1
|
Kodedová M, Valachovič M, Sychrová H. The replacement of ergosterol with alternative sterols affects the physiological function of the yeast plasma membrane, including its H +-ATPase activity and resistance to antifungal drugs. Microbes Infect 2025; 27:105409. [PMID: 39187062 DOI: 10.1016/j.micinf.2024.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Sterols perform essential structural and signalling functions in living organisms. Ergosterol contributes to the fluidity, permeability, microdomain formation and functionality of proteins in the yeast membrane. In our study, desmosterol was the most successful at compensating for the lack of ergosterol in Saccharomyces cerevisiae, besides stigmasterol and sitosterol. These three sterols supported cell growth without causing severe morphological defects, unlike cholesterol, 7-dehydrocholesterol, lathosterol, cholestanol or lanosterol. Together with ergosterol, they were also able to bring the plasma membrane potential of hem1Δ cells closer to the level of the wild type. In addition, desmosterol conferred even higher thermotolerance to yeast than ergosterol. Some sterols counteracted the antifungal toxicity of polyenes, azoles and terbinafine to hem1Δ cells. Plant sterols (stigmasterol, sitosterol) and desmosterol ensured the glucose-induced activation of H+-ATPase in hem1Δ cells analogously to ergosterol, whereas cholesterol and 7-dehydrocholesterol were less effective. Exogenous ergosterol, stigmasterol, sitosterol, desmosterol and cholesterol also improved the growth of Candida glabrata and Candida albicans in the presence of inhibitory concentration of fluconazole. The proper incorporation of exogenous sterols into the membrane with minimal adverse side effects on membrane functions was mainly influenced by the structure of the sterol acyl chain, and less by their ring structures.
Collapse
Affiliation(s)
- Marie Kodedová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic.
| | - Martin Valachovič
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia.
| | - Hana Sychrová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic.
| |
Collapse
|
2
|
Lim RM, Lu A, Chuang BM, Anaraki C, Chu B, Halbrook CJ, Edinger AL. CARMIL1-AA selectively inhibits macropinocytosis while sparing autophagy. Mol Biol Cell 2025; 36:ar4. [PMID: 39602282 PMCID: PMC11742120 DOI: 10.1091/mbc.e24-09-0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Macropinocytosis is reported to fuel tumor growth and drug resistance by allowing cancer cells to scavenge extracellular macromolecules. However, accurately defining the role of macropinocytosis in cancer depends on our ability to selectively block this process. 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) is widely used to inhibit macropinocytosis but affects multiple Na+/H+ exchangers (NHE) that regulate cytoplasmic and organellar pH. Consistent with this, we report that EIPA slows proliferation to a greater extent than can be accounted for by macropinocytosis inhibition and triggers conjugation of ATG8 to single membranes (CASM). Knocking down only NHE1 would not avoid macropinocytosis-independent effects on pH. Moreover, contrary to published reports, NHE1 loss did not block macropinocytosis in multiple cell lines. Knocking down CARMIL1 with CRISPR-Cas9 editing limited macropinocytosis, but only by 50%. In contrast, expressing the CARMIL1-AA mutant inhibits macropinocytosis induced by a wide range of macropinocytic stimuli to a similar extent as EIPA. CARMIL1-AA expression did not inhibit proliferation, highlighting the shortcomings of EIPA as a macropinocytosis inhibitor. Importantly, autophagy, another actin dependent, nutrient-producing process, was not affected by CARMIL1-AA expression. In sum, constitutive or inducible CARMIL1-AA expression reduced macropinocytosis without affecting proliferation, RAC activation, or autophagy, other processes that drive tumor initiation and progression.
Collapse
Affiliation(s)
- Rebecca M. Lim
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
| | - Alexa Lu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92617
| | - Brennan M. Chuang
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
| | - Cecily Anaraki
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA 92617
| | - Brandon Chu
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
| | - Christopher J. Halbrook
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA 92617
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868
| | - Aimee L. Edinger
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92617
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868
| |
Collapse
|
3
|
Hematyar N, Policar T, Rustad T. Importance of proteins and mitochondrial changes as freshness indicators in fish muscle post-mortem. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39614681 DOI: 10.1002/jsfa.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 12/01/2024]
Abstract
Evaluating protein and mitochondrial alterations post-mortem can contribute to determining correlations between fish-processing parameters and ultimate fish muscle quality. The myofibrillar protein alteration during rigor mortis directly affects the texture of fish muscle. To identify the mechanisms behind post-mortem softness and quality deterioration, it is crucial to understand the conditions linked to the breakdown of myofibrillar proteins in fish skeletal muscle. Therefore, monitoring protein breakdown at the molecular level and finding target proteins would be considered a marker for fish freshness. Mitochondria play an important role in executing and regulating cell death processes, including apoptosis and necrosis. The mitochondria are the seat of cellular respiration and experience significant alterations in post-mortem tissues. Processes used to reduce protein degradation, such as optimizing chilling and handling practices, would also minimize mitochondrial changes in fillet quality. Moreover, pH fluctuations are considered a critical point that influences both protein and mitochondrial changes. This review considered the implications of protein and mitochondrial alteration during post-mortem storage in fish fillets and the possible pathways of their interaction on fillet quality. Mitochondrial characteristics, such as membrane integrity, pH, and ATP levels, are important for post-mortem muscle cell changes, serving as an early indicator of fish freshness. Understanding the mechanisms behind protein degradation in fish muscle led to maintaining fillet quality and requires further experiments. Label-free proteomics combined with bioinformatics is crucial for comprehending protein degradation mechanisms to provide customers with safe and fresh fish products while minimizing economic losses associated with fillet deterioration. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Nima Hematyar
- Research Institute of Fish Culture and Hydrobiology, Zátiší, Czech Republic
| | - Tomas Policar
- Research Institute of Fish Culture and Hydrobiology, Zátiší, Czech Republic
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
4
|
Jiao X, Fu X, Li Q, Bu J, Liu X, Savolainen O, Huang L, Guo J, Nielsen J, Chen Y. De novo production of protoberberine and benzophenanthridine alkaloids through metabolic engineering of yeast. Nat Commun 2024; 15:8759. [PMID: 39384562 PMCID: PMC11464499 DOI: 10.1038/s41467-024-53045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Protoberberine alkaloids and benzophenanthridine alkaloids (BZDAs) are subgroups of benzylisoquinoline alkaloids (BIAs), which represent a diverse class of plant-specialized natural metabolites with many pharmacological properties. Microbial biosynthesis has been allowed for accessibility and scalable production of high-value BIAs. Here, we engineer Saccharomyces cerevisiae to de novo produce a series of protoberberines and BZDAs, including palmatine, berberine, chelerythrine, sanguinarine and chelirubine. An ER compartmentalization strategy is developed to improve vacuole protein berberine bridge enzyme (BBE) activity, resulting in >200% increase on the production of the key intermediate (S)-scoulerine. Another promiscuous vacuole protein dihydrobenzophenanthridine oxidase (DBOX) has been identified to catalyze two-electron oxidation on various tetrahydroprotoberberines at N7-C8 position and dihydrobenzophenanthridine alkaloids. Furthermore, cytosolically expressed DBOX can alleviate the limitation on BBE. This study highlights the potential of microbial cell factories for the biosynthesis of a diverse group of BIAs through engineering of heterologous plant enzymes.
Collapse
Affiliation(s)
- Xiang Jiao
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| | - Xiaozhi Fu
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| | - Qishuang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Neinanxiaojie, Dongcheng district, Beijing, China
| | - Junling Bu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Neinanxiaojie, Dongcheng district, Beijing, China
| | - Xiuyu Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Neinanxiaojie, Dongcheng district, Beijing, China
| | - Otto Savolainen
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Chalmers Mass Spectrometry Infrastructure, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.
- BioInnovation Institute, DK-2200, Copenhagen N, Denmark.
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
5
|
Vengayil V, Niphadkar S, Adhikary S, Varahan S, Laxman S. The deubiquitinase Ubp3/Usp10 constrains glucose-mediated mitochondrial repression via phosphate budgeting. eLife 2024; 12:RP90293. [PMID: 39324403 PMCID: PMC11426969 DOI: 10.7554/elife.90293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Many cells in high glucose repress mitochondrial respiration, as observed in the Crabtree and Warburg effects. Our understanding of biochemical constraints for mitochondrial activation is limited. Using a Saccharomyces cerevisiae screen, we identified the conserved deubiquitinase Ubp3 (Usp10), as necessary for mitochondrial repression. Ubp3 mutants have increased mitochondrial activity despite abundant glucose, along with decreased glycolytic enzymes, and a rewired glucose metabolic network with increased trehalose production. Utilizing ∆ubp3 cells, along with orthogonal approaches, we establish that the high glycolytic flux in glucose continuously consumes free Pi. This restricts mitochondrial access to inorganic phosphate (Pi), and prevents mitochondrial activation. Contrastingly, rewired glucose metabolism with enhanced trehalose production and reduced GAPDH (as in ∆ubp3 cells) restores Pi. This collectively results in increased mitochondrial Pi and derepression, while restricting mitochondrial Pi transport prevents activation. We therefore suggest that glycolytic flux-dependent intracellular Pi budgeting is a key constraint for mitochondrial repression.
