1
|
Weber JJ, Geisbrecht BV, Kanost MR, Gorman MJ. A conserved asparagine residue stabilizes iron binding in Manduca sexta transferrin-1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104109. [PMID: 38494145 PMCID: PMC11018507 DOI: 10.1016/j.ibmb.2024.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Transferrin 1 (Tsf1) is an insect-specific iron-binding protein that is abundant in hemolymph and other extracellular fluids. It binds iron tightly at neutral pH and releases iron under acidic conditions. Tsf1 influences the distribution of iron in the body and protects against infection. Elucidating the mechanisms by which Tsf1 achieves these functions will require an understanding of how Tsf1 binds and releases iron. Previously, crystallized Tsf1 from Manduca sexta was shown to have a novel type of iron coordination that involves four iron-binding ligands: two tyrosine residues (Tyr90 and Tyr204), a buried carbonate anion, and a solvent-exposed carbonate anion. The solvent-exposed carbonate anion was bound by a single amino acid residue, a highly conserved asparagine at position 121 (Asn121); thus, we predicted that Asn121 would be essential for high-affinity iron binding. To test this hypothesis, we analyzed the iron-binding and -release properties of five forms of recombinant Tsf1: wild-type, a Y90F/Y204F double mutant (negative control), and three Asn121 mutants (N121A, N121D and N121S). Each of the Asn121 mutants exhibited altered spectral properties, confirming that Asn121 contributes to iron coordination. The N121D and N121S mutations resulted in slightly lower affinity for iron, especially at acidic pH, while iron binding and release by the N121A mutant was indistinguishable from that of the wild-type protein. The surprisingly minor consequences of mutating Asn121, despite its high degree of conservation in diverse insect species, suggest that Asn121 may play a role that is essential in vivo but non-essential for high affinity iron binding in vitro.
Collapse
Affiliation(s)
- Jacob J Weber
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
2
|
Borko V, Friganović T, Weitner T. Glycoproteomics meets thermodynamics: A calorimetric study of the effect of sialylation and synergistic anion on the binding of iron to human serum transferrin. J Inorg Biochem 2023; 244:112207. [PMID: 37054508 DOI: 10.1016/j.jinorgbio.2023.112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
The thermodynamic parameters for the binding of ferric ions to human serum transferrin (hTf) as the major mediator of iron transport in blood plasma were determined by isothermal titration calorimetry in the presence of carbonate and oxalate as synergistic anions at pH 7.4. The results indicate that the binding of ferric ions to the two binding sites of hTf is driven both enthalpically and entropically in a lobe-dependent manner: binding to the C-site is mainly enthalpically driven, whereas binding to the N-site is mainly entropically driven. Lower sialic acid content of hTf leads to more exothermic apparent binding enthalpies for both lobes, while the increased apparent binding constants for both sites were found in the presence of carbonate. Sialylation also unequally affected the heat change rates for both sites only in the presence of carbonate, but not in the presence of oxalate. Overall, the results suggest that the desialylated hTf has a higher iron sequestering ability, which may have implications for iron metabolism.
Collapse
|
3
|
Falcone E, Faller P. Thermodynamics-based rules of thumb to evaluate the interaction of chelators and kinetically-labile metal ions in blood serum and plasma. Dalton Trans 2023; 52:2197-2208. [PMID: 36734607 DOI: 10.1039/d2dt03875g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal ions play a very important role in nature and their homeostasis is crucial. A lot of metal-related chemical research activities are ongoing that concern metal-based drugs or tools, such as chelation therapy, metal- and metabolite sensors, metallo-drugs and prodrugs, PET and MRI imaging agents, etc. In most of these cases, the applied chelator/ligand (L) or metal-ligand complex (M-L) has at least to pass the blood plasma to reach the target. Hence it is exposed to several metal-binding proteins (mainly serum albumin and transferrin) and to all essential metal ions (zinc, copper, iron, etc.). This holds also for studies in cultured cells when fetal calf serum is used in the medium. There is a risk that the applied compound (L or M-L) in the serum is transformed into a different entity, due to trans-metallation and/or ligand exchange reactions. This depends on the thermodynamics and kinetics. For kinetically-labile complexes, the complex stability with all the ligands and all metal ions present in serum is decisive in evaluating the thermodynamic driving force towards a certain fate of the chelator or metal-ligand complex. To consider that, an integrative view is needed on the stability constants, by taking into account all the metal ions present and all the main proteins to which they are bound, as well as the non-occupied metal binding site in proteins. Only then, a realistic estimation of the complex stability, and hence its potential fate, can be done. This perspective aims to provide a simple approach to estimate the thermodynamic stability of labile metal-ligand complexes in a blood plasma/serum environment. It gives a guideline to obtain an estimation of the plasma and serum complex stability and metal selectivity starting from the chemical stability constants of metal-ligand complexes. Although of high importance, it does not focus on the more complex kinetic aspects of metal-transfer reactions. The perspective should help for a better design of such compounds, to perform test tube assays which are relevant to the conditions in the plasma/serum and to be aware of the importance of ternary complexes, kinetics and competition experiments.
Collapse
Affiliation(s)
- Enrico Falcone
- Institut de Chimie, UMR 7177, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Peter Faller
- Institut de Chimie, UMR 7177, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000, Strasbourg, France. .,Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
4
|
Kumar R, Sharma D, Kumar N, Kumari B, Kumar S, Kumar R. Substitution of carbonate by non-physiological synergistic anion modulates the stability and iron release kinetics of serum transferrin. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140856. [PMID: 36252939 DOI: 10.1016/j.bbapap.2022.140856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
Serum transferrin (sTf) is a bi-lobal protein. Each lobe of sTf binds one Fe3+ ion in the presence of a synergistic anion. Physiologically, carbonate is the main synergistic anion but other anions such as oxalate, malonate, glycolate, maleate, glycine, etc. can substitute for carbonate in vitro. The present work provides the possible pathways by which the substitution of carbonate with oxalate affects the structural, kinetic, thermodynamic, and functional properties of blood plasma sTf. Analysis of equilibrium experiments measuring iron release and structural unfolding of carbonate and oxalate bound diferric-sTf (Fe2sTf) as a function of pH, urea concentration, and temperature reveal that the structural and iron-centers stability of Fe2sTf increase by substitution of carbonate with oxalate. Analysis of isothermal titration calorimetry (ITC) scans showed that the affinity of Fe3+ with apo-sTf is enhanced by substituting carbonate with oxalate. Analysis of kinetic and thermodynamic parameters measured for the iron release from the carbonate and oxalate bound monoferric-N-lobe of sTf (FeNsTf) and Fe2sTf at pH 7.4 and pH 5.6 reveals that the substitution of carbonate with oxalate inhibits/retards the iron release via increasing the enthalpic barriers.
Collapse
Affiliation(s)
- Rajesh Kumar
- School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Navinder Kumar
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Beeta Kumari
- Deparment of Chemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Sanjeev Kumar
- Deparment of Chemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Rajesh Kumar
- Deparment of Chemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India; School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India.
| |
Collapse
|
5
|
Arora EK, Sharma V. Iron metabolism: pathways and proteins in homeostasis. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Iron is essential to human survival. The biological role and trafficking of this trace essential inorganic element which is also a potential toxin is constantly being researched and unfolded. Vital for oxygen transport, DNA synthesis, electron transport, neurotransmitter biosynthesis and present in numerous other heme and non-heme enzymes the physiological roles are immense. Understanding the molecules and pathways that regulate this essential element at systemic and cellular levels are of importance in improving therapeutic strategies for iron related disorders. This review highlights the progress in understanding the metabolism and trafficking of iron along with the pathophysiology of iron related disorders.
Collapse
Affiliation(s)
- Ekta Kundra Arora
- Chemistry Department, St. Stephen’s College , University of Delhi , Delhi 110007 , India
| | - Vibha Sharma
- Chemistry Department, St. Stephen’s College , University of Delhi , Delhi 110007 , India
| |
Collapse
|
6
|
Silva AM, Moniz T, de Castro B, Rangel M. Human transferrin: An inorganic biochemistry perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Edwards KC, Gannon MW, Frantom PA, Vincent JB. Low-molecular-weight chromium-binding substance (LMWCr) may bind and carry Cr(III) from the endosome. J Inorg Biochem 2021; 223:111555. [PMID: 34315118 DOI: 10.1016/j.jinorgbio.2021.111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Trivalent chromium has been proposed to be transported in vivo from the bloodstream to the tissues via endocytosis by transferrin (Tf), the major iron transport protein in the blood. While Cr(III) loss from the Tf/Tf receptor complex after acidification to pH 5.5 has recently been shown to be sufficiently rapid to be physiologically relevant, the released Cr(III) still must exit the endosome during the time of the endocytosis cycle (circa 15 min). Cr(III) binds too slowly to small ligands such as citrate or ascorbate, or even EDTA, for such complexes to form and be transported from the endosome, while no trivalent ion transporters are known. However, the apo form of the peptide low-molecular-weight chromium-binding substance (LMWCr) can remove Cr(III) from Cr(III)2-Tf at neutral pH, albeit slowly, and LMWCr is known to be transported from cells after binding Cr(III), although the transporter is not known. LMWCr subsequently carries Cr(III) to the bloodstream ultimately for removal from the body in the urine. The rate of binding of Cr(III) to apoLMWCr was significantly enhanced in the presence of the Tf/Tf receptor complex. These results suggest that apoLMWCr may function to bind Cr(III) released in the endosomes for ultimate removal from the body as part of a Cr(III) detoxification process.
Collapse
Affiliation(s)
- Kyle C Edwards
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - Michael W Gannon
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - Patrick A Frantom
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - John B Vincent
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA.
| |
Collapse
|
8
|
Weber JJ, Kashipathy MM, Battaile KP, Go E, Desaire H, Kanost MR, Lovell S, Gorman MJ. Structural insight into the novel iron-coordination and domain interactions of transferrin-1 from a model insect, Manduca sexta. Protein Sci 2021; 30:408-422. [PMID: 33197096 PMCID: PMC7784759 DOI: 10.1002/pro.3999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/07/2022]
Abstract
Transferrins function in iron sequestration and iron transport by binding iron tightly and reversibly. Vertebrate transferrins coordinate iron through interactions with two tyrosines, an aspartate, a histidine, and a carbonate anion, and conformational changes that occur upon iron binding and release have been described. Much less is known about the structure and functions of insect transferrin-1 (Tsf1), which is present in hemolymph and influences iron homeostasis mostly by unknown mechanisms. Amino acid sequence and biochemical analyses have suggested that iron coordination by Tsf1 differs from that of the vertebrate transferrins. Here we report the first crystal structure (2.05 Å resolution) of an insect transferrin. Manduca sexta (MsTsf1) in the holo form exhibits a bilobal fold similar to that of vertebrate transferrins, but its carboxyl-lobe adopts a novel orientation and contacts with the amino-lobe. The structure revealed coordination of a single Fe3+ ion in the amino-lobe through Tyr90, Tyr204, and two carbonate anions. One carbonate anion is buried near the ferric ion and is coordinated by four residues, whereas the other carbonate anion is solvent exposed and coordinated by Asn121. Notably, these residues are highly conserved in Tsf1 orthologs. Docking analysis suggested that the solvent exposed carbonate position is capable of binding alternative anions. These findings provide a structural basis for understanding Tsf1 function in iron sequestration and transport in insects as well as insight into the similarities and differences in iron homeostasis between insects and humans.
Collapse
Affiliation(s)
- Jacob J. Weber
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanKansasUSA
| | - Maithri M. Kashipathy
- Protein Structure Laboratory, Del Shankel Structural Biology CenterUniversity of KansasLawrenceKansasUSA
| | | | - Eden Go
- Department of ChemistryUniversity of KansasLawrenceKansasUSA
| | - Heather Desaire
- Department of ChemistryUniversity of KansasLawrenceKansasUSA
| | - Michael R. Kanost
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanKansasUSA
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology CenterUniversity of KansasLawrenceKansasUSA
| | - Maureen J. Gorman
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanKansasUSA
| |
Collapse
|
9
|
Edwards KC, Kim H, Ferguson R, Lockart MM, Vincent JB. Significance of conformation changes during the binding and release of chromium(III) from human serum transferrin. J Inorg Biochem 2020; 206:111040. [PMID: 32088595 PMCID: PMC7108967 DOI: 10.1016/j.jinorgbio.2020.111040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/17/2022]
Abstract
Trivalent chromium has been proposed to be transported in vivo from the bloodstream to the tissues via endocytosis by transferrin (Tf), the major iron transport protein in the blood. While both Cr(III) binding and release from Tf have been proposed to be too slow to be physiologically relevant, recent kinetic studies under physiological conditions demonstrate that Cr(III) binding and release are sufficiently fast to occur during the time of the endocytosis cycle (circa 15 min). Consequently, the release of Cr(III) from human and bovine serum Tf has been examined under conditions mimicking an endosome during endocytosis. These studies have also found that Cr(III)2-Tf can exist in multiple conformations giving rise to different spectroscopic properties and different rates of Cr(III) release. Time-dependent spectroscopic studies of the binding and release of Cr(III) from human serum Tf have been used to identify three different conformations of Cr(III)2-Tf. The conformation of Cr(III)2-Tf used in most previous studies forms too slowly to be physiologically relevant and slowly releases Cr(III) in endosomal pH range. The conformation formed between 5 min to 60 min after the addition of Cr(III) to apoTf at pH 7.4 in 25 mM bicarbonate resembles the conformation of Cr(III)2-Tf in its complex with Tf receptor (TfR) and loses Cr(III) rapidly at endosomal pH, although not as fast as the Tf-TfR complex. The significance of these conformations and the potential role of Tf in detoxification of Cr(III) are described.
Collapse
Affiliation(s)
- Kyle C Edwards
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - Hannah Kim
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - Riley Ferguson
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - Molly M Lockart
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - John B Vincent
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA.
| |
Collapse
|
10
|
Mishra L, Sundararajan M, Bandyopadhyay T. Molecular dynamics simulations of plutonium binding and its decorporation from the binding-cleft of human serum transferrin. J Biol Inorg Chem 2020; 25:213-231. [PMID: 31980924 DOI: 10.1007/s00775-020-01753-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/03/2020] [Indexed: 11/29/2022]
Abstract
The possibility of plutonium (Pu) intake by radiation workers can not be ruled out. Transportation of Pu(IV) to various organs/cells is mainly carried through iron-carrying protein, serum transferrin (sTf), by receptor-mediated endocytosis. Understanding the Pu-sTf interaction is a primary step toward future design of its decorporating agents. We report MD simulations of Pu(IV) binding with sTf and look out for its decorporation at extracellular pH using suitable ligands. MD simulations were carried out in polarizable water environment at different protonation states of the protein. Results unravel the binding motif of Pu(IV): (1) sTf binds the ion in closed conformation at extracellular serum pH with carbonate as synergistic anions, (2) change in protonation state of dilysine (K206 and K296)-trigger and that of the carbonate ion at acidic endosomal pH is found to cause conformational changes of protein, conducive for the heavy ion to be released, although; (3) strong electrostatic interaction between D63 in the binding-cleft and Pu(IV) is found not to ever set free the ion. In an endeavour to decorporate Pu(IV), fragmented molecular form of hydroxypyridinone (HOPO) and catechol (CAM)-based ligands are docked at the binding site (BS) of the protein and metadynamics simulations are conducted. Pu(IV) binding at BS is found to be so strong that it was not detached from BS with the docked HOPO. However, for the identical set of simulation parameters, CAM is found to facilitate dislodging the heavy ion from the protein's binding influence. Differential behaviour of the two chelators is further explored. Fragmented molecular form of hydroxy-pyridinone (HOPO) and catecholamide (CAM) ligands were docked at the binding-site (BS) of human serum transferrin (sTf) to explore their feasibility as plausible Pu(IV) decorporating agents by employing metadynamics method. CAM was found to dislodge Pu from the sTf BS, while HOPO could not.
Collapse
Affiliation(s)
- Lokpati Mishra
- Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Mahesh Sundararajan
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Tusar Bandyopadhyay
- Homi Bhabha National Institute, Mumbai, 400094, India. .,Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai, 400 085, India.
| |
Collapse
|
11
|
Release of trivalent chromium from serum transferrin is sufficiently rapid to be physiologically relevant. J Inorg Biochem 2020; 202:110901. [DOI: 10.1016/j.jinorgbio.2019.110901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022]
|
12
|
Mishra L, Sawant PD, Sundararajan M, Bandyopadhyay T. Binding of Cm(III) and Th(IV) with Human Transferrin at Serum pH: Combined QM and MD Investigations. J Phys Chem B 2019; 123:2729-2744. [PMID: 30864809 DOI: 10.1021/acs.jpcb.8b09473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human serum transferrin (sTf) can also function as a noniron metal transporter since only 30% of it is typically saturated with a ferric ion. While this function of sTf can be fruitfully utilized for targeted delivery of certain metal therapeutics, it also runs the risk of trafficking the lethal radionuclides into cells. A large number of actinide (An) ions are known to bind to the iron sites of sTf although molecular-level understanding of their binding is unclear. Understanding the radionuclide interaction with sTf is a primary step toward future design of their decorporating agents since irrespective of the means of contamination, the radionuclides are absorbed and transported by blood before depositing into target organs. Here, we report an extensive multiscale modeling approach of two An (curium(III) and thorium(IV)) ions' binding with sTf at serum physiological pH. We find that sTf binds both the heavy ions in a closed conformation with carbonate as synergistic anions and the An-loaded sTf maintains its closed conformation even after 100 ns of equilibrium molecular dynamics (MD) simulations. MD simulations are performed in a polarizable water environment, which also incorporates electronic continuum corrections for ions via charge rescaling. The molecular details of the An coordination and An exchange free energies with iron in the interdomain cleft of the protein are evaluated through a combination of quantum mechanical (QM) and MD studies. In line with reported experimental observations, well-tempered metadynamics results of the ions' binding energetics show that An-sTf complexes are less stable than Fe-sTf. Additionally, curium(III) is found to bind more weakly than thorium(IV). The latter result might suggest relative attenuation of thorium(IV) cytotoxicity when compared with curium(III).
Collapse
|
13
|
Abdizadeh H, Atilgan AR, Atilgan C, Dedeoglu B. Computational approaches for deciphering the equilibrium and kinetic properties of iron transport proteins. Metallomics 2018; 9:1513-1533. [PMID: 28967944 DOI: 10.1039/c7mt00216e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With the advances in three-dimensional structure determination techniques, high quality structures of the iron transport proteins transferrin and the bacterial ferric binding protein (FbpA) have been deposited in the past decade. These are proteins of relatively large size, and developments in hardware and software have only recently made it possible to study their dynamics using standard computational resources. We review computational techniques towards understanding the equilibrium and kinetic properties of iron transport proteins under different environmental conditions. At the level of detail that requires quantum chemical treatments, the octahedral geometry around iron has been scrutinized and it has been established that the iron coordinating tyrosines are in an unusual deprotonated state. At the atomistic level, both the N-lobe and the full bilobal structure of transferrin have been studied under varying conditions of pH, ionic strength and binding of other metal ions by molecular dynamics (MD) simulations. These studies have allowed questions to be answered, among others, on the function of second shell residues in iron release, the role of synergistic anions in preparing the active site for iron binding, and the differences between the kinetics of the N- and the C-lobe. MD simulations on FbpA have led to the detailed observation of the binding kinetics of phosphate to the apo form, and to the conformational preferences of the holo form under conditions mimicking the environmental niches provided by the periplasmic space. To study the dynamics of these proteins with their receptors, one must resort to coarse-grained methodologies, since these systems are prohibitively large for atomistic simulations. A study of the complex of human transferrin (hTf) with its pathogenic receptor by such methods has revealed a potential mechanistic explanation for the defense mechanism that arises in evolutionary warfare. Meanwhile, the motions in the transferrin receptor bound hTf have been shown to disfavor apo hTf dissociation, explaining why the two proteins remain in complex during the recycling process from the endosome to the cell surface. Open problems and possible technological applications related to metal ion binding-release in iron transport proteins that may be handled by hybrid use of quantum mechanical, MD and coarse-grained approaches are discussed.
Collapse
Affiliation(s)
- H Abdizadeh
- Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı 34956, Tuzla, Istanbul, Turkey.
| | | | | | | |
Collapse
|
14
|
Abdizadeh H, Tamer YT, Acar O, Toprak E, Atilgan AR, Atilgan C. Increased substrate affinity in the Escherichia coli L28R dihydrofolate reductase mutant causes trimethoprim resistance. Phys Chem Chem Phys 2018; 19:11416-11428. [PMID: 28422217 DOI: 10.1039/c7cp01458a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dihydrofolate reductase (DHFR) is a ubiquitous enzyme with an essential role in cell metabolism. DHFR catalyzes the reduction of dihydrofolate to tetrahydrofolate, which is a precursor for purine and thymidylate synthesis. Several DHFR targeting antifolate drugs including trimethoprim, a competitive antibacterial inhibitor, have therefore been developed and are clinically used. Evolution of resistance against antifolates is a common public health problem rendering these drugs ineffective. To combat the resistance problem, it is important to understand resistance-conferring changes in the DHFR structure and accordingly develop alternative strategies. Here, we structurally and dynamically characterize Escherichia coli DHFR in its wild type (WT) and trimethoprim resistