1
|
Simmen FA, Alhallak I, Simmen RCM. Krüppel-like Factor-9 and Krüppel-like Factor-13: Highly Related, Multi-Functional, Transcriptional Repressors and Activators of Oncogenesis. Cancers (Basel) 2023; 15:5667. [PMID: 38067370 PMCID: PMC10705314 DOI: 10.3390/cancers15235667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024] Open
Abstract
Specificity Proteins/Krüppel-like Factors (SP/KLF family) are a conserved family of transcriptional regulators. These proteins share three highly conserved, contiguous zinc fingers in their carboxy-terminus, requisite for binding to cis elements in DNA. Each SP/KLF protein has unique primary sequence within its amino-terminal and carboxy-terminal regions, and it is these regions which interact with co-activators, co-repressors, and chromatin-modifying proteins to support the transcriptional activation and repression of target genes. Krüppel-like Factor 9 (KLF9) and Krüppel-like Factor 13 (KLF13) are two of the smallest members of the SP/KLF family, are paralogous, emerged early in metazoan evolution, and are highly conserved. Paradoxically, while most similar in primary sequence, KLF9 and KLF13 display many distinct roles in target cells. In this article, we summarize the work that has identified the roles of KLF9 (and to a lesser degree KLF13) in tumor suppression or promotion via unique effects on differentiation, pro- and anti-inflammatory pathways, oxidative stress, and tumor immune cell infiltration. We also highlight the great diversity of miRNAs, lncRNAs, and circular RNAs which provide mechanisms for the ubiquitous tumor-specific suppression of KLF9 mRNA and protein. Elucidation of KLF9 and KLF13 in cancer biology is likely to provide new inroads to the understanding of oncogenesis and its prevention and treatments.
Collapse
Affiliation(s)
- Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
| | - Rosalia C. M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
2
|
Ren Y, Xu YP, Fan XY, Murtaza B, Wang YN, Li Z, Javed MT, Wang ZH, Li Q. Transcriptome analysis reveals key transcription factors and pathways of polian vesicle associated with cell proliferation in Vibrio splendidus-challenged Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101082. [PMID: 37146451 DOI: 10.1016/j.cbd.2023.101082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
Polian vesicle is thought to produce coelomocytes and contribute to the sea cucumber's immune system. Our previous work has indicated that polian vesicle was responsible for cell proliferation at 72 h post pathogenic challenge. However, the transcription factors related to the activation of effector factors and the molecular process behind this remained unknown. In this study, to reveal the early functions of polian vesicle in response to the microbe, a comparative transcriptome sequencing of polian vesicle in V. splendidus-challenged Apostichopus japonicus, including normal group (PV 0 h), pathogen challenging for 6 h (PV 6 h) and 12 h (PV 12 h) was performed. Compared PV 0 h to PV 6 h, PV 0 h to PV 12 h, and PV 6 h to PV 12 h, we found 69, 211, and 175 differentially expressed genes (DEGs), respectively. KEGG enrichment analysis revealed the DEGs, including several transcription factors such as fos, FOS-FOX, ATF2, egr1, KLF2, and Notch3 between PV 6 h and PV 12 h were consistently enriched in MAPK, Apelin and Notch3 signaling pathways related to cell proliferation compared with that in PV 0 h. Important DEGs involved in cell growth were chosen, and their expression patterns were almost the same as the transcriptome profile analysis by qPCR. Protein interaction network analysis indicated that two DEGs of fos and egr1 were probably significant as key candidate genes controlling cell proliferation and differentiation in polian vesicle after pathogenic infection in A. japonicus. Overall, our analysis demonstrates that polian vesicles may play an essential role in regulating proliferation via transcription factors-mediated signaling pathway in A. japonicus and provide new insights into hematopoietic modulation of polian vesicles in response to pathogen infection.
Collapse
Affiliation(s)
- Yuan Ren
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yong-Ping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xu-Yuan Fan
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yi-Nan Wang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhen Li
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Muhammad Tariq Javed
- Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Zhen-Hui Wang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Qiang Li
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
3
|
Karaosmanoglu B, Kursunel MA, Uckan Cetinkaya D, Gumruk F, Esendagli G, Unal S, Taskiran EZ. Proerythroblast Cells of Diamond-Blackfan Anemia Patients With RPS19 and CECR1 Mutations Have Similar Transcriptomic Signature. Front Physiol 2021; 12:679919. [PMID: 34177624 PMCID: PMC8226250 DOI: 10.3389/fphys.2021.679919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/27/2021] [Indexed: 11/18/2022] Open
Abstract
Diamond Blackfan Anemia (DBA) is an inherited bone marrow (BM) failure syndrome, characterized by a paucity of erythroid differentiation. DBA is mainly caused by the mutations in ribosomal protein genes, hence classified as ribosomopathy. However, in approximately 30% of patients, the molecular etiology cannot be discovered. RPS19 germline mutations caused 25% of the cases. On the other hand, CECR1 mutations also cause phenotypes similar to DBA but not being a ribosomopathy. Due to the blockade of erythropoiesis in the BM, we investigated the transcriptomic profile of three different cell types of BM resident cells of DBA patients and compared them with healthy donors. From BM aspirates BM mononuclear cells (MNCs) were isolated and hematopoietic stem cells (HSC) [CD71–CD34+ CD38mo/lo], megakaryocyte–erythroid progenitor cells (MEP) [CD71–CD34+ CD38hi] and Proerythroblasts [CD71+ CD117+ CD38+] were sorted and analyzed with a transcriptomic approach. Among all these cells, proerythroblasts had the most different transcriptomic profile. The genes associated with cellular stress/immune responses were increased and some of the transcription factors that play a role in erythroid differentiation had altered expression in DBA proerythroblasts. We also showed that gene expression levels of ribosomal proteins were decreased in DBA proerythroblasts. In addition to these, colony formation assay (CFU-E) provided functional evidence of the failure of erythroid differentiation in DBA patients. According to our findings that all patients resembling both RPS19 and CECR1 mutations have common transcriptomic signatures, it may be possible that inflammatory BM niche may have a role in DBA pathogenesis.
Collapse
Affiliation(s)
- Beren Karaosmanoglu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - M Alper Kursunel
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | - Duygu Uckan Cetinkaya
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Fatma Gumruk
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Research Center for Fanconi Anemia and Other IBMFS, Hacettepe University, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | - Sule Unal
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Research Center for Fanconi Anemia and Other IBMFS, Hacettepe University, Ankara, Turkey
| | - Ekim Z Taskiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Wang X, Yang L, Wang YC, Xu ZR, Feng Y, Zhang J, Wang Y, Xu CR. Comparative analysis of cell lineage differentiation during hepatogenesis in humans and mice at the single-cell transcriptome level. Cell Res 2020; 30:1109-1126. [PMID: 32690901 PMCID: PMC7784864 DOI: 10.1038/s41422-020-0378-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
During embryogenesis, the liver is the site of hepatogenesis and hematopoiesis and contains many cell lineages derived from the endoderm and mesoderm. However, the characteristics and developmental programs of many of these cell lineages remain unclear, especially in humans. Here, we performed single-cell RNA sequencing of whole human and mouse fetal livers throughout development. We identified four cell lineage families of endoderm-derived, erythroid, non-erythroid hematopoietic, and mesoderm-derived non-hematopoietic cells, and defined the developmental pathways of the major cell lineage families. In both humans and mice, we identified novel markers of hepatic lineages and an ID3+ subpopulation of hepatoblasts as well as verified that hepatoblast differentiation follows the “default-directed” model. Additionally, we found that human but not mouse fetal hepatocytes display heterogeneity associated with expression of metabolism-related genes. We described the developmental process of erythroid progenitor cells during human and mouse hematopoiesis. Moreover, despite the general conservation of cell differentiation programs between species, we observed different cell lineage compositions during hematopoiesis in the human and mouse fetal livers. Taken together, these results reveal the dynamic cell landscape of fetal liver development and illustrate the similarities and differences in liver development between species, providing an extensive resource for inducing various liver cell lineages in vitro.
Collapse
Affiliation(s)
- Xin Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Li Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Yan-Chun Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Zi-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Ye Feng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Jing Zhang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Yi Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Fujiwara T, Yokoyama H, Okitsu Y, Kamata M, Fukuhara N, Onishi Y, Fujimaki S, Takahashi S, Ishizawa K, Bresnick EH, Harigae H. Gene expression profiling identifies HOXB4 as a direct downstream target of GATA-2 in human CD34+ hematopoietic cells. PLoS One 2012; 7:e40959. [PMID: 23028422 PMCID: PMC3454409 DOI: 10.1371/journal.pone.0040959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/15/2012] [Indexed: 12/31/2022] Open
Abstract
Aplastic anemia is characterized by a reduced hematopoietic stem cell number. Although GATA-2 expression was reported to be decreased in CD34-positive cells in aplastic anemia, many questions remain regarding the intrinsic characteristics of hematopoietic stem cells in this disease. In this study, we identified HOXB4 as a downstream target of GATA-2 based on expression profiling with human cord blood-derived CD34-positive cells infected with control or GATA-2 lentiviral shRNA. To confirm the functional link between GATA-2 and HOXB4, we conducted GATA-2 gain-of-function and loss-of-function experiments, and HOXB4 promoter analysis, including luciferase assay, in vitro DNA binding analysis and quantitative ChIP analysis, using K562 and CD34-positive cells. The analyses suggested that GATA-2 directly regulates HOXB4 expression through the GATA sequence in the promoter region. Furthermore, we assessed GATA-2 and HOXB4 expression in CD34-positive cells from patients with aplastic anemia (n = 10) and idiopathic thrombocytopenic purpura (n = 13), and demonstrated that the expression levels of HOXB4 and GATA-2 were correlated in these populations (r = 0.6573, p<0.01). Our results suggested that GATA-2 directly regulates HOXB4 expression in hematopoietic stem cells, which may play an important role in the development and/or progression of aplastic anemia.