Collapse
Affiliation(s)
- Vineeth Vengayil
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem)BangaloreIndia
- Manipal Academy of Higher EducationBangaloreIndia
| | - Shreyas Niphadkar
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem)BangaloreIndia
- Manipal Academy of Higher EducationBangaloreIndia
| | - Swagata Adhikary
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem)BangaloreIndia
- Manipal Academy of Higher EducationBangaloreIndia
| | - Sriram Varahan
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem)BangaloreIndia
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem)BangaloreIndia
| |
Collapse
|
6
|
Johnson DL, Kumar R, Kakhniashvili D, Pfeffer LM, Laribee RN. Ccr4-not ubiquitin ligase signaling regulates ribosomal protein homeostasis and inhibits 40S ribosomal autophagy. J Biol Chem 2024; 300:107582. [PMID: 39025453 PMCID: PMC11357857 DOI: 10.1016/j.jbc.2024.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
The Ccr4-Not complex contains the poorly understood Not4 ubiquitin ligase that functions in transcription, mRNA decay, translation, proteostasis, and endolysosomal nutrient signaling. To gain further insight into the in vivo functions of the ligase, we performed quantitative proteomics in Saccharomyces cerevisiae using yeast cells lacking Not4, or cells overexpressing wild-type Not4 or an inactive Not4 mutant. Herein, we provide evidence that balanced Not4 activity maintains ribosomal protein (RP) homeostasis independent of changes to RP mRNA or known Not4 ribosomal substrates. Intriguingly, we also find that Not4 loss activates 40S ribosomal autophagy independently of canonical Atg7-dependent macroautophagy, indicating that microautophagy is responsible. We previously demonstrated that Ccr4-Not stimulates the target of rapamycin complex 1 (TORC1) signaling, which activates RP expression and inhibits autophagy, by maintaining vacuole V-ATPase H+ pump activity. Importantly, combining Not4 deficient cells with a mutant that blocks vacuole H+ export fully restores RP expression and increases 40S RP autophagy efficiency. In contrast, restoring TORC1 activity alone fails to rescue either process, indicating that Not4 loss disrupts additional endolysosomal functions that regulate RP expression and 40S autophagy. Analysis of the Not4-regulated proteome reveals increases in endolysosomal and autophagy-related factors that functionally interact with Not4 to control RP expression and affect 40S autophagy. Collectively, our data indicate that balanced Ccr4-Not ubiquitin ligase signaling maintains RP homeostasis and inhibits 40S autophagy via the ligase's emerging role as an endolysosomal regulator.
Collapse
Affiliation(s)
- Daniel L Johnson
- Molecular Bioinformatics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ravinder Kumar
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - David Kakhniashvili
- Proteomics and Metabolomics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - R Nicholas Laribee
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
7
|
Kim Y. Fisetin-Mediated Perturbations of Membrane Permeability and Intracellular pH in Candida albicans. J Microbiol Biotechnol 2024; 34:783-794. [PMID: 38213272 PMCID: PMC11091701 DOI: 10.4014/jmb.2311.11027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
The antifungal activity of fisetin against Candida albicans is explored, elucidating a mechanism centered on membrane permeabilization and ensuing disruption of pH homeostasis. The Minimum Inhibitory Concentration (MIC) of fisetin, indicative of its interaction with the fungal membrane, increases in the presence of ergosterol. Hoechst 33342 and propidium-iodide staining reveal substantial propidium-iodide accumulation in fisetin-treated C. albicans cells at their MIC, with crystal violet uptake assays confirming fisetin-induced membrane permeabilization. Leakage analysis demonstrates a significant release of DNA and proteins in fisetin-treated cells compared to controls, underscoring the antifungal effect through membrane disruption. Green fluorescence, evident in both the cytoplasm and vacuoles of fisetin-treated cells under BCECF, AM staining, stands in contrast to controls where only acidic vacuoles exhibit staining. Ratiometric pH measurements using BCECF, AM reveal a noteworthy reduction in intracellular pH in fisetin-treated cells, emphasizing its impact on pH homeostasis. DiBAC4(3) uptake assays demonstrate membrane hyperpolarization in fisetin-treated cells, suggesting potential disruptions in ion flux and cellular homeostasis. These results provide comprehensive insights into the antifungal mechanisms of fisetin, positioning it as a promising therapeutic agent against Candida infections.
Collapse
Affiliation(s)
- Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon 27136, Republic of Korea
| |
Collapse
|
8
|
Zhao CR, You ZL, Bai L. Fungal Plasma Membrane H +-ATPase: Structure, Mechanism, and Drug Discovery. J Fungi (Basel) 2024; 10:273. [PMID: 38667944 PMCID: PMC11051447 DOI: 10.3390/jof10040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The fungal plasma membrane H+-ATPase (Pma1) pumps protons out of the cell to maintain the transmembrane electrochemical gradient and membrane potential. As an essential P-type ATPase uniquely found in fungi and plants, Pma1 is an attractive antifungal drug target. Two recent Cryo-EM studies on Pma1 have revealed its hexameric architecture, autoinhibitory and activation mechanisms, and proton transport mechanism. These structures provide new perspectives for the development of antifungal drugs targeting Pma1. In this article, we review the history of Pma1 structure determination, the latest structural insights into Pma1, and drug discoveries targeting Pma1.
Collapse
Affiliation(s)
- Chao-Ran Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Zi-Long You
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Lin Bai
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| |
Collapse
|
9
|
Mota MN, Matos M, Bahri N, Sá-Correia I. Shared and more specific genetic determinants and pathways underlying yeast tolerance to acetic, butyric, and octanoic acids. Microb Cell Fact 2024; 23:71. [PMID: 38419072 PMCID: PMC10903034 DOI: 10.1186/s12934-024-02309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The improvement of yeast tolerance to acetic, butyric, and octanoic acids is an important step for the implementation of economically and technologically sustainable bioprocesses for the bioconversion of renewable biomass resources and wastes. To guide genome engineering of promising yeast cell factories toward highly robust superior strains, it is instrumental to identify molecular targets and understand the mechanisms underlying tolerance to those monocarboxylic fatty acids. A chemogenomic analysis was performed, complemented with physiological studies, to unveil genetic tolerance determinants in the model yeast and cell factory Saccharomyces cerevisiae exposed to equivalent moderate inhibitory concentrations of acetic, butyric, or octanoic acids. RESULTS Results indicate the existence of multiple shared genetic determinants and pathways underlying tolerance to these short- and medium-chain fatty acids, such as vacuolar acidification, intracellular trafficking, autophagy, and protein synthesis. The number of tolerance genes identified increased with the linear chain length and the datasets for butyric and octanoic acids include the highest number of genes in common suggesting the existence of more similar toxicity and tolerance mechanisms. Results of this analysis, at the systems level, point to a more marked deleterious effect of an equivalent inhibitory concentration of the more lipophilic octanoic acid, followed by butyric acid, on the cell envelope and on cellular membranes function and lipid remodeling. The importance of mitochondrial genome maintenance and functional mitochondria to obtain ATP for energy-dependent detoxification processes also emerged from this chemogenomic analysis, especially for octanoic acid. CONCLUSIONS This study provides new biological knowledge of interest to gain further mechanistic insights into toxicity and tolerance to linear-chain monocarboxylic acids of increasing liposolubility and reports the first lists of tolerance genes, at the genome scale, for butyric and octanoic acids. These genes and biological functions are potential targets for synthetic biology approaches applied to promising yeast cell factories, toward more robust superior strains, a highly desirable phenotype to increase the economic viability of bioprocesses based on mixtures of volatiles/medium-chain fatty acids derived from low-cost biodegradable substrates or lignocellulose hydrolysates.
Collapse
Affiliation(s)
- Marta N Mota
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
| | - Madalena Matos
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
| | - Nada Bahri
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal.
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal.
| |
Collapse
|
10
|
Sugiyama S, Suda K, Kono K. Cytoplasmic zoning by protein phase transition after membrane permeabilization. J Biochem 2024; 175:147-153. [PMID: 37972304 PMCID: PMC10873517 DOI: 10.1093/jb/mvad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Biological membranes, including plasma membrane (PM) and organelle membranes, restrict the flux of ions, molecules and organelles. However, the barrier function of biological membranes is frequently compromised by various perturbations, including physical membrane damage and protein- or chemical-induced pore formation. Recent evidence suggests that, upon PM damage, protein gelation and solid condensation are utilized to restrict ion/molecule/organelle flux across the damaged membranes by zoning the cytoplasm. In addition, membrane permeabilization dramatically alters intramembrane and extramembrane ion/molecule concentrations via the flux across the permeabilized membrane. The changes in ion/molecule concentration and their downstream pathways induce protein phase transition to form zones for biological processes or protein sequestration. Here, we review the mechanisms and functions of protein phase transition after biological membrane permeabilization.
Collapse
Affiliation(s)
- Shinju Sugiyama
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Kojiro Suda
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Keiko Kono
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
11
|
Qin N, Li L, Wan X, Ji X, Chen Y, Li C, Liu P, Zhang Y, Yang W, Jiang J, Xia J, Shi S, Tan T, Nielsen J, Chen Y, Liu Z. Increased CO 2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast. Nat Commun 2024; 15:1591. [PMID: 38383540 PMCID: PMC10881976 DOI: 10.1038/s41467-024-45557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024] Open
Abstract
CO2 fixation plays a key role to make biobased production cost competitive. Here, we use 3-hydroxypropionic acid (3-HP) to showcase how CO2 fixation enables approaching theoretical-yield production. Using genome-scale metabolic models to calculate the production envelope, we demonstrate that the provision of bicarbonate, formed from CO2, restricts previous attempts for high yield production of 3-HP. We thus develop multiple strategies for bicarbonate uptake, including the identification of Sul1 as a potential bicarbonate transporter, domain swapping of malonyl-CoA reductase, identification of Esbp6 as a potential 3-HP exporter, and deletion of Uga1 to prevent 3-HP degradation. The combined rational engineering increases 3-HP production from 0.14 g/L to 11.25 g/L in shake flask using 20 g/L glucose, approaching the maximum theoretical yield with concurrent biomass formation. The engineered yeast forms the basis for commercialization of bio-acrylic acid, while our CO2 fixation strategies pave the way for CO2 being used as the sole carbon source.
Collapse
Affiliation(s)
- Ning Qin
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingyun Li
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Xiaozhen Wan
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xu Ji
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chaokun Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Ping Liu
- The State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yijie Zhang
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weijie Yang
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junfeng Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jianye Xia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shuobo Shi
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jens Nielsen
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden.
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark.
