1
|
Xu K, Shah P, Makhanasa D, Khan MW. Unveiling the Maze: Branched-Chain Amino Acids Fueling the Dynamics of Cancer Metabolism and Progression. Cancers (Basel) 2025; 17:1751. [PMID: 40507232 PMCID: PMC12153561 DOI: 10.3390/cancers17111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/16/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025] Open
Abstract
Branched-chain amino acids (BCAAs) are essential for protein synthesis and play a crucial role in activating signaling pathways that regulate cell growth and division. Growing evidence reveals their complex role in cancer, particularly in how they support the metabolic reprogramming of tumor cells. BCAAs contribute to an environment that promotes tumor growth and survival by affecting energy balance and key cellular signaling networks. This review highlights recent advances in understanding how BCAAs influence cancer metabolism, emphasizing their dual function as both essential nutrients and sources of metabolic fuel. It also explores how BCAAs interact with other metabolic pathways, revealing potential targets for therapy. By uncovering these cancer-specific dependencies on BCAAs, this work points to promising strategies for disrupting tumor progression and developing new treatment approaches.
Collapse
Affiliation(s)
| | | | | | - Md. Wasim Khan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.X.); (P.S.); (D.M.)
| |
Collapse
|
2
|
Zhou Y, Kou J, Li W, Wang Y, Su X, Zhang H. BCAA metabolism in cancer progression and therapy resistance: The balance between fuel and cell signaling. Front Pharmacol 2025; 16:1595176. [PMID: 40438606 PMCID: PMC12116492 DOI: 10.3389/fphar.2025.1595176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 05/01/2025] [Indexed: 06/01/2025] Open
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, play a crucial role in cellular metabolism and signaling. Recent studies have demonstrated that BCAA metabolic reprogramming is a key driver of tumor progression and treatment resistance in various cancers. BCAA metabolism supports cancer cell growth, survival, and proliferation by modulating pathways such as mTOR signaling and oxidative stress responses. By promoting immunosuppressive conditions and increasing the survival rate of cancer stem cells (CSCs), BCAAs contribute to immune evasion and resistance to therapies such as chemotherapy and immune checkpoint inhibitors. This article explores the different metabolic reprogramming patterns of BCAAs in various tumors and introduces BCAA-related metabolic targets for overcoming tumor resistance, offering new directions for precision cancer treatment, reducing resistance, and improving patient outcomes.
Collapse
Affiliation(s)
- Yi Zhou
- Departments of Thoracic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiahui Kou
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Wenjin Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Yuyao Wang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Xingxing Su
- Shunyi Maternal and Children’s Hospital of Beijing Children’s Hospital, Beijing, China
| | - Hongguang Zhang
- Departments of Thoracic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Chen W, Zhuang A, Liu C, He Y, Kaixin Lu, Jiang T, Zhang H, Gao R, Xue X. Mitochondrial enzyme HIBADH protects against calcium oxalate nephrolithiasis by modulating oxidative stress and apoptosis. Arch Biochem Biophys 2025; 770:110452. [PMID: 40334962 DOI: 10.1016/j.abb.2025.110452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
Calcium oxalate (CaOx) nephrolithiasis, as one of the most common types of kidney stones, poses a major threat to human health. This study aimed to investigate the role of 3-hydroxyisobutyrate dehydrogenase (HIBADH) in the pathogenesis of CaOx nephrolithiasis. CaOx nephrolithiasis models were established in rats via 1 % ethylene glycol and 2 % ammonium chloride induction and in HK-2 cells using calcium oxalate monohydrate (COM, 100 μg/mL). HIBADH expression was modulated through plasmid transfection and siRNA knockdown in vitro, and AAV2/9-mediated gene transfer in vivo. Multiple parameters were assessed, including cell crystal adhesion, apoptosis, cell cycle distribution, oxidative stress markers (SOD, MDA, MitoSOX fluorescence), and mitochondrial function (ATP level, mitochondrial membrane potential), using various techniques such as crystal adhesion assay, flow