Cineole was able to inhibit the increase in malondialdehyde (MDA) and reactive oxygen species (ROS) induced by L-NAME, and increased the release and expression of superoxide dismutase (SOD) and nitric oxide (NO). In addition, 1,8-Cineole also reversed the increase of autophagy-associated protein LC3Ⅱ/LC3Ⅰ and the decrease of P62 in vivo and in vitro respectively. There was a synergistic effect between PI3K agonists and drugs, while PI3K inhibitors blocked the efficacy of 1,8-Cineole. The addition of autophagy inhibitor chloroquine increases the expression of eNOS. Taken together, our results indicate that 1,8-Cineole has potential beneficial promising antihypertension depending on the integrity of vascular endothelial structure and function induced by L-NAME, and the mechanism involves ameliorating autophagy by regulating of PI3K/mTOR.
Collapse
Affiliation(s)
- Meng Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
| | - Qilan Hu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
| | - Shengquan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
| | - Xiaoxia Hu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China; The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, China; The Department of Pharmacology, College of Basic Medical Sciences of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
16
|
Yang L, Zhai Y, Zhang Z, Liu Z, Hou B, Zhang B, Wang Z. Widely Targeted Metabolomics Reveals the Effects of Soil on the Metabolites in Dioscorea opposita Thunb. Molecules 2023; 28:4925. [PMID: 37446587 DOI: 10.3390/molecules28134925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Chinese yam (Dioscorea opposita Thunb. cv. Tiegun), a type of homologous medicinal plant, mainly grows in sandy soil (SCY) and loessial soil (LCY). However, the effects of the soil on the metabolites in SCY and LCY remain unclear. Herein, this study aims to comprehensively elucidate the metabolites in SCY and LCY. A UPLC-MS/MS-based, widely targeted metabolomics approach was adapted to compare the chemical composition of SCY and LCY. A total of 988 metabolites were detected, including 443 primary metabolites, 510 secondary metabolites, and 35 other compounds. Notably, 177 differential metabolites (classified into 12 categories) were identified between SCY and LCY; among them, 85.9% (152 differential metabolites) were upregulated in LCY. LCY significantly increased the contents of primary metabolites such as 38 lipids and 6 nucleotides and derivatives, as well as some secondary metabolites such as 36 flavonoids, 28 phenolic acids, 13 alkaloids, and 6 tannins. The results indicate that loessial soil can improve the nutritional and medicinal value of D. opposita.
Collapse
Affiliation(s)
- Lanping Yang
- College of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yangyang Zhai
- College of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhenzhen Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhenzhen Liu
- College of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| | - Baohua Hou
- College of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| | - Baobao Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhenhui Wang
- College of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
17
|
Iampanichakul M, Potue P, Rattanakanokchai S, Maneesai P, Khamseekaew J, Settheetham-Ishida W, Pakdeechote P. Limonin ameliorates cardiovascular dysfunction and remodeling in hypertensive rats. Life Sci 2023; 327:121834. [PMID: 37290669 DOI: 10.1016/j.lfs.2023.121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023]
Abstract
AIMS Limonin is a tetracyclic triterpenoid isolated from citrus fruits. Here, the effects of limonin on cardiovascular abnormalities in nitric oxide-deficient rats induced by Nω-Nitrol-arginine methyl ester (L-NAME) were explored. MAIN METHODS Male Sprague Dawley rats were given L-NAME (40 mg/kg, drinking water) for 3 weeks and then treated daily with polyethylene glycol (vehicle), limonin (50 or 100 mg/kg) or telmisartan (10 mg/kg) for two weeks. KEY FINDINGS Limonin (100 mg/kg) markedly reduced L-NAME-induced hypertension, cardiovascular dysfunction and remodeling in rats (P < 0.05). Increases in systemic angiotensin-converting enzyme (ACE) activity and angiotensin II (Ang II) and a reduction in circulating ACE2 were restored in hypertensive rats treated with limonin (P < 0.05). Reductions in antioxidant enzymes and nitric oxide metabolites (NOx) and increases in oxidative stress components induced by L-NAME were relieved by limonin treatment (P < 0.05). Limonin suppressed the increased expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in cardiac tissue and circulating TNF-α in rats that received L-NAME (P < 0.05). Changes in Ang II receptor type I (AT1R), Mas receptor (MasR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) and NADPH oxidase subunit 2 (gp91phox) protein expression in cardiac and aortic tissue were normalized by limonin (P < 0.05). SIGNIFICANCE In conclusion, limonin ameliorated L-NAME-induced hypertension, cardiovascular dysfunction and remodeling in rats. These effects were relevant to restorations of the renin-angiotensin system, oxidative stress and inflammation in NO-deficient rats. The molecular mechanisms are associated with the modulation of AT1R, MasR, NF-ĸB and gp91phox protein expression in cardiac and aortic tissue.
Collapse
Affiliation(s)
- Metee Iampanichakul
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Juthamas Khamseekaew
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
18
|
Panthiya L, Tocharus J, Chaichompoo W, Suksamrarn A, Tocharus C. Hexahydrocurcumin mitigates angiotensin II-induced proliferation, migration, and inflammation in vascular smooth muscle cells. EXCLI JOURNAL 2023; 22:466-481. [PMID: 37534221 PMCID: PMC10391613 DOI: 10.17179/excli2023-6124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/30/2023] [Indexed: 08/04/2023]
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) play vital roles in the pathogenesis of atherosclerosis and hypertension. It has been proposed and verified that hexahydrocurcumin (HHC), a metabolite form of curcumin, has cardiovascular protective effects. This study examined the effect of HHC on angiotensin II (Ang II)-induced proliferation, migration, and inflammation in rat aortic VSMCs and explored the molecular mechanisms related to the processes. The results showed that HHC significantly suppressed Ang II-induced proliferation, migration, and inflammation in VSMCs. HHC inhibited Ang II-induction of the increase in cyclin D1 and decrease in p21 expression in VSMCs. Moreover, HHC attenuated the generation of reactive oxygen species (ROS), and the expression of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and matrix metalloproteinases-9 (MMP9) in Ang II-induced VSMCs. The proliferation, migration, inflammation, and ROS production were also inhibited by GKT137831 (NADPH oxidase, NOX1/4 inhibitor) and the combination of HHC and GKT137831. In addition, HHC restored the Ang-II inhibited expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) and peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α). These findings indicate that HHC may play a protective role in Ang II-promoted proliferation, migration, and inflammation by suppressing NADPH oxidase mediated ROS generation and elevating PPAR-γ and PGC-1α expression. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Luckika Panthiya
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence of Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence of Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
19
|
Li J, Hu G, Liu W, Cao X, Chen G, Peng F, Xiaofang X, Peng C. Patchouli alcohol against renal fibrosis of spontaneously hypertensive rats via Ras/Raf-1/ERK1/2 signalling pathway. J Pharm Pharmacol 2023:7161501. [PMID: 37177974 DOI: 10.1093/jpp/rgad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES The present study was designed to obverse the protection of patchouli alcohol (PA) ameliorates hypertensive nephropathy in spontaneously hypertensive rats (SHR) and reveals potential mechanism. METHODS Briefly, the adult spontaneously hypertensive rats (SHR) or Wistar-Kyoto (WKY) rats (half male and half female) were intragastric gavaged or not with PA (80, 40 and 20 mg/kg) for 8 weeks. Body weight, blood pressure (BP), renal weight, renal function and renal morphology were measured. Further, western blotting and immunohistochemical analysis were used to study the underlying mechanism. KEY FINDINGS Compared with the WKY group, plasmatic levels of renin, angiotensin II (Ang-II), transforming growth factor beta 1(TGF-β1), plasminogen activator inhibitor-1(PAI-1), creatinine (Cr), blood urea nitrogen (BUN), renal index, mRNA levels of ERK1/2 and α-SMA were significantly increased in SHR. Histology results showed that renal tubular injury and tubulointerstitial fibrosis occurred in SHR. After administration, SBP of captopril group decreased at each week after administration, especially at 3, 5, 6 7 and 8 weeks (P < 0.05 or P < 0.01). There is no significant effect was assessed in the olive oil group. Decreased plasma Cr, Renin, Ang-II, TGF-β1, PAI-1, SCFAs and Renin, TGF-β1, PAI-1 in renal tissues were observed significantly in captopril (P <0.05 or P < 0.01). Plasma BUN, Ang-II, TGF-β1 and PAI-1 in renal tissues decreased in the olive oil group significantly (P <0.05 or P < 0.01). PA (80, 40 and 20 mg/kg) lowered BP and plasmatic levels of Renin, Ang-II, TGF-β1 and PAI-1. Treatment with PA (40, 20 mg/kg) decreased levels of