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark.
| | - Zihe Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
12
|
Peterson A, Baskett C, Ratcliff WC, Burnetti A. Transforming yeast into a facultative photoheterotroph via expression of vacuolar rhodopsin. Curr Biol 2024; 34:648-654.e3. [PMID: 38218181 DOI: 10.1016/j.cub.2023.12.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/03/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024]
Abstract
Phototrophic metabolism, the capture of light for energy, was a pivotal biological innovation that greatly increased the total energy available to the biosphere. Chlorophyll-based photosynthesis is the most familiar phototrophic metabolism, but retinal-based microbial rhodopsins transduce nearly as much light energy as chlorophyll does,1 via a simpler mechanism, and are found in far more taxonomic groups. Although this system has apparently spread widely via horizontal gene transfer,2,3,4 little is known about how rhodopsin genes (with phylogenetic origins within prokaryotes5,6) are horizontally acquired by eukaryotic cells with complex internal membrane architectures or the conditions under which they provide a fitness advantage. To address this knowledge gap, we sought to determine whether Saccharomyces cerevisiae, a heterotrophic yeast with no known evolutionary history of phototrophy, can function as a facultative photoheterotroph after acquiring a single rhodopsin gene. We inserted a rhodopsin gene from Ustilago maydis,7 which encodes a proton pump localized to the vacuole, an organelle normally acidified via a V-type rotary ATPase, allowing the rhodopsin to supplement heterotrophic metabolism. Probes of the physiology of modified cells show that they can deacidify the cytoplasm using light energy, demonstrating the ability of rhodopsins to ameliorate the effects of starvation and quiescence. Further, we show that yeast-bearing rhodopsins gain a selective advantage when illuminated, proliferating more rapidly than their non-phototrophic ancestor or rhodopsin-bearing yeast cultured in the dark. These results underscore the ease with which rhodopsins may be horizontally transferred even in eukaryotes, providing novel biological function without first requiring evolutionary optimization.
Collapse
Affiliation(s)
- Autumn Peterson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30309, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30309, USA
| | - Carina Baskett
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30309, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30309, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30309, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30309, USA.
| | - Anthony Burnetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30309, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30309, USA.
| |
Collapse
|
13
|
Cao J, Yang B, Zhang M, Yu F. Regulation of T16H subcellular localization for promoting its catalytic efficiency in yeast cells. Biotechnol Lett 2024; 46:29-35. [PMID: 37971563 DOI: 10.1007/s10529-023-03442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/03/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
To investigate the effect of subcellular localization on the transformation efficiency of heterologous expressed functional P450s in yeast. Microbial biotransformation offers a promising substitute for the direct extraction of natural products, but its viability in industrial applications depends on achieving high transformation efficiencies. To investigate the influence of subcellular microenvironments on the activity of heterologously expressed P450s, Catharanthus roseus tabersonine 16-hydroxylase (T16H) was chosen, and its subcellular localization was regulated by fusing organelle-localization signals. Interestingly, this manipulation had no effect on the gene expression levels of T16H, but resulted in varying conversion rates from tabersonine to 16-hydroxy tabersonine. Notably, the highest transformation efficiency was observed in yeast cells expressing peroxisome-localized T16H. Given the alkaline pH optimum for P450s, the alkaline peroxisomal lumen could be a suitable compartment for P450s reactions to achieve high transformation efficiency using yeast cells. Different organelle-localization of T16H in yeast cells resulted in varying conversion rates, suggesting that compartmentalizing the expression of target enzymes could be a viable approach to increase transformation efficiency in yeast.
Collapse
Affiliation(s)
- Jiancong Cao
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Bingrun Yang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Mengxia Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Fang Yu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
14
|
Yi Y, Li J, Zhou P, Jia F, Chen Y, Li D. Production of single cell protein rich in potassium by Nectaromyces rattus using biogas slurry and molasses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119627. [PMID: 38000276 DOI: 10.1016/j.jenvman.2023.119627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Single-cell protein (SCP) is a vital supplement for animal protein feed. This study utilized biogas slurry and sugarcane molasses to ferment Nectaromyces rattus for the production of SCP. The optimal batch fermentation conditions were obtained in a 5L jar with a tank pressure of 0.1 MPa, an initial speed of 300 rpm, and an inoculum volume of 30%. The highest cell dry weight concentrations of the fed-batch fermentation without reflux and the fed-batch fermentation with reflux were 46.33 g/L and 29.71 g/L, respectively. The nitrogen conversion rates (47.05% and 44.12%) and the cell yields of total organic carbon (1 g/g and 1.17 g/g) of both fermentation modes were compared. The SCP contained 42.32% amino acids. Its high concentrations of potassium (19859.96 mg/kg) and phosphorus (7310.44 mg/kg) present a novel approach for the extraction of these essential nutrients from biogas slurry. The enrichment of K was related to the H+ efflux and sugar transport.
Collapse
Affiliation(s)
- Yuanyuan Yi
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jiabao Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Pan Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Fenglin Jia
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Yichao Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
15
|
Antunes M, Sá-Correia I. The role of ion homeostasis in adaptation and tolerance to acetic acid stress in yeasts. FEMS Yeast Res 2024; 24:foae016. [PMID: 38658183 PMCID: PMC11092280 DOI: 10.1093/femsyr/foae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
Maintenance of asymmetric ion concentrations across cellular membranes is crucial for proper yeast cellular function. Disruptions of these ionic gradients can significantly impact membrane electrochemical potential and the balance of other ions, particularly under stressful conditions such as exposure to acetic acid. This weak acid, ubiquitous to both yeast metabolism and industrial processes, is a major inhibitor of yeast cell growth in industrial settings and a key determinant of host colonization by pathogenic yeast. Acetic acid toxicity depends on medium composition, especially on the pH (H+ concentration), but also on other ions' concentrations. Regulation of ion fluxes is essential for effective yeast response and adaptation to acetic acid stress. However, the intricate interplay among ion balancing systems and stress response mechanisms still presents significant knowledge gaps. This review offers a comprehensive overview of the mechanisms governing ion homeostasis, including H+, K+, Zn2+, Fe2+/3+, and acetate, in the context of acetic acid toxicity, adaptation, and tolerance. While focus is given on Saccharomyces cerevisiae due to its extensive physiological characterization, insights are also provided for biotechnologically and clinically relevant yeast species whenever available.
Collapse
Affiliation(s)
- Miguel Antunes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| |
Collapse
|
16
|
Antunes M, Kale D, Sychrová H, Sá-Correia I. The Hrk1 kinase is a determinant of acetic acid tolerance in yeast by modulating H + and K + homeostasis. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:261-276. [PMID: 38053573 PMCID: PMC10695635 DOI: 10.15698/mic2023.12.809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
Acetic acid-induced stress is a common challenge in natural environments and industrial bioprocesses, significantly affecting the growth and metabolic performance of Saccharomyces cerevisiae. The adaptive response and tolerance to this stress involves the activation of a complex network of molecular pathways. This study aims to delve deeper into these mechanisms in S. cerevisiae, particularly focusing on the role of the Hrk1 kinase. Hrk1 is a key determinant of acetic acid tolerance, belonging to the NPR/Hal family, whose members are implicated in the modulation of the activity of plasma membrane transporters that orchestrate nutrient uptake and ion homeostasis. The influence of Hrk1 on S. cerevisiae adaptation to acetic acid-induced stress was explored by employing a physiological approach based on previous phosphoproteomics analyses. The results from this study reflect the multifunctional roles of Hrk1 in maintaining proton and potassium homeostasis during different phases of acetic acid-stressed cultivation. Hrk1 is shown to play a role in the activation of plasma membrane H+-ATPase, maintaining pH homeostasis, and in the modulation of plasma membrane potential under acetic acid stressed cultivation. Potassium (K+) supplementation of the growth medium, particularly when provided at limiting concentrations, led to a notable improvement in acetic acid stress tolerance of the hrk1Δ strain. Moreover, abrogation of this kinase expression is shown to confer a physiological advantage to growth under K+ limitation also in the absence of acetic acid stress. The involvement of the alkali metal cation/H+ exchanger Nha1, another proposed molecular target of Hrk1, in improving yeast growth under K+ limitation or acetic acid stress, is proposed.
Collapse
Affiliation(s)
- Miguel Antunes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Deepika Kale
- Laboratory of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4, Czech Republic
| | - Hana Sychrová
- Laboratory of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4, Czech Republic
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
17
|
Xu F, Yu F. Sensing and regulation of plant extracellular pH. TRENDS IN PLANT SCIENCE 2023; 28:1422-1437. [PMID: 37596188 DOI: 10.1016/j.tplants.2023.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/03/2023] [Accepted: 06/19/2023] [Indexed: 08/20/2023]
Abstract
In plants, pH determines nutrient acquisition and sensing, and triggers responses to osmotic stress, whereas pH homeostasis protects the cellular machinery. Extracellular pH (pHe) controls the chemistry and rheology of the cell wall to adjust its elasticity and regulate cell expansion in space and time. Plasma membrane (PM)-localized proton pumps, cell-wall components, and cell wall-remodeling enzymes jointly maintain pHe homeostasis. To adapt to their environment and modulate growth and development, plant cells must sense subtle changes in pHe caused by the environment or neighboring cells. Accumulating evidence indicates that PM-localized cell-surface peptide-receptor pairs sense pHe. We highlight recent advances in understanding how plants perceive and maintain pHe, and discuss future perspectives.
Collapse
Affiliation(s)
- Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
18
|
Kim YH, Ryu JI, Devare MN, Jung J, Kim JY. The intricate role of Sir2 in oxidative stress response during the post-diauxic phase in Saccharomyces cerevisiae. Front Microbiol 2023; 14:1285559. [PMID: 38029141 PMCID: PMC10666771 DOI: 10.3389/fmicb.2023.1285559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Silent information regulator 2 (Sir2) is a conserved NAD+-dependent histone deacetylase crucial for regulating cellular stress response and the aging process in Saccharomyces cerevisiae. In this study, we investigated the molecular mechanism underlying how the absence of Sir2 can lead to altered stress susceptibilities in S. cerevisiae under different environmental and physiological conditions. In a glucose-complex medium, the sir2Δ strain showed increased sensitivity to H2O2 compared to the wild-type strain during the post-diauxic phase. In contrast, it displayed increased resistance during the exponential growth phase. Transcriptome analysis of yeast cells in the post-diauxic phase indicated that the sir2Δ mutant expressed several oxidative defense genes at lower levels than the wild-type, potentially accounting for its increased susceptibility to H2O2. Interestingly, however, the sir2Δras2Δ double mutant exhibited greater resistance to H2O2 than the ras2Δ single mutant counterpart. We found that the expression regulation of the cytoplasmic catalase encoded by CTT1 was critical for the increased resistance to H2O2 in the sir2Δras2Δ strain. The expression of the CTT1 gene was influenced by the combined effect of RAS2 deletion and the transcription factor Azf1, whose level was modulated by Sir2. These findings provide insights into the importance of understanding the intricate interactions among various factors contributing to cellular stress response.
Collapse
Affiliation(s)
| | | | | | | | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Mouton SN, Boersma AJ, Veenhoff LM. A physicochemical perspective on cellular ageing. Trends Biochem Sci 2023; 48:949-962. [PMID: 37716870 DOI: 10.1016/j.tibs.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023]
Abstract
Cellular ageing described at the molecular level is a multifactorial process that leads to a spectrum of ageing trajectories. There has been recent discussion about whether a decline in physicochemical homeostasis causes aberrant phase transitions, which are a driver of ageing. Indeed, the function of all biological macromolecules, regardless of their participation in biomolecular condensates, depends on parameters such as pH, crowding, and redox state. We expand on the physicochemical homeostasis hypothesis and summarise recent evidence that the intracellular milieu influences molecular processes involved in ageing.
Collapse
Affiliation(s)
- Sara N Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Arnold J Boersma
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
20
|
Chen Y, Yang Y, Cai W, Zeng J, Liu N, Wan Y, Fu G. Research progress of anti-environmental factor stress mechanism and anti-stress tolerance way of Saccharomyces cerevisiae during the brewing process. Crit Rev Food Sci Nutr 2023; 63:12308-12323. [PMID: 35848108 DOI: 10.1080/10408398.2022.2101090] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Saccharomyces cerevisiae plays a decisive role in the brewing of alcohol products, and the ideal growth and fermentation characteristics can give the pure flavor of alcohol products. However, S. cerevisiae can be affected profoundly by environmental factors during the brewing process, which have negative effects on the growth and fermentation characteristics of S. cerevisiae, and seriously hindered the development of brewing industry. Therefore, we summarized the environmental stress factors (ethanol, organic acids, temperature and osmotic pressure) that affect S. cerevisiae during the brewing process. Their impact mechanisms and the metabolic adaption of S. cerevisiae in response to these stress factors. Of note, S. cerevisiae can increase the ability to resist stress factors by changing the cell membrane components, expressing transcriptional regulatory factors, activating the anti-stress metabolic pathway and enhancing ROS scavenging ability. Meantime, the strategies and methods to improve the stress- tolerant ability of S. cerevisiae during the brewing process were also introduced. Compared with the addition of exogenous anti-stress substances, mutation breeding and protoplast fusion, it appears that adaptive evolution and genetic engineering are able to generate ideal environmental stress tolerance strains of S. cerevisiae and are more in line with the needs of the current brewing industry.
Collapse
Affiliation(s)
- Yanru Chen
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering & Biotechnology, Taizhou, PR China
| | - Wenqin Cai
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Jiali Zeng
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Na Liu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| |
Collapse
|
21
|
Johnson DL, Kumar R, Kakhniashvili D, Pfeffer LM, Laribee RN. Ccr4-Not ubiquitin ligase signaling regulates ribosomal protein homeostasis and inhibits 40S ribosomal autophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555095. [PMID: 37693548 PMCID: PMC10491097 DOI: 10.1101/2023.08.28.555095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The Ccr4-Not complex containing the Not4 ubiquitin ligase regulates gene transcription and mRNA decay, yet it also has poorly defined roles in translation, proteostasis, and endolysosomal-dependent nutrient signaling. To define how Ccr4-Not mediated ubiquitin signaling regulates these additional processes, we performed quantitative proteomics in the yeast Saccharomyces cerevisiae lacking the Not4 ubiquitin ligase, and also in cells overexpressing either wild-type or functionally inactive ligase. Herein, we provide evidence that both increased and decreased Ccr4-Not ubiquitin signaling disrupts ribosomal protein (RP) homeostasis independently of reduced RP mRNA changes or reductions in known Not4 ribosomal substrates. Surprisingly, we also find that both Not4-mediated ubiquitin signaling, and the Ccr4 subunit, actively inhibit 40S ribosomal autophagy. This 40S autophagy is independent of canonical Atg7-dependent macroautophagy, thus indicating microautophagy activation is responsible. Furthermore, the Not4 ligase genetically interacts with endolysosomal pathway effectors to control both RP expression and 40S autophagy efficiency. Overall, we demonstrate that balanced Ccr4-Not ligase activity maintains RP homeostasis, and that Ccr4-Not ubiquitin signaling interacts with the endolysosomal pathway to both regulate RP expression and inhibit 40S ribosomal autophagy.
Collapse
Affiliation(s)
- Daniel L. Johnson
- Molecular Bioinformatics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Ravinder Kumar
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - David Kakhniashvili
- Proteomics and Metabolomics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - R. Nicholas Laribee
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| |
Collapse
|
22
|
Wilson HB, Lorenz MC. Candida albicans Hyphal Morphogenesis within Macrophages Does Not Require Carbon Dioxide or pH-Sensing Pathways. Infect Immun 2023; 91:e0008723. [PMID: 37078861 PMCID: PMC10187119 DOI: 10.1128/iai.00087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
The opportunistic fungal pathogen Candida albicans has evolved a variety of mechanisms for surviving inside and escaping macrophages, including the initiation of filamentous growth. Although several distinct models have been proposed to explain this process at the molecular level, the signals driving hyphal morphogenesis in this context have yet to be clarified. Here, we evaluate the following three molecular signals as potential hyphal inducers within macrophage phagosomes: CO2, intracellular pH, and extracellular pH. Additionally, we revisit previous work suggesting that the intracellular pH of C. albicans fluctuates in tandem with morphological changes in vitro. Using time-lapse microscopy, we observed that C. albicans mutants lacking components of the CO2-sensing pathway were able to undergo hyphal morphogenesis within macrophages. Similarly, a rim101Δ strain was competent in hyphal induction, suggesting that neutral/alkaline pH sensing is not necessary for the initiation of morphogenesis within phagosomes either. Contrary to previous findings, single-cell pH-tracking experiments revealed that the cytosolic pH of C. albicans remains tightly regulated both within macrophage phagosomes and under a variety of in vitro conditions throughout the process of morphogenesis. This finding suggests that intracellular pH is not a signal contributing to morphological changes.
Collapse
Affiliation(s)
- Hannah B. Wilson
- Graduate School for Biomedical Sciences, University of Texas Science Center at Houston, Houston, Texas, USA
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
23
|
Salas-Navarrete PC, Rosas-Santiago P, Suárez-Rodríguez R, Martínez A, Caspeta L. Adaptive responses of yeast strains tolerant to acidic pH, acetate, and supraoptimal temperature. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12556-7. [PMID: 37178307 DOI: 10.1007/s00253-023-12556-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Ethanol fermentations can be prematurely halted as Saccharomyces cerevisiae faces adverse conditions, such as acidic pH, presence of acetic acid, and supraoptimal temperatures. The knowledge on yeast responses to these conditions is essential to endowing a tolerant phenotype to another strain by targeted genetic manipulation. In this study, physiological and whole-genome analyses were conducted to obtain insights on molecular responses which potentially render yeast tolerant towards thermoacidic conditions. To this end, we used thermotolerant TTY23, acid tolerant AT22, and thermo-acid tolerant TAT12 strains previously generated by adaptive laboratory evolution (ALE) experiments. The results showed an increase in thermoacidic profiles in the tolerant strains. The whole-genome sequence revealed the importance of genes related to: H+, iron, and glycerol transport (i.e., PMA1, FRE1/2, JEN1, VMA2, VCX1, KHA1, AQY3, and ATO2); transcriptional regulation of stress responses to drugs, reactive oxygen species and heat-shock (i.e., HSF1, SKN7, BAS1, HFI1, and WAR1); and adjustments of fermentative growth and stress responses by glucose signaling pathways (i.e., ACS1, GPA1/2, RAS2, IRA2, and REG1). At 30 °C and pH 5.5, more than a thousand differentially expressed genes (DEGs) were identified in each strain. The integration of results revealed that evolved strains adjust their intracellular pH by H+ and acetic acid transport, modify their metabolism and stress responses via glucose signaling pathways, control of cellular ATP pools by regulating translation and de novo synthesis of nucleotides, and direct the synthesis, folding and rescue of proteins throughout the heat-shock stress response. Moreover, the motifs analysis in mutated transcription factors suggested a significant association of SFP1, YRR1, BAS1, HFI1, HSF1, and SKN7 TFs with DEGs found in thermoacidic tolerant yeast strains. KEY POINTS: • All the evolved strains overexpressed the plasma membrane H+ -ATPase PMA1 at optimal conditions • Tolerant strain TAT12 mutated genes encoding weak acid and heat response TFs HSF1, SKN7, and WAR1 • TFs HSF1 and SKN7 likely controlled the transcription of metabolic genes associated to heat and acid tolerance.
Collapse
Affiliation(s)
- Prisciluis Caheri Salas-Navarrete
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, 62209, Morelos, México
| | - Paul Rosas-Santiago
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Ramón Suárez-Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, 62209, Morelos, México
| | - Alfredo Martínez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Luis Caspeta
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, 62210, Morelos, México.
| |
Collapse
|
24
|
Doke AA, Jha SK. Shapeshifter TDP-43: Molecular mechanism of structural polymorphism, aggregation, phase separation and their modulators. Biophys Chem 2023; 295:106972. [PMID: 36812677 DOI: 10.1016/j.bpc.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
TDP-43 is a nucleic acid-binding protein that performs physiologically essential functions and is known to undergo phase separation and aggregation during stress. Initial observations have shown that TDP-43 forms heterogeneous assemblies, including monomer, dimer, oligomers, aggregates, phase-separated assemblies, etc. However, the significance of each assembly of TDP-43 concerning its function, phase separation, and aggregation is poorly known. Furthermore, how different assemblies of TDP-43 are related to each other is unclear. In this review, we focus on the various assemblies of TDP-43 and discuss the plausible origin of the structural heterogeneity of TDP-43. TDP-43 is involved in multiple physiological processes like phase separation, aggregation, prion-like seeding, and performing physiological functions. However, the molecular mechanism behind the physiological process performed by TDP-43 is not well understood. The current review discusses the plausible molecular mechanism of phase separation, aggregation, and prion-like propagation of TDP-43.
Collapse
Affiliation(s)
- Abhilasha A Doke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
25
|
Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. Int J Mol Sci 2023; 24:ijms24065835. [PMID: 36982909 PMCID: PMC10054283 DOI: 10.3390/ijms24065835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The swift rise in acceptance of molecular principles defining phase separation by a broad array of scientific disciplines is shadowed by increasing discoveries linking phase separation to pathological aggregations associated with numerous neurodegenerative disorders, including Alzheimer’s disease, that contribute to dementia. Phase separation is powered by multivalent macromolecular interactions. Importantly, the release of water molecules from protein hydration shells into bulk creates entropic gains that promote phase separation and the subsequent generation of insoluble cytotoxic aggregates that drive healthy brain cells into diseased states. Higher viscosity in interfacial waters and limited hydration in interiors of biomolecular condensates facilitate phase separation. Light, water, and melatonin constitute an ancient synergy that ensures adequate protein hydration to prevent aberrant phase separation. The 670 nm visible red wavelength found in sunlight and employed in photobiomodulation reduces interfacial and mitochondrial matrix viscosity to enhance ATP production via increasing ATP synthase motor efficiency. Melatonin is a potent antioxidant that lowers viscosity to increase ATP by scavenging excess reactive oxygen species and free radicals. Reduced viscosity by light and melatonin elevates the availability of free water molecules that allow melatonin to adopt favorable conformations that enhance intrinsic features, including binding interactions with adenosine that reinforces the adenosine moiety effect of ATP responsible for preventing water removal that causes hydrophobic collapse and aggregation in phase separation. Precise recalibration of interspecies melatonin dosages that account for differences in metabolic rates and bioavailability will ensure the efficacious reinstatement of the once-powerful ancient synergy between light, water, and melatonin in a modern world.
Collapse
|
26
|
Burkhardt M, Rapp J, Menzel C, Link H, Forchhammer K. The Global Influence of Sodium on Cyanobacteria in Resuscitation from Nitrogen Starvation. BIOLOGY 2023; 12:biology12020159. [PMID: 36829438 PMCID: PMC9952445 DOI: 10.3390/biology12020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Dormancy and resuscitation are key to bacterial survival under fluctuating environmental conditions. In the absence of combined nitrogen sources, the non-diazotrophic model cyanobacterium Synechocystis sp. PCC 6803 enters into a metabolically quiescent state during a process termed chlorosis. This state enables the cells to survive until nitrogen sources reappear, whereupon the cells resuscitate in a process that follows a highly orchestrated program. This coincides with a metabolic switch into a heterotrophic-like mode where glycogen catabolism provides the cells with reductant and carbon skeletons for the anabolic reactions that serve to re-establish a photosynthetically active cell. Here we show that the entire resuscitation process requires the presence of sodium, a ubiquitous cation that has a broad impact on bacterial physiology. The requirement for sodium in resuscitating cells persists even at elevated CO2 levels, a condition that, by contrast, relieves the requirement for sodium ions in vegetative cells. Using a multi-pronged approach, including the first metabolome analysis of Synechocystis cells resuscitating from chlorosis, we reveal the involvement of sodium at multiple levels. Not only does sodium play a role in the bioenergetics of chlorotic cells, as previously shown, but it is also involved in nitrogen compound assimilation, pH regulation, and synthesis of key metabolites.
Collapse
Affiliation(s)
- Markus Burkhardt
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Johanna Rapp
- CMFI, Bacterial Metabolomics, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany
| | - Claudia Menzel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Hannes Link
- CMFI, Bacterial Metabolomics, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
27
|
Kulkarni A, Vidal-Henriquez E, Zwicker D. Effective simulations of interacting active droplets. Sci Rep 2023; 13:733. [PMID: 36639416 PMCID: PMC9839783 DOI: 10.1038/s41598-023-27630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Droplets form a cornerstone of the spatiotemporal organization of biomolecules in cells. These droplets are controlled using physical processes like chemical reactions and imposed gradients, which are costly to simulate using traditional approaches, like solving the Cahn-Hilliard equation. To overcome this challenge, we here present an alternative, efficient method. The main idea is to focus on the relevant degrees of freedom, like droplet positions and sizes. We derive dynamical equations for these quantities using approximate analytical solutions obtained from a sharp interface limit and linearized equations in the bulk phases. We verify our method against fully-resolved simulations and show that it can describe interacting droplets under the influence of chemical reactions and external gradients using only a fraction of the computational costs of traditional methods. Our method can be extended to include other processes in the future and will thus serve as a relevant platform for understanding the dynamics of droplets in cells.
Collapse
Affiliation(s)
- Ajinkya Kulkarni
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany
| | | | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
28
|
Onufriev AV. Biologically relevant small variations of intra-cellular pH can have significant effect on stability of protein-DNA complexes, including the nucleosome. Front Mol Biosci 2023; 10:1067787. [PMID: 37143824 PMCID: PMC10151541 DOI: 10.3389/fmolb.2023.1067787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/16/2023] [Indexed: 05/06/2023] Open
Abstract
Stability of a protein-ligand complex may be sensitive to pH of its environment. Here we explore, computationally, stability of a set of protein-nucleic acid complexes using fundamental thermodynamic linkage relationship. The nucleosome, as well as an essentially random selection of 20 protein complexes with DNA or RNA, are included in the analysis. An increase in intra-cellular/intra-nuclear pH destabilizes most complexes, including the nucleosome. We propose to quantify the effect by ΔΔG0.3-the change in the binding free energy due to pH increase of 0.3 units, corresponding to doubling of the H + activity; variations of pH of this amplitude can occur in living cells, including in the course of the cell cycle, and in cancer cells relative to normal ones. We suggest, based on relevant experimental findings, a threshold of biological significance of 1 2 k B T ( ∼ 0.3 k c a l / m o l ) for changes of stability of chromatin-related protein-DNA complexes: a change in the binding affinity above the threshold may have biological consequences. We find that for 70% of the examined complexes, Δ Δ G 0.3 > 1 2 k B T (for 10%, ΔΔG0.3 is between 3 and 4 k B T). Thus, small but relevant variations of intra-nuclear pH of 0.3 may have biological consequences for many protein-nucleic acid complexes. The binding affinity between the histone octamer and its DNA, which directly affects the DNA accessibility in the nucleosome, is predicted to be highly sensitive to intra-nuclear pH. A variation of 0.3 units results in ΔΔG0.3 ∼ 10k B T ( ∼ 6 k c a l / m o l ) ; for spontaneous unwrapping of 20 bp long entry/exit fragments of the nucleosomal DNA, ΔΔG0.3 = 2.2k B T; partial disassembly of the nucleosome into the tetrasome is characterized by ΔΔG0.3 = 5.2k B T. The predicted pH -induced modulations of the nucleosome stability are significant enough to suggest that they may have consequences relevant to the biological function of the nucleosome. Accessibility of the nucleosomal DNA is predicted to positively correlate with pH variations during the cell cycle; an increase in intra-cellular pH seen in cancer cells is predicted to lead to a more accessible nucleosomal DNA; a drop in pH associated with apoptosis is predicted to make nucleosomal DNA less accessible. We speculate that processes that depend on accessibility to the DNA in the nucleosomes, such as transcription or DNA replication, might become upregulated due to relatively small, but nevertheless realistic increases of intra-nuclear pH.
Collapse
Affiliation(s)
- Alexey V. Onufriev
- Department of Physics, Virginia Tech, Blacksburg, Blacksburg, VA, United States
- Department of Computer Science, Virginia Tech, Blacksburg, Blacksburg, VA, United States
- Center from Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
- *Correspondence: Alexey V. Onufriev,
| |
Collapse
|
29
|
Kumar Singh P, Bhattacharjya R, Kiran Marella T, Saxena A, Mishra B, Savio S, Congestri R, Sindhu R, Binod P, Tiwari A. Production of lipids and proteins from marine diatoms under changing pH and silica. BIORESOURCE TECHNOLOGY 2022; 362:127766. [PMID: 35963488 DOI: 10.1016/j.biortech.2022.127766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Diatom algae are increasingly explored as an alternative sustainable source for functional biomolecules likes fucoxanthin, and eicosapentaenoic acid. But biomolecule quantity and quantity are influenced by growth conditions. So, effect of differential silica concentration (0-120 mg L-1) and medium pH (5.5-9.5) on growth and cellular biochemical composition of commercially important marine diatom species were studied. Growth rate of Thalassiosira sp., Skeletonema sp., and Chaetoceros sp., was higher with 30 mg L-1 Si at a pH of 7.5-8.5. Highest carbohydrate (153.71 mg g-1) and protein (17.34 mg g-1) content was found in Skeletonema sp. Silica concentration positively influenced chlorophyll and carotenoid content in a dose dependent manner. A medium pH of 8.5 and Si concentration between 60 and 120 mg L-1 was ideal for lipid production. The optimum concentration of Si and pH for maximum biomolecule production have been reported with further scope of utilizing these conditions in commercial scale systems.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Raya Bhattacharjya
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Thomas Kiran Marella
- Algae Biomass and Energy System R&D Center (ABES), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Bharti Mishra
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Saverio Savio
- Laboratory of Biology of Algae, Department of Biology, University of Rome 'Tor Vergata', Via Cracovia 1, 00133 Rome, Italy
| | - Roberta Congestri
- Laboratory of Biology of Algae, Department of Biology, University of Rome 'Tor Vergata', Via Cracovia 1, 00133 Rome, Italy
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam - 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum - 695 019, Kerala, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India.
| |
Collapse
|
30
|
Luzia L, Lao‐Martil D, Savakis P, van Heerden J, van Riel N, Teusink B. pH dependencies of glycolytic enzymes of yeast under in vivo-like assay conditions. FEBS J 2022; 289:6021-6037. [PMID: 35429225 PMCID: PMC9790636 DOI: 10.1111/febs.16459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 12/30/2022]
Abstract
Under carbon source transitions, the intracellular pH of Saccharomyces cerevisiae is subject to change. Dynamics in pH modulate the activity of the glycolytic enzymes, resulting in a change in glycolytic flux and ultimately cell growth. To understand how pH affects the global behavior of glycolysis and ethanol fermentation, we measured the activity of the glycolytic and fermentative enzymes in S. cerevisiae under in vivo-like conditions at different pH. We demonstrate that glycolytic enzymes exhibit differential pH dependencies, and optima, in the pH range observed during carbon source transitions. The forward reaction of GAPDH shows the highest decrease in activity, 83%, during a simulated feast/famine regime upon glucose removal (cytosolic pH drop from 7.1 to 6.4). We complement our biochemical characterization of the glycolytic enzymes by fitting the Vmax to the progression curves of product formation or decay over time. The fitting analysis shows that the observed changes in enzyme activities require changes in Vmax , but changes in Km cannot be excluded. Our study highlights the relevance of pH as a key player in metabolic regulation and provides a large set of quantitative data that can be explored to improve our understanding of metabolism in dynamic environments.
Collapse
Affiliation(s)
| | | | | | | | - Natal van Riel
- Department of Biomedical EngineeringTU EindhovenNetherlands
| | | |
Collapse
|
31
|
Dhakal S, Macreadie I. The Use of Yeast in Biosensing. Microorganisms 2022; 10:1772. [PMID: 36144374 PMCID: PMC9505958 DOI: 10.3390/microorganisms10091772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Yeast has been used as a model for several diseases as it is the simplest unicellular eukaryote, safe and easy to culture and harbors most of the fundamental processes that are present in almost all higher eukaryotes, including humans. From understanding the pathogenesis of disease to drug discovery studies, yeast has served as an important biosensor. It is not only due to the conservation of genetics, amenable modification of its genome and easily accessible analytical methods, but also some characteristic features such as its ability to survive with defective mitochondria, making it a highly flexible microbe for designing whole-cell biosensing systems. The aim of this review is to report on how yeasts have been utilized as biosensors, reporting on responses to various stimuli.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
32
|
Ke Z, Bai Y, Yi Y, Ding Y, Wang W, Liu S, Zhou X, Ding Y. Why plasma-activated water treatment reduced the malonaldehyde content in muscle foods. Food Chem 2022; 403:134387. [DOI: 10.1016/j.foodchem.2022.134387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
|
33
|
Doke AA, Jha SK. Effect of In Vitro Solvation Conditions on Inter- and Intramolecular Assembly of Full-Length TDP-43. J Phys Chem B 2022; 126:4799-4813. [PMID: 35758053 DOI: 10.1021/acs.jpcb.2c02203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellular stress is a major cause of neurodegenerative diseases. In particular, in amyotrophic lateral sclerosis (ALS), around 90% of the cases are believed to occur due to aggregation and misfolding of TDP-43 protein in neurons due to aging and chronic environmental stress. However, the physicochemical basis of how TDP-43 senses the change in solvation conditions during stress and misfolds remains very poorly understood. We show here that the full-length human TDP-43 can exist in equilibrium with multiple structural states. The equilibrium between these states is highly sensitive to changes in solvation conditions. We show that upon thermal and pH stress, amyloidogenic oligomers can form amyloid-like fibrils. However, the internal structure of the fibril depends upon the physicochemical nature of stress. Our results present a physical basis of the effect of solvation conditions on inter- and intramolecular assembly formation of TDP-43 and reconcile why the nature and the internal structure of the aggregated form have been found to be different when extracted from the brain of different ALS patients.
Collapse
Affiliation(s)
- Abhilasha A Doke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
34
|
Jin X, Zhou M, Chen S, Li D, Cao X, Liu B. Effects of pH alterations on stress- and aging-induced protein phase separation. Cell Mol Life Sci 2022; 79:380. [PMID: 35750966 PMCID: PMC9232405 DOI: 10.1007/s00018-022-04393-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 01/18/2023]
Abstract
Upon stress challenges, proteins/RNAs undergo liquid–liquid phase separation (LLPS) to fine-tune cell physiology and metabolism to help cells adapt to adverse environments. The formation of LLPS has been recently linked with intracellular pH, and maintaining proper intracellular pH homeostasis is known to be essential for the survival of organisms. However, organisms are constantly exposed to diverse stresses, which are accompanied by alterations in the intracellular pH. Aging processes and human diseases are also intimately linked with intracellular pH alterations. In this review, we summarize stress-, aging-, and cancer-associated pH changes together with the mechanisms by which cells regulate cytosolic pH homeostasis. How critical cell components undergo LLPS in response to pH alterations is also discussed, along with the functional roles of intracellular pH fluctuation in the regulation of LLPS. Further studies investigating the interplay of pH with other stressors in LLPS regulation and identifying protein responses to different pH levels will provide an in-depth understanding of the mechanisms underlying pH-driven LLPS in cell adaptation. Moreover, deciphering aging and disease-associated pH changes that influence LLPS condensate formation could lead to a deeper understanding of the functional roles of biomolecular condensates in aging and aging-related diseases.
Collapse
Affiliation(s)
- Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Min Zhou
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shuxin Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Danqi Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China. .,Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90, Goteborg, Sweden. .,Center for Large-Scale Cell-Based Screening, Faculty of Science, University of Gothenburg, Medicinaregatan 9C, 413 90, Goteborg, Sweden.
| |
Collapse
|
35
|
Yeast Trk1 Potassium Transporter Gradually Changes Its Affinity in Response to Both External and Internal Signals. J Fungi (Basel) 2022; 8:jof8050432. [PMID: 35628688 PMCID: PMC9144525 DOI: 10.3390/jof8050432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 01/04/2023] Open
Abstract
Yeasts need a high intracellular concentration of potassium to grow. The main K+ uptake system in Saccharomyces cerevisiae is the Trk1 transporter, a complex protein with four MPM helical membrane motifs. Trk1 has been shown to exist in low- or high-affinity modes, which reflect the availability of potassium in the environment. However, when and how the affinity changes, and whether the potassium availability is the only signal for the affinity switch, remains unknown. Here, we characterize the Trk1 kinetic parameters under various conditions and find that Trk1’s KT and Vmax change gradually. This gliding adjustment is rapid and precisely reflects the changes in the intracellular potassium content and membrane potential. A detailed characterization of the specific mutations in the P-helices of the MPM segments reveals that the presence of proline in the P-helix of the second and third MPM domain (F820P and L949P) does not affect the function of Trk1 in general, but rather specifically prevents the transporter’s transition to a high-affinity state. The analogous mutations in the two remaining MPM domains (L81P and L1115P) result in a mislocalized and inactive protein, highlighting the importance of the first and fourth P-helices in proper Trk1 folding and activity at the plasma membrane.
Collapse
|
36
|
Responses of Issatchenkia terricola WJL-G4 upon Citric Acid Stress. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092664. [PMID: 35566015 PMCID: PMC9102369 DOI: 10.3390/molecules27092664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
This study aimed to elucidate the responses of a novel characterized Issatchenkia terricola WJL-G4 against citric acid stress by performing physiological analysis, morphology observation, and structural and membrane fatty acid composition analysis. The results showed that under citric acid stress, the cell vitality of I. terricola WJL-G4 was reduced. The cell morphology changed with the unclear, uncompleted and thinner cell wall, and degraded the cell structure. When the citric acid concentration was 20 g/L, I. terricola WJL-G4 could tolerate citric acid and maintain the cell structure by increasing the intracellular pH, superoxide dismutase activity, and contents of unsaturated fatty acids. As the citric acid concentration was ≥80 g/L, the stress has exceeded the cellular anti-stress ability, causing substantial cell damage. The cell membrane permeability, the content of membrane lipids, malondialdehyde and superoxide anion increased, but the intracellular pH and superoxide dismutase activities decreased, accompanying the increase of citric acid concentrations. The findings of this work provided a theoretical basis for the responsive mechanism of I. terricola WJL-G4 under high concentrations of citric acid, and can serve as a reference for biological acid reduction in fruit processing.
Collapse
|
37
|
Alkalbani NS, Osaili TM, Al-Nabulsi AA, Olaimat AN, Liu SQ, Shah NP, Apostolopoulos V, Ayyash MM. Assessment of Yeasts as Potential Probiotics: A Review of Gastrointestinal Tract Conditions and Investigation Methods. J Fungi (Basel) 2022; 8:jof8040365. [PMID: 35448596 PMCID: PMC9027893 DOI: 10.3390/jof8040365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
Probiotics are microorganisms (including bacteria, yeasts and moulds) that confer various health benefits to the host, when consumed in sufficient amounts. Food products containing probiotics, called functional foods, have several health-promoting and therapeutic benefits. The significant role of yeasts in producing functional foods with promoted health benefits is well documented. Hence, there is considerable interest in isolating new yeasts as potential probiotics. Survival in the gastrointestinal tract (GIT), salt tolerance and adherence to epithelial cells are preconditions to classify such microorganisms as probiotics. Clear understanding of how yeasts can overcome GIT and salt stresses and the conditions that support yeasts to grow under such conditions is paramount for identifying, characterising and selecting probiotic yeast strains. This study elaborated the adaptations and mechanisms underlying the survival of probiotic yeasts under GIT and salt stresses. This study also discussed the capability of yeasts to adhere to epithelial cells (hydrophobicity and autoaggregation) and shed light on in vitro methods used to assess the probiotic characteristics of newly isolated yeasts.
Collapse
Affiliation(s)
- Nadia S. Alkalbani
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Tareq M. Osaili
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P. O. Box 330127, Zarqa 13133, Jordan;
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore;
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Correspondence:
| |
Collapse
|
38
|
Frallicciardi J, Melcr J, Siginou P, Marrink SJ, Poolman B. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat Commun 2022; 13:1605. [PMID: 35338137 PMCID: PMC8956743 DOI: 10.1038/s41467-022-29272-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/02/2022] [Indexed: 12/16/2022] Open
Abstract
Cell membranes provide a selective semi-permeable barrier to the passive transport of molecules. This property differs greatly between organisms. While the cytoplasmic membrane of bacterial cells is highly permeable for weak acids and glycerol, yeasts can maintain large concentration gradients. Here we show that such differences can arise from the physical state of the plasma membrane. By combining stopped-flow kinetic measurements with molecular dynamics simulations, we performed a systematic analysis of the permeability of a variety of small molecules through synthetic membranes of different lipid composition to obtain detailed molecular insight into the permeation mechanisms. While membrane thickness is an important parameter for the permeability through fluid membranes, the largest differences occur when the membranes transit from the liquid-disordered to liquid-ordered and/or to gel state, which is in agreement with previous work on passive diffusion of water. By comparing our results with in vivo measurements from yeast, we conclude that the yeast membrane exists in a highly ordered and rigid state, which is comparable to synthetic saturated DPPC-sterol membranes. Membrane permeability of small molecules depends on the composition of the lipid bilayer. Here, authors compare permeability measured on membranes in different physical states and conclude that the yeast membrane exists in a highly ordered phase.