cytometry, western blot, qRT-PCR, and fluorescence microscopy. Kidney tissues were analyzed through H&E, Von Kossa, and PAS staining. Results demonstrated that HIBADH expression was significantly downregulated in CaOx nephrolithiasis rats and COM-treated HK-2 cells. In vitro, HIBADH overexpression reduced cell crystal adhesion and apoptosis, promoted cell cycle progression, mitigated mitochondria-involved cellular oxidative stress, and enhanced mitochondrial function in COM-induced HK-2 cells. In vivo, AAV2/9-mediated HIBADH overexpression attenuated crystal deposits and tubular injury, reduced apoptosis, and mitigated mitochondria-involved cellular oxidative stress in kidney tissues. The mitochondria-targeted antioxidant Mito-TEMPO counteracted the effects of HIBADH silencing, highlighting the role of mitochondrial function in HIBADH's protective mechanism. This study identifies HIBADH as a critical regulator in CaOx nephrolithiasis, exerting its protective effects through modulation of mitochondrial function and mitochondria-involved cellular oxidative stress, cell crystal adhesion, and apoptosis. Our findings elucidate the link between mitochondrial metabolism and kidney stone formation, positioning HIBADH as a key protective factor and a promising candidate with therapeutic potential for CaOx nephrolithiasis.
Collapse
Affiliation(s)
- Wenwei Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Anni Zhuang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Changyi Liu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yanfeng He
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Kaixin Lu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Tao Jiang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Hua Zhang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Rui Gao
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Xueyi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
4
|
Li Z, Chen S, Wu X, Liu F, Zhu J, Chen J, Lu X, Chi R. Research advances in branched-chain amino acid metabolism in tumors. Mol Cell Biochem 2025; 480:2707-2723. [PMID: 39576465 DOI: 10.1007/s11010-024-05163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/10/2024] [Indexed: 01/06/2025]
Abstract
The metabolic reprogramming of amino acids is an important component of tumor metabolism. Branched-chain amino acids (BCAAs) perform important functions in tumor progression. They are the important amino donor and are involved in the synthesis of various non-essential amino acids, nucleotides, and polyamines to satisfy the increased demand for nitrogen sources. This review summarizes the studies related to abnormalities in BCAA metabolism during tumorigenesis and the potential therapeutic targets. The expression of BCAA transporters was significantly upregulated in tumor cells, which increases BCAA uptake. High expression of the BCAA transaminases is prevalent in various tumors, however, the dehydrogenation step of BCAA catabolism is inhibited in tumors. This review shows that BCAA metabolic reprogramming is an important tumor metabolic feature, and metabolic genes of BCAAs play a crucial role in tumor metabolism, representing a good auxiliary target for early clinical diagnosis and treatment. In addition, BCAAs are indispensable for maintaining immune system function, and dietary supplementation with BCAAs can enhance the activity of immune cells. Therefore, BCAA supplementation in tumor patients may affect the interaction between the immune system and tumors.
Collapse
Affiliation(s)
- Zheng Li
- The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | | | - Xuechao Wu
- Wuxi Neurosurgical Institute, Wuxi, China
- Department of Neurosurgery, Jiangnan University, Medical Center, Wuxi, China
| | - Fei Liu
- Department of Neurosurgery, Jiangnan University, Medical Center, Wuxi, China
| | - Jing Zhu
- College of Nursing and Health Innovation, The University of Texas Arlington, Arlington, TX, 76010, USA
| | - Jiayi Chen
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, Jilin, China.
| | - Xiaojie Lu
- The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China.
- Nanjing Medical University, Nanjing, China.
- Wuxi Neurosurgical Institute, Wuxi, China.
- Department of Neurosurgery, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, China.
| | - Rui Chi
- The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China.