Cr, BUN and suppressed of activation of pro-fibrosis cytokines including TGF-β1 in kidney. There is no ameliorative change in the olive oil group and the captopril group (P > 0.05) while PA treatment alleviated renal tubular injury and produced dramatic collagen fibre area reductions in mesangial membrane, basement membrane, and renal interstitium obviously (P < 0.05 or P < 0.01). Treatment of SHR with PA-inhibited MFB activation and downregulated mRNA of α-SMA. Treatment with PA suppressed excessive production of the extracellular matrix (ECM) via decreasing Col I, III and FN, downregulating mRNA of tissue inhibitor of TIMP-1 along with upregulating mRNA of MMP-9. The expression of Col III and MMP-9 mRNA-reduced in the captopril group (P < 0.05). In addition, the expression of ERK1/2 and pERK1/2 also reduced in the captopril group significantly (P < 0.05 or P < 0.01). Treatment with PA (20 mg/kg) downregulated proteins expression of Raf-1, ERK1/2 and pERK1/2 and mRNA expression of Ras, Raf-1 and ERK1/2. CONCLUSIONS Overall, PA restored normal BP, alleviated renal dysfunction and renal fibrosis, possibly by suppressing Ang II and TGF-β1-mediated Ras/Raf-1/ERK1/2 signalling pathway.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Guanying Hu
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wenxiu Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Guanru Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, PR China
| | - Xie Xiaofang
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
20
|
Moke EG, Omogbai EKI, Osagie-Eweka SDE, Uchendu AP, Omogbiya AI, Ben-Azu B, Eduviere AT, Edje KE, Umukoro EK, Anachuna KK, Asiwe JN, Ahante E, Oghoghovwe IJ. Co-administration of metformin and/or glibenclamide with losartan reverse N G-nitro-l-arginine-methyl ester-streptozotocin-induced hypertensive diabetes and haemodynamic sequelae in rats. Microvasc Res 2023; 147:104497. [PMID: 36738987 DOI: 10.1016/j.mvr.2023.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Over the years, there have been opinions on whether to reduced blood pressure (BP) to a different levels in patients with diabetes mellitus. Hence, this study investigated the efficacy of the co-administration of losartan (angiotensin receptor blocking antihypertensive agent) with metformin and/or glibenclamide (antidiabetic agents) on hypertensive-diabetic experimental rats induced by NG-nitro-l-arginine-methyl-ester hydrochloride (l-NAME), and streptozotocin (STZ). STZ (45 mg/kg, i.p.)-induced diabetic rats combined with l-NAME (40 mg/kg, p.o.)-induced hypertension were allotted into different groups. Group 1 received distilled water (10 mL/kg) and served as normal control, group 2 comprised hypertensive diabetic rats with distilled water, groups 3-5 were hypertensive-diabetic rats but received combination treatments of losartan + metformin, losartan + glibenclamide, and losartan + metformin + glibenclamide daily for 8 weeks, respectively. Our finding revealed no changes in the body weights, but there was a significant increase in fasting blood sugar levels in l-NAME - STZ-induced hypertensive-diabetes, which were lowered by losartan + metformin, losartan + glibenclamide, and losartan + metformin + glibenclamide treatments. Moreover, the increased systolic-BP, mean arterial pressure but not diastolic-BP and heart rate by l-NAME + STZ were attenuated more significantly by losartan + metformin + glibenclamide between weeks 2-8 relative to hypertensive-diabetic control. l-NAME + STZ-induced elevated levels of lactate dehydrogenase and creatinine kinase, were differentially reversed by losartan + metformin, losartan + glibenclamide, and losartan + metformin + glibenclamide. However, l-NAME + STZ-induced decreased nitrite level was significantly restored by all treatments, suggesting increased nitrergic transmission. Additionally, l-NAME + STZ-induced degeneration of pancreatic islet and myocardial cells were dramatically alleviated by losartan + metformin + glibenclamide treatments. Our findings suggest hyperglycemia with raised systolic-BP should be managed with losartan combined with both metformin and glibenclamide than single combination of losartan with antidiabetics.
Collapse
Affiliation(s)
- Emuesiri Goodies Moke
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
| | - Eric K I Omogbai
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
| | - Sammy D E Osagie-Eweka
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Adaeze P Uchendu
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
| | - Adrian I Omogbiya
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
| | - Anthony T Eduviere
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Kesiena E Edje
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Emuesiri K Umukoro
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, Delta State University, Abraka, Nigeria
| | - Kenneth K Anachuna
- Department of Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Jerome N Asiwe
- Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Nigeria
| | - Ejiroghene Ahante
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Ighohwo J Oghoghovwe
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| |
Collapse
|
21
|
Oboh G, Oluokun OO, Oyeleye S, Ogunsuyi O. Moringa seed-supplemented diets modulate ACE activity but not its gene expression in L-NAME-induced hypertensive rats. Biomarkers 2022; 27:684-693. [PMID: 35833352 DOI: 10.1080/1354750x.2022.2101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Introduction: We investigated the effect of dietary inclusions of Moringa seed (5% and 10%) on blood pressure, angiotensin-1 converting enzyme (ACE) activity, and gene expression, as well as redox status in hypertensive rats.Material and methods: Wistar strain albino rats were fed moringa seed-based diets for two weeks prior L-NAME (40 mg/kg/day, p.o.) administration for another ten days. Subsequently, the blood pressure was monitored. Furthermore, the kidney homogenates were assayed for ACE activity and gene expression, as well as oxidative stress markers.Results: The increased (systolic =297 ± 59.30 mmHg; diastolic= 242 ± 51.96 mmHg) blood pressure, arginase activity, and reduced nitric oxide level were significantly ameliorated in hypertensive rats treated with the seed. However, the elevated ACE activity was significantly reduced but not the upregulated ACE1 gene. Also, the reduced antioxidant enzyme activities were ameliorated with a significant downregulation in their regulator-Nrf2. Rutin (4.07 ± 0.02 mg/g) and quercitrin (4.06 ± 0.01 mg/g), among others, were found in the seed.Discussion: This study suggests that moringa seed offers its antihypertensive properties by acting as an ACE inhibitor but not its gene modulator, and also modulates the antioxidant system through interaction with Nrf2.Conclusion: Moringa seed could act as an ACE inhibitor and not its gene modulator.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria.,Drosophila Research lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, P.M.B. 704 Akure, Nigeria
| | - Odunayo O Oluokun
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria.,Drosophila Research lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, P.M.B. 704 Akure, Nigeria
| | - Sunday Oyeleye
- Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria.,Drosophila Research lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, P.M.B. 704 Akure, Nigeria
| | - Opeyemi Ogunsuyi
- Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria.,Drosophila Research lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, P.M.B. 704 Akure, Nigeria
| |
Collapse
|
22
|
Bao M, Song Y, Wu S, Li J. Influence of Hypersensitive C-Reactive Protein on the Effect of Continuous Antihypertensive Pharmacological Therapy. J Cardiovasc Pharmacol 2022; 80:62-69. [PMID: 35384909 PMCID: PMC9249075 DOI: 10.1097/fjc.0000000000001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Systemic chronic inflammation, represented by hypersensitive C-reactive protein (hsCRP), is an essential contributing factor to hypertension. However, the influence of hsCRP levels on the effect of antihypertensive pharmacological therapy remains unknown. We evaluated hsCRP levels in 3756 newly diagnosed, untreated hypertensive subjects. Participants were grouped by tertiles of hsCRP and were randomly treated with nitrendipine + captopril, nitrendipine + spironolactone hydrochlorothiazide + captopril, and hydrochlorothiazide + spironolactone. Blood pressure (BP) was recorded every 2 weeks. A multivariate mixed linear model was used to evaluate the impact of baseline hsCRP levels on the continuous antihypertensive effect. After 3, 6, 9, and 12 months of continuous antihypertensive treatment, no significant difference was observed in BP decline among the different hsCRP groups. We identified interactions between baseline hsCRP levels and follow-up time. After adjusting for conventional risk factors and the interactions between hsCRP and follow-up time, there was no significant association between baseline hsCRP level and antihypertensive effects at 0-6 months of follow-up. However, from 6 to 12 months, subjects with higher baseline hsCRP levels exhibited a more marked BP-lowering effect ( P < 0.001 at 9 months, P = 0.002 at 12 months). Overall, there exist interaction effects between baseline hsCRP levels and follow-up time. Individuals with higher baseline hsCRP levels may exhibit a better response to antihypertensive therapy.
Collapse
Affiliation(s)
- Minghui Bao
- Department of Cardiology, Peking University First Hospital, Peking University, Beijing, China
| | - Yongjian Song
- Department of Cardiology, Zhangjiakou First Hospital, Hebei, China; and
| | - Shouling Wu
- Department of Cardiology, Kailuan Hospital, North China University of Science and Technology, Tangshan, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
23
|
Li KX, Wang ZC, Machuki JO, Li MZ, Wu YJ, Niu MK, Yu KY, Lu QB, Sun HJ. Benefits of Curcumin in the Vasculature: A Therapeutic Candidate for Vascular Remodeling in Arterial Hypertension and Pulmonary Arterial Hypertension? Front Physiol 2022; 13:848867. [PMID: 35530510 PMCID: PMC9075737 DOI: 10.3389/fphys.2022.848867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Growing evidence suggests that hypertension is one of the leading causes of cardiovascular morbidity and mortality since uncontrolled high blood pressure increases the risk of myocardial infarction, aortic dissection, hemorrhagic stroke, and chronic kidney disease. Impaired vascular homeostasis plays a critical role in the development of hypertension-induced vascular remodeling. Abnormal behaviors of vascular cells are not only a pathological hallmark of hypertensive vascular remodeling, but also an important pathological basis for maintaining reduced vascular compliance in hypertension. Targeting vascular remodeling represents a novel therapeutic approach in hypertension and its cardiovascular complications. Phytochemicals are emerging as candidates with therapeutic effects on numerous pathologies, including hypertension. An increasing number of studies have found that curcumin, a polyphenolic compound derived from dietary spice turmeric, holds a broad spectrum of pharmacological actions, such as antiplatelet, anticancer, anti-inflammatory, antioxidant, and antiangiogenic effects. Curcumin has been shown to prevent or treat vascular remodeling in hypertensive rodents by modulating various signaling pathways. In the present review, we attempt to focus on the current findings and molecular mechanisms of curcumin in the treatment of hypertensive vascular remodeling. In particular, adverse and inconsistent effects of curcumin, as well as some favorable pharmacokinetics or pharmacodynamics profiles in arterial hypertension will be discussed. Moreover, the recent progress in the preparation of nano-curcumins and their therapeutic potential in hypertension will be briefly recapped. The future research directions and challenges of curcumin in hypertension-related vascular remodeling are also proposed. It is foreseeable that curcumin is likely to be a therapeutic agent for hypertension and vascular remodeling going forwards.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | - Meng-Zhen Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Jie Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-Kai Niu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kang-Ying Yu
- Nursing School of Wuxi Taihu University, Wuxi, China
| | - Qing-Bo Lu
- School of Medicine, Southeast University, Nanjing, China
| | - Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|