Collapse
Affiliation(s)
- Jacopo Frallicciardi
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Josef Melcr
- Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Pareskevi Siginou
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Siewert J Marrink
- Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands.
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands.
| |
Collapse
|
39
|
Liu L, Jiang T, Zhou J, Mei Y, Li J, Tan J, Wei L, Li J, Peng Y, Chen C, Liu N, Wang H. Repurposing the FDA-approved anticancer agent ponatinib as a fluconazole potentiator by suppression of multidrug efflux and Pma1 expression in a broad spectrum of yeast species. Microb Biotechnol 2022; 15:482-498. [PMID: 33955652 PMCID: PMC8867973 DOI: 10.1111/1751-7915.13814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
Fungal infections have emerged as a major global threat to human health because of the increasing incidence and mortality rates every year. The emergence of drug resistance and limited arsenal of antifungal agents further aggravates the current situation resulting in a growing challenge in medical mycology. Here, we identified that ponatinib, an FDA-approved antitumour drug, significantly enhanced the activity of the azole fluconazole, the most widely used antifungal drug. Further detailed investigation of ponatinib revealed that its combination with fluconazole displayed broad-spectrum synergistic interactions against a variety of human fungal pathogens such as Candida albicans, Saccharomyces cerevisiae and Cryptococcus neoformans. Mechanistic insights into the mode of action unravelled that ponatinib reduced the efflux of fluconazole via Pdr5 and suppressed the expression of the proton pump, Pma1. Taken together, our study identifies ponatinib as a novel antifungal that enhances drug activity of fluconazole against diverse fungal pathogens.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Tong Jiang
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijingChina
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yikun Mei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jinyang Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingcong Tan
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Luqi Wei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yibing Peng
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
- Faculty of Medical Laboratory ScienceShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
| | - Changbin Chen
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- The Nanjing Unicorn Academy of InnovationInstitut Pasteur of ShanghaiChinese Academy of SciencesNanjing211135China
| | - Ning‐Ning Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
40
|
Lao-Martil D, Verhagen KJA, Schmitz JPJ, Teusink B, Wahl SA, van Riel NAW. Kinetic Modeling of Saccharomyces cerevisiae Central Carbon Metabolism: Achievements, Limitations, and Opportunities. Metabolites 2022; 12:74. [PMID: 35050196 PMCID: PMC8779790 DOI: 10.3390/metabo12010074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/23/2022] Open
Abstract
Central carbon metabolism comprises the metabolic pathways in the cell that process nutrients into energy, building blocks and byproducts. To unravel the regulation of this network upon glucose perturbation, several metabolic models have been developed for the microorganism Saccharomyces cerevisiae. These dynamic representations have focused on glycolysis and answered multiple research questions, but no commonly applicable model has been presented. This review systematically evaluates the literature to describe the current advances, limitations, and opportunities. Different kinetic models have unraveled key kinetic glycolytic mechanisms. Nevertheless, some uncertainties regarding model topology and parameter values still limit the application to specific cases. Progressive improvements in experimental measurement technologies as well as advances in computational tools create new opportunities to further extend the model scale. Notably, models need to be made more complex to consider the multiple layers of glycolytic regulation and external physiological variables regulating the bioprocess, opening new possibilities for extrapolation and validation. Finally, the onset of new data representative of individual cells will cause these models to evolve from depicting an average cell in an industrial fermenter, to characterizing the heterogeneity of the population, opening new and unseen possibilities for industrial fermentation improvement.
Collapse
Affiliation(s)
- David Lao-Martil
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, The Netherlands;
| | - Koen J. A. Verhagen
- Lehrstuhl für Bioverfahrenstechnik, FAU Erlangen-Nürnberg, 91052 Erlangen, Germany; (K.J.A.V.); (S.A.W.)
| | - Joep P. J. Schmitz
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands;
| | - Bas Teusink
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| | - S. Aljoscha Wahl
- Lehrstuhl für Bioverfahrenstechnik, FAU Erlangen-Nürnberg, 91052 Erlangen, Germany; (K.J.A.V.); (S.A.W.)
| | - Natal A. W. van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, The Netherlands;
- Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
41
|
In Vivo Monitoring of Cytosolic pH Using the Ratiometric pH Sensor pHluorin. Methods Mol Biol 2022; 2391:99-107. [PMID: 34686980 DOI: 10.1007/978-1-0716-1795-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cytosolic pH (pHcyt) is a key factor controlling cell fate. The genetically encoded pH-sensor pHluorin has proven highly valuable for studies on pHcyt in many living organisms. pHluorin displays a bimodal excitation spectrum with peaks at 395 nm and 475 nm, which is dependent on pH. Here we describe two different protocols for determining pHcyt in the soil-borne fungal pathogen Fusarium oxysporum, based either on population or single-cell analysis.
Collapse
|
42
|
The Role of Ancestral Duplicated Genes in Adaptation to Growth on Lactate, a Non-Fermentable Carbon Source for the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms222212293. [PMID: 34830177 PMCID: PMC8622941 DOI: 10.3390/ijms222212293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
The cell central metabolism has been shaped throughout evolutionary times when facing challenges from the availability of resources. In the budding yeast, Saccharomyces cerevisiae, a set of duplicated genes originating from an ancestral whole-genome and several coetaneous small-scale duplication events drive energy transfer through glucose metabolism as the main carbon source either by fermentation or respiration. These duplicates (~a third of the genome) have been dated back to approximately 100 MY, allowing for enough evolutionary time to diverge in both sequence and function. Gene duplication has been proposed as a molecular mechanism of biological innovation, maintaining balance between mutational robustness and evolvability of the system. However, some questions concerning the molecular mechanisms behind duplicated genes transcriptional plasticity and functional divergence remain unresolved. In this work we challenged S. cerevisiae to the use of lactic acid/lactate as the sole carbon source and performed a small adaptive laboratory evolution to this non-fermentative carbon source, determining phenotypic and transcriptomic changes. We observed growth adaptation to acidic stress, by reduction of growth rate and increase in biomass production, while the transcriptomic response was mainly driven by repression of the whole-genome duplicates, those implied in glycolysis and overexpression of ROS response. The contribution of several duplicated pairs to this carbon source switch and acidic stress is also discussed.
Collapse
|
43
|
Zhao P, Zhao C, Chen D, Yun C, Li H, Bai L. Structure and activation mechanism of the hexameric plasma membrane H +-ATPase. Nat Commun 2021; 12:6439. [PMID: 34750373 PMCID: PMC8575881 DOI: 10.1038/s41467-021-26782-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
The S. cerevisiae plasma membrane H+-ATPase, Pma1, is a P3A-type ATPase and the primary protein component of the membrane compartment of Pma1 (MCP). Like other plasma membrane H+-ATPases, Pma1 assembles and functions as a hexamer, a property unique to this subfamily among the larger family of P-type ATPases. It has been unclear how Pma1 organizes the yeast membrane into MCP microdomains, or why it is that Pma1 needs to assemble into a hexamer to establish the membrane electrochemical proton gradient. Here we report a high-resolution cryo-EM study of native Pma1 hexamers embedded in endogenous lipids. Remarkably, we found that the Pma1 hexamer encircles a liquid-crystalline membrane domain composed of 57 ordered lipid molecules. The Pma1-encircled lipid patch structure likely serves as the building block of the MCP. At pH 7.4, the carboxyl-terminal regulatory α-helix binds to the phosphorylation domains of two neighboring Pma1 subunits, locking the hexamer in the autoinhibited state. The regulatory helix becomes disordered at lower pH, leading to activation of the Pma1 hexamer. The activation process is accompanied by a 6.7 Å downward shift and a 40° rotation of transmembrane helices 1 and 2 that line the proton translocation path. The conformational changes have enabled us to propose a detailed mechanism for ATP-hydrolysis-driven proton pumping across the plasma membrane. Our structures will facilitate the development of antifungal drugs that target this essential protein.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chaoran Zhao
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Dandan Chen
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Caihong Yun
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| | - Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
44
|
Hayashi K, Mori I, Takeda K, Okada Y, Hayase A, Mori T, Nishioka Y, Manabe K. Analysis of hand environment factors contributing to the hand surface infection barrier imparted by lactic acid. Skin Res Technol 2021; 27:1135-1144. [PMID: 34532902 PMCID: PMC9293006 DOI: 10.1111/srt.13078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Organic acids on the surface of human hands contribute to the barrier against transient pathogens. This is the first study to explore the synergistic contribution of lactic acid and other hand environment-related features on the antibacterial properties of the hand surface. MATERIALS AND METHODS We estimated the contribution of fingerprint depth, skin pH, stratum corneum water content, skin temperature, and sweat rate of the hands to the infection barrier using an observational survey of 105 subjects. The relationship between each factor and the antibacterial activity of the hands was analyzed using Pearson's correlation coefficient. We performed molecular dynamics simulations to study the interaction between lactic acid and bacterial membranes. RESULTS The amount of lactic acid on the hands and skin temperature contributed positively to the antimicrobial activity (r = 0.437 and P = 3.18 × 10-6 , r = 0.500 and P = 5.66 × 10-8 , respectively), while the skin pH contributed negatively (r = -0.471, P = 3.99 × 10-7 ). The predicted value of the combined antimicrobial effect of these parameters was [antimicrobial activity] = 0.21 × [lactic acid] - 0.25 × [skin pH] + 0.26 × [skin temperature] + 0.98. The coefficient of determination (R2 ) was 0.50. CONCLUSION The increase in the amount of non-ionic lactic acid due to lower pH and improvement in the fluidity of the cell membrane due to higher temperatures enable the efficient transport of lactic acid into cells and subsequent antimicrobial activity. The proposed mechanism could help to develop an effective hand infection barrier technology.