- Department of Laboratory Medicine, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, China.
| |
Collapse
|
5
|
Yang D, Yang C, Huang L, Guan M, Song C. Role of ubiquitination-driven metabolisms in oncogenesis and cancer therapy. Semin Cancer Biol 2025; 110:17-35. [PMID: 39929409 DOI: 10.1016/j.semcancer.2025.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Ubiquitination represents one of the most critical post-translational modifications, comprising a multi-stage enzyme process that plays a pivotal role in a myriad of cellular biological activities. The deregulation of the processes of ubiquitination and deubiquitination is associated with the development of cancers and other diseases. This typescript reviews the impact of ubiquitination on metabolic processes, elucidating the regulatory functions of ubiquitination on pivotal enzymes within metabolic pathways in pathological contexts. It underscores the role of ubiquitination-driven metabolism disorders in the etiology of cancers, and oncogenesis, and highlights the potential therapeutic efficacy of targeting ubiquitination-driven enzymes in cancer metabolism, their combination with immune checkpoint inhibitors, and their clinical applications.
Collapse
Affiliation(s)
- Dongqin Yang
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai 200040, China; Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumuqi Road, Shanghai 200040, China
| | - Can Yang
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Linlin Huang
- Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumuqi Road, Shanghai 200040, China
| | - Ming Guan
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Chunhua Song
- Division of Hematology, The Ohio State University Wexner Medical Center, the James Cancer Hospital, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Diao M, Li Z, Zhou R, Yan X, Zhang T. The combined antimicrobial activity of α-lactalbumin and thymol against Escherichia coli and Staphylococcus aureus. Food Chem 2025; 473:143048. [PMID: 39884235 DOI: 10.1016/j.foodchem.2025.143048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/26/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Thymol showed good antimicrobial activity, however, the poor aqueous solubility limits it to apply in food industry. α-Lactalbumin can be used to delivery hydrophobic molecules, then enhancing their biological activities. The study investigates the potential of α-lactalbumin to expand the application range of thymol, further to evaluate the antimicrobial activity of the α-lactalbumin-thymol complexation. Multi-spectroscopy techniques and computational simulations have confirmed the successful complexation, driving mainly by van der Waals force. The α-lactalbumin-thymol complexation exhibited the superior antimicrobial activity than thymol against Escherichia coli and Staphylococcus aureus, as indicated by lower or comparable minimum inhibitory concentration (336 μg/mL and 224 μg/mL, respectively), fewer colony forming units, and larger inhibition zone diameters. Furthermore, α-lactalbumin enhanced the degree of membrane damage by thymol. The complexation preserved no obvious cytotoxicity against HeLa cells. This study indicates that the α-lactalbumin-thymol complexation chelates hold promise as natural antimicrobial agents in the food processing industry.
Collapse
Affiliation(s)
- Mengxue Diao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ziwei Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Runhao Zhou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xiaoxia Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
7
|
Xu X, Chen H, Gao L, Sun C, Li X, Li Y, Wang W, Zheng Y. Maternal-offspring brain and tissue cross-talk in preeclampsia: insights from a rat model. Metab Brain Dis 2025; 40:173. [PMID: 40192930 PMCID: PMC11976809 DOI: 10.1007/s11011-025-01593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/21/2025] [Indexed: 04/10/2025]
Abstract
This study aimed to investigate the differential metabolic profiles across maternal and offspring brains, serum, and placental tissues in preeclampsia (PE), with a particular focus on elucidating the maternal-offspring brain and tissue cross-talk that may contribute to the complex pathophysiology of PE. PE was induced in rats using the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) to simulate both early-onset PE (EOPE) and late-onset PE (LOPE). We utilized non-targeted proton nuclear magnetic resonance (NMR) metabolomics to characterize the metabolic profiles of serum, placental tissue extracts, and brain tissues from both mothers and offspring. Multivariate analysis, Spearman correlation, Density-Based Spatial Clustering of Applications with Noise algorithm, Data-Driven Statistical Predictive Correlation network analysis and Tissue heterogeneity analysis were employed to explore tissue-specific metabolic signatures and their interactions. Following L-NAME induction, both EOPE and LOPE presented significant metabolic differences and shared traits across tissues, with distinct tissue-specific responses characterizing the metabolic profile of PE. Serum from both PE groups showed a decrease in tryptophan, isobutyrate, and lactate, with an increase in betaine. Lactate was upregulated in placental tissues, highlighting its metabolic role. Extensive intra-tissue metabolic correlations and inter-tissue metabolite exchanges were detected among the maternal brain, serum, placenta, and offspring brain across all three experimental groups. EOPE and LOPE exhibited distinctly different metabolic characteristics and trajectories of differential metabolites, along with diverse interaction patterns between the maternal/offspring brain and the placenta. This study uncovers the multi-tissue metabolic remodeling in response to preeclampsia, implying that addressing pathophysiological stress is crucial and may have potential implications for neurological outcomes. The comprehensive analysis highlights the pivotal role of the brain-placenta axis in preeclampsia, advocating for a classified diagnostic and management approach.
