1
|
Zhang XT, Ji CL, Fu YJ, Yang Y, Xu GY. Screening of active components of Ganoderma lucidum and decipher its molecular mechanism to improve learning and memory disorders. Biosci Rep 2024; 44:BSR20232068. [PMID: 38904095 PMCID: PMC11292473 DOI: 10.1042/bsr20232068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/18/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
Learning and memory impairment (LMI), a common degenerative central nervous system disease. Recently, more and more studies have shown that Ganoderma lucidum (GL) can improve the symptoms of LMI. The active ingredients in GL and their corresponding targets were screened through TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and BATMAN-TCM (Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine) databases, and the potential LMI targets were searched for through GeneCard (GeneCards Human Gene Database) and DrugBank. Then, we construct a 'main active ingredient-target' network and a protein-protein interaction (PPI) network diagram.The GO (Gene Ontology) functional enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotation analysis were performed on the common targets through DAVID (Database for Annotation Visualization and Integrated Discovery) to clarify the potential molecular mechanism of action of active ingredients in GL. The tumor necrosis factor (TNF) protein was verified by Western blot; Twenty one active ingredients in GL and 142 corresponding targets were screened out, including 59 targets shared with LMI. The 448 biological processes shown by the GO functional annotation results and 55 signal pathways shown by KEGG enrichment analysis were related to the improvement of LMI by GL, among which the correlation of Alzheimer's disease pathway is the highest, and TNF was the most important protein; TNF can improve LMI. GL can improve LMI mainly by 10 active ingredients in it, and they may play a role by regulating Alzheimer's disease pathway and TNF protein.
Collapse
Affiliation(s)
- Xiao-tian Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin 130000, People’s Republic of China
| | - Chun-lei Ji
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| | - Yu-juan Fu
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| | - Yue Yang
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| | - Guang-yu Xu
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| |
Collapse
|
2
|
Lee HJ, Choi HJ, Jeong YJ, Na YH, Hong JT, Han JM, Hoe HS, Lim KH. Developing theragnostics for Alzheimer's disease: Insights from cancer treatment. Int J Biol Macromol 2024; 269:131925. [PMID: 38685540 DOI: 10.1016/j.ijbiomac.2024.131925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The prevalence of Alzheimer's disease (AD) and its associated economic and societal burdens are on the rise, but there are no curative treatments for AD. Interestingly, this neurodegenerative disease shares several biological and pathophysiological features with cancer, including cell-cycle dysregulation, angiogenesis, mitochondrial dysfunction, protein misfolding, and DNA damage. However, the genetic factors contributing to the overlap in biological processes between cancer and AD have not been actively studied. In this review, we discuss the shared biological features of cancer and AD, the molecular targets of anticancer drugs, and therapeutic approaches. First, we outline the common biological features of cancer and AD. Second, we describe several anticancer drugs, their molecular targets, and their effects on AD pathology. Finally, we discuss how protein-protein interactions (PPIs), receptor inhibition, immunotherapy, and gene therapy can be exploited for the cure and management of both cancer and AD. Collectively, this review provides insights for the development of AD theragnostics based on cancer drugs and molecular targets.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Hee-Jeong Choi
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Yoo Joo Jeong
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoon-Hee Na
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Ji Min Han
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.
| | - Key-Hwan Lim
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| |
Collapse
|
3
|
Poddar NK, Khan A, Fatima F, Saxena A, Ghaley G, Khan S. Association of mTOR Pathway and Conformational Alterations in C-Reactive Protein in Neurodegenerative Diseases and Infections. Cell Mol Neurobiol 2023; 43:3815-3832. [PMID: 37665407 PMCID: PMC11407721 DOI: 10.1007/s10571-023-01402-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Inflammatory biomarkers have been very useful in detecting and monitoring inflammatory processes along with providing helpful information to select appropriate therapeutic strategies. C-reactive protein (CRP) is a nonspecific, but quite useful medical acute inflammatory biomarker and is associated with persistent chronic inflammatory processes. Several studies suggest that different levels of CRP are correlated with neurological disorders such as Alzheimer's disease (AD). However, dynamics of CRP levels have also been observed in virus/bacterial-related infections leading to inflammatory responses and this triggers mTOR-mediated pathways for neurodegeneration diseases. The biophysical structural transition from CRP to monomeric CRP (mCRP) and the significance of the ratio of CRP levels on the onset of symptoms associated with inflammatory response have been discussed. In addition, mTOR inhibitors act as immunomodulators by downregulating the expression of viral infection and can be explored as a potential therapy for neurological diseases.
Collapse
Affiliation(s)
- Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007.
| | - Arshma Khan
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India, 243123
| | - Falak Fatima
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida, India, 201301
| | - Anshulika Saxena
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007
| | - Garima Ghaley
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Deoband, Saharanpur, Uttar Pradesh, India, 247554.
| |
Collapse
|