Collapse
Affiliation(s)
- Kaori Hayashi
- Personal Health Care Products Research Laboratories, Kao Corporation, Tokyo, Japan
| | - Ichiro Mori
- Personal Health Care Products Research Laboratories, Kao Corporation, Tokyo, Japan
| | - Kouske Takeda
- Analytical Science Laboratories, Kao Corporation, Wakayama, Japan
| | - Yasuhiro Okada
- Personal Health Care Products Research Laboratories, Kao Corporation, Tokyo, Japan
| | - Atsuko Hayase
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Takuya Mori
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Yuki Nishioka
- Personal Health Care Products Research Laboratories, Kao Corporation, Tokyo, Japan
| | - Kenji Manabe
- Personal Health Care Products Research Laboratories, Kao Corporation, Tokyo, Japan
| |
Collapse
|
45
|
Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae. Sci Rep 2021; 11:17333. [PMID: 34462478 PMCID: PMC8405694 DOI: 10.1038/s41598-021-96757-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
The use of lignocellulosic-based fermentation media will be a necessary part of the transition to a circular bio-economy. These media contain many inhibitors to microbial growth, including acetic acid. Under industrially relevant conditions, acetic acid enters the cell predominantly through passive diffusion across the plasma membrane. The lipid composition of the membrane determines the rate of uptake of acetic acid, and thicker, more rigid membranes impede passive diffusion. We hypothesized that the elongation of glycerophospholipid fatty acids would lead to thicker and more rigid membranes, reducing the influx of acetic acid. Molecular dynamics simulations were used to predict the changes in membrane properties. Heterologous expression of Arabidopsis thaliana genes fatty acid elongase 1 (FAE1) and glycerol-3-phosphate acyltransferase 5 (GPAT5) increased the average fatty acid chain length. However, this did not lead to a reduction in the net uptake rate of acetic acid. Despite successful strain engineering, the net uptake rate of acetic acid did not decrease. We suggest that changes in the relative abundance of certain membrane lipid headgroups could mitigate the effect of longer fatty acid chains, resulting in a higher net uptake rate of acetic acid.
Collapse
|
46
|
Salsaa M, Aziz K, Lazcano P, Schmidtke MW, Tarsio M, Hüttemann M, Reynolds CA, Kane PM, Greenberg ML. Valproate activates the Snf1 kinase in Saccharomyces cerevisiae by decreasing the cytosolic pH. J Biol Chem 2021; 297:101110. [PMID: 34428448 PMCID: PMC8449051 DOI: 10.1016/j.jbc.2021.101110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022] Open
Abstract
Valproate (VPA) is a widely used mood stabilizer, but its therapeutic mechanism of action is not understood. This knowledge gap hinders the development of more effective drugs with fewer side effects. Using the yeast model to elucidate the effects of VPA on cellular metabolism, we determined that the drug upregulated expression of genes normally repressed during logarithmic growth on glucose medium and increased levels of activated (phosphorylated) Snf1 kinase, the major metabolic regulator of these genes. VPA also decreased the cytosolic pH (pHc) and reduced glycolytic production of 2/3-phosphoglycerate. ATP levels and mitochondrial membrane potential were increased, and glucose-mediated extracellular acidification decreased in the presence of the drug, as indicated by a smaller glucose-induced shift in pH, suggesting that the major P-type proton pump Pma1 was inhibited. Interestingly, decreasing the pHc by omeprazole-mediated inhibition of Pma1 led to Snf1 activation. We propose a model whereby VPA lowers the pHc causing a decrease in glycolytic flux. In response, Pma1 is inhibited and Snf1 is activated, resulting in increased expression of normally repressed metabolic genes. These findings suggest a central role for pHc in regulating the metabolic program of yeast cells.
Collapse
Affiliation(s)
- Michael Salsaa
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Kerestin Aziz
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Pablo Lazcano
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Maureen Tarsio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Christian A Reynolds
- Department of Emergency Medicine, School of Medicine, Wayne State University, Detroit, Michigan, USA; Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
47
|
Patni D, Jha SK. Protonation-Deprotonation Switch Controls the Amyloid-like Misfolding of Nucleic-Acid-Binding Domains of TDP-43. J Phys Chem B 2021; 125:8383-8394. [PMID: 34318672 DOI: 10.1021/acs.jpcb.1c03262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nutrient starvation stress acidifies the cytosol and leads to the formation of large protein assemblies and misfolded aggregates. However, how starvation stress is sensed at the molecular level and leads to protein misfolding is poorly understood. TDP-43 is a vital protein, which, under stress-like conditions, associates with stress granule proteins via its functional nucleic-acid-binding domains (TDP-43tRRM) and misfolds to form aberrant aggregates. Here, we show that the monomeric N form of TDP-43tRRM forms a misfolded amyloid-like protein assembly, β form, in a pH-dependent manner and identified the critical protein side-chain residue whose protonation triggers its misfolding. We systematically mutated the three buried ionizable residues, D105, H166, and H256, to neutral amino acids to block the pH-dependent protonation-deprotonation titration of their side chain and studied their effect on the N-to-β transition. We observed that D105A and H256Q resembled TDP-43tRRM in their pH-dependent misfolding behavior. However, H166Q retains the N-like secondary structure under low-pH conditions and does not show pH-dependent misfolding to the β form. These results indicate that H166 is the critical side-chain residue whose protonation triggers the misfolding of TDP-43tRRM and shed light on how stress-induced misfolding of proteins during neurodegeneration could begin from site-specific triggers.
Collapse
Affiliation(s)
- Divya Patni
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
48
|
Ghaffarinasab S, Motamedian E. Improving ethanol production by studying the effect of pH using a modified metabolic model and a systemic approach. Biotechnol Bioeng 2021; 118:2934-2946. [PMID: 33913513 DOI: 10.1002/bit.27800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/19/2021] [Accepted: 04/21/2021] [Indexed: 11/06/2022]
Abstract
pH is an important factor affecting the growth and production of microorganisms; especially, its effect on ethanologenic microorganisms. It can change the ionization state of metabolites via the change in the charge of their functional groups that may lead to metabolic alteration. Here, we estimated the ionization state of metabolites and balanced the charge of reactions in genome-scale metabolic models of Saccharomyces cerevisiae, Escherichia coli, and Zymomonas mobilis at pH levels 5, 6, and 7. The robustness analysis was first implemented to anticipate the effect of proton exchange flux on growth rates for the constructed metabolic models at various pH. In accordance with previous experimental reports, the models predict that Z. mobilis is more sensitive to pH rather than S. cerevisiae and the yeast is more regulated by pH rather than E. coli. Then, a systemic approach was proposed to predict the pH effect on metabolic change and to find effective reactions on ethanol production in S. cerevisiae. The correlated reactions with ethanol production at predicted optimal pH in a range of proton exchange rates determined by robustness analysis were identified using the Pearson correlation coefficient. Then, fluxes of these reactions were applied to cluster the various pHs by principal component analysis and to identify the role of these reactions on metabolic differentiation because of pH change. Finally, 12 reactions were selected for up and downregulation to improve ethanol production. Enzyme regulators of the selected reactions were identified using the BRENDA database and 11 selected regulators were screened and optimized via Plackett-Burman and two-level full factorial designs, respectively. The proposed approach has enhanced yields of ethanol from 0.18 to 0.36 mol/mol carbon. Hence, not only a comprehensive approach for understanding the effect of pH on metabolism was proposed in this study, but also it successfully introduced key manipulations for ethanol overproduction.
Collapse
Affiliation(s)
- Sajjad Ghaffarinasab
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
49
|
Su X, Yang X, Li H, Wang H, Wang Y, Xu J, Ding K, Zhu YG. Bacterial communities are more sensitive to ocean acidification than fungal communities in estuarine sediments. FEMS Microbiol Ecol 2021; 97:6207936. [PMID: 33792671 DOI: 10.1093/femsec/fiab058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Ocean acidification (OA) in estuaries is becoming a global concern, and may affect microbial characteristics in estuarine sediments. Bacterial communities in response to acidification in this habitat have been well discussed; however, knowledge about how fungal communities respond to OA remains poorly understood. Here, we explored the effects of acidification on bacterial and fungal activities, structures and functions in estuarine sediments during a 50-day incubation experiment. Under acidified conditions, activities of three extracellular enzymes related to nutrient cycling were inhibited and basal respiration rates were decreased. Acidification significantly altered bacterial communities and their interactions, while weak alkalization had a minor impact on fungal communities. We distinguished pH-sensitive/tolerant bacteria and fungi in estuarine sediments, and found that only pH-sensitive/tolerant bacteria had strong correlations with sediment basal respiration activity. FUNGuild analysis indicated that animal pathogen abundances in sediment were greatly increased by acidification, while plant pathogens were unaffected. High-throughput quantitative PCR-based SmartChip analysis suggested that the nutrient cycling-related multifunctionality of sediments was reduced under acidified conditions. Most functional genes associated with nutrient cycling were identified in bacterial communities and their relative abundances were decreased by acidification. These new findings highlight that acidification in estuarine regions affects bacterial and fungal communities differently, increases potential pathogens and disrupts bacteria-mediated nutrient cycling.
Collapse
Affiliation(s)
- Xiaoxuan Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Xiaoru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Hongtao Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.,University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China
| | - Jianxin Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Kai Ding
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.,University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.,State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| |
Collapse
|
50
|
Peetermans A, Foulquié-Moreno MR, Thevelein JM. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. MICROBIAL CELL 2021; 8:111-130. [PMID: 34055965 PMCID: PMC8144909 DOI: 10.15698/mic2021.06.751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the major bottlenecks in lactic acid production using microbial fermentation is the detrimental influence lactic acid accumulation poses on the lactic acid producing cells. The accumulation of lactic acid results in many negative effects on the cell such as intracellular acidification, anion accumulation, membrane perturbation, disturbed amino acid trafficking, increased turgor pressure, ATP depletion, ROS accumulation, metabolic dysregulation and metal chelation. In this review, the manner in which Saccharomyces cerevisiae deals with these issues will be discussed extensively not only for lactic acid as a singular stress factor but also in combination with other stresses. In addition, different methods to improve lactic acid tolerance in S. cerevisiae using targeted and non-targeted engineering methods will be discussed.
Collapse
Affiliation(s)
- Arne Peetermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium.,NovelYeast bv, Open Bio-Incubator, Erasmus High School, Laarbeeklaan 121, 1090 Brussels (Jette), Belgium
| |
Collapse
|