Collapse
Affiliation(s)
- Xiaomin Xu
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China
| | - Haiyin Chen
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China
| | - Lidan Gao
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China
| | - Congcong Sun
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China
| | - Xiaoqing Li
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China
| | - Yanjun Li
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China
| | - Wenhuan Wang
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China
| | - Yanyan Zheng
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China.
- Neurology Department, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China.
| |
Collapse
|
8
|
Srivastava S, Anbiaee R, Houshyari M, Laxmi, Sridhar SB, Ashique S, Hussain S, Kumar S, Taj T, Akbarnejad Z, Taghizadeh-Hesary F. Amino acid metabolism in glioblastoma pathogenesis, immune evasion, and treatment resistance. Cancer Cell Int 2025; 25:89. [PMID: 40082966 PMCID: PMC11908050 DOI: 10.1186/s12935-025-03721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025] Open
Abstract
Glioblastoma (GBM) ranks among the most lethal primary tumors of the central nervous system. This is partly due to its complex intracellular metabolism and interactions with the surrounding tumor microenvironment (TME). Compelling evidence represents that altered amino acids (AAs) metabolism plays a crucial role in both areas. The role of AAs and their metabolites in glioma biology is an emerging topic. Therefore, this review was conducted to summarize the current knowledge about the molecular mechanisms by which AAs participate in the GBM pathogenesis. AAs can directly influence tumor progression by affecting tumor cell metabolism or indirectly by releasing bioactive agents through particular metabolic pathways. This review begins by examining the metabolic pathways of essential AAs, such as tryptophan, tyrosine, and phenylalanine, which contribute to synthesizing critical neurotransmitters and shape tumor metabolism signatures. We explore how these pathways impact tumor growth and immune modulation, focusing on how AAs and their metabolites can promote malignant properties in GBM cells. AAs also play a pivotal role in reprogramming the TME, contributing to immune evasion and resistance to therapy. The review further discusses how tumor metabolism signatures, influenced by AA metabolism, can enhance the immunosuppressive microenvironment, providing new avenues for targeted immunotherapies. Finally, we outline potential therapeutic strategies to modulate AA metabolism and emphasize critical opportunities for future research to improve GBM management.
Collapse
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Robab Anbiaee
- Radio Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Houshyari
- Radio Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laxmi
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India
| | | | - Sumel Ashique
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, 711316, West Bengal, India
| | - Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy college and research centre, Yenepoya (Deemed to be) university, Mangalore, 575018, India
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Godlewski A, Mojsak P, Pienkowski T, Lyson T, Mariak Z, Reszec J, Kaminski K, Moniuszko M, Kretowski A, Ciborowski M. Metabolomic profiling of plasma from glioma and meningioma patients based on two complementary mass spectrometry techniques. Metabolomics 2025; 21:33. [PMID: 39987409 DOI: 10.1007/s11306-025-02231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/02/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Extracranial and intracranial tumors are a diverse group of malignant and benign neoplasms, influenced by multiple factors. Given the complex nature of these tumors and usually late or accidental diagnosis, minimally invasive, rapid, early, and accurate diagnostic methods are urgently required. Metabolomics offers promising insights into central nervous system tumors by uncovering distinctive metabolic changes linked to tumor development. OBJECTIVES This study aimed to elucidate the role of altered metabolites and the associated biological pathways implicated in the development of gliomas and meningiomas. METHODS The study was conducted on 95 patients with gliomas, 68 patients with meningiomas, and 71 subjects as a control group. The metabolic profiling of gliomas and meningiomas achieved by integrating untargeted metabolomic analysis based on GC-MS and targeted analysis performed using LC-MS/MS represents the first comprehensive study. Three comparisons (gliomas or meningiomas vs. controls as well as gliomas vs. meningiomas) were performed to reveal statistically significant metabolites. RESULTS Comparative analysis revealed 97, 56, and 27 significant metabolites for gliomas vs. controls, meningiomas vs. controls and gliomas vs. meningiomas comparison, respectively. Moreover, among above mentioned comparisons unique metabolites involved in arginine biosynthesis and metabolism, the Krebs cycle, and lysine degradation pathways were found. Notably, 2-aminoadipic acid has been identified as a metabolite that can be used in distinguishing two tumor types. CONCLUSIONS Our results provide a deeper understanding of the metabolic changes associated with brain tumor development and progression.
Collapse
Affiliation(s)
- Adrian Godlewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Patrycja Mojsak
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Tomasz Pienkowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Tomasz Lyson
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, 15-276, Poland
- Department of Interventional Neurology, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Zenon Mariak
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Karol Kaminski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, 15-276, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland.
| |
Collapse
|
10
|
Lu Z, Wang XY, He KY, Han XH, Wang X, Zhang Z, Qu XH, Chen ZP, Han XJ, Wang T. CHIP-mediated ubiquitin degradation of BCAT1 regulates glioma cell proliferation and temozolomide sensitivity. Cell Death Dis 2024; 15:538. [PMID: 39075053 PMCID: PMC11286746 DOI: 10.1038/s41419-024-06938-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Glioma, a malignant and infiltrative neoplasm of the central nervous system, poses a significant threat due to its high mortality rates. Branched-chain amino acid transaminase 1 (BCAT1), a key enzyme in branched-chain amino acid (BCAA) catabolism, exhibits elevated expression in gliomas and correlates strongly with poor prognosis. Nonetheless, the regulatory mechanisms underlying this increased BCAT1 expression remains incompletely understood. In this study, we reveal that ubiquitination at Lys360 facilitates BCAT1 degradation, with low ubiquitination levels contributing to high BCAT1 expression in glioma cells. The Carboxyl terminus of Hsc70-interacting protein (CHIP), an E3 ubiquitin ligase, interacts with BCAT1 via its coiled-coil (CC) domain, promoting its K48-linkage ubiquitin degradation through proteasomal pathway. Moreover, CHIP-mediated BCAT1 degradation induces metabolic reprogramming, and impedes glioma cell proliferation and tumor growth both in vitro and in vivo. Furthermore, a positive correlation is observed between low CHIP expression, elevated BCAT1 levels, and unfavorable prognosis among glioma patients. Additionally, we show that the CHIP/BCAT1 axis enhances glioma sensitivity to temozolomide by reducing glutathione (GSH) synthesis and increasing oxidative stress. These findings underscore the critical role of CHIP/BCAT1 axis in glioma cell proliferation and temozolomide sensitivity, highlighting its potential as a diagnostic marker and therapeutic target in glioma treatment.
Collapse
Affiliation(s)
- Zhuo Lu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Xiao-Yu Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Kai-Yi He
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xin-Hao Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xing Wang
- Centre for Medical Research and Translation, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xin-Hui Qu
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Zhi-Ping Chen
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China.
- Centre for Medical Research and Translation, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China.
| | - Tao Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China.
| |
Collapse
|