Collapse
Affiliation(s)
- Tohru Fujiwara
- Molecular Hematology/Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisayuki Yokoyama
- Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Hematology, Sendai Medical Center, Sendai, Japan
| | - Yoko Okitsu
- Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayumi Kamata
- Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Fukuhara
- Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasushi Onishi
- Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichi Fujimaki
- Infection Control and Laboratory Diagnosis, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichiro Takahashi
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Kenichi Ishizawa
- Molecular Hematology/Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Emery H. Bresnick
- Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Hideo Harigae
- Molecular Hematology/Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
6
|
Alder JK, Georgantas RW, Hildreth RL, Kaplan IM, Morisot S, Yu X, McDevitt M, Civin CI. Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. THE JOURNAL OF IMMUNOLOGY 2008; 180:5645-52. [PMID: 18390749 DOI: 10.4049/jimmunol.180.8.5645] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several members of the Kruppel-like factor (KLF) family of transcription factors play important roles in differentiation, survival, and trafficking of blood and immune cell types. We demonstrate in this study that hematopoietic cells from KLF4(-/-) fetal livers (FL) contained normal numbers of functional hematopoietic progenitor cells, were radioprotective, and performed as well as KLF4(+/+) cells in competitive repopulation assays. However, hematopoietic "KLF4(-/-) chimeras" generated by transplantation of KLF4(-/-) fetal livers cells into lethally irradiated wild-type mice completely lacked circulating inflammatory (CD115(+)Gr1(+)) monocytes, and had reduced numbers of resident (CD115(+)Gr1(-)) monocytes. Although the numbers and function of peritoneal macrophages were normal in KLF4(-/-) chimeras, bone marrow monocytic cells from KLF4(-/-) chimeras expressed lower levels of key trafficking molecules and were more apoptotic. Thus, our in vivo loss-of-function studies demonstrate that KLF4, previously shown to mediate proinflammatory signaling in human macrophages in vitro, is essential for differentiation of mouse inflammatory monocytes, and is involved in the differentiation of resident monocytes. In addition, inducible expression of KLF4 in the HL60 human acute myeloid leukemia cell line stimulated monocytic differentiation and enhanced 12-O-tetradecanoylphorbol 13-acetate induced macrophage differentiation, but blocked all-trans-retinoic acid induced granulocytic differentiation of HL60 cells. The inflammation-selective effects of loss-of-KLF4 and the gain-of-KLF4-induced monocytic differentiation in HL60 cells identify KLF4 as a key regulator of monocytic differentiation and a potential target for translational immune modulation.
Collapse
Affiliation(s)
- Jonathan K Alder
- Divisions of Immunology and Hematopoiesis, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Fujiwara T, Harigae H, Okitsu Y, Takahashi S, Yokoyama H, Yamada MF, Ishizawa K, Kameoka J, Kaku M, Sasaki T. Expression analyses and transcriptional regulation of mouse nucleolar spindle-associated protein gene in erythroid cells: essential role of NF-Y. Br J Haematol 2006; 135:583-90. [PMID: 17054671 DOI: 10.1111/j.1365-2141.2006.06340.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nucleolar spindle-associated protein (NuSAP), a recently characterised microtubule-associated protein, appears to participate in cell cycle regulation. It has been demonstrated that NuSAP is expressed preferentially in the erythroid lineage in haematopoietic cells. To characterise its role in erythropoiesis, we examined the expression profile of the NuSAP gene. In fractionated murine erythroblasts, NuSAP mRNA was remarkably more abundant in the subset corresponding to immature erythroblasts (TER119(+)CD71(high)) than mature erythroblasts (TER119(+)CD71(low)), and it was significantly increased in TER119(+) cells from in vivo phlebotomised mice compared with control mice. Furthermore, during erythroid maturation of mouse erythroleukaemia (MEL) cells by dimethylsulfoxide, NuSAP mRNA was increased at 24-72 h. These results suggested that the NuSAP gene might contribute to the expansion of immature erythroblast pool. The regulatory mechanism of NuSAP gene was investigated using MEL cells. Sequence analysis revealed that NuSAP promoter has four CCAAT boxes, an Sp1 element, a GATA-like element, a CACCC element, a Myb element and lacks a TATA box. Promoter analyses demonstrated that duplicated CCAAT boxes located at -81/-85 and -30/-34 were essential for promoter activity. Furthermore, the promoter was trans-activated by NF-YA through these elements. These results suggest that NuSAP might play an important role in erythroid proliferation under the control of NF-Y.
Collapse
Affiliation(s)
- Tohru Fujiwara
- Department of Rheumatology and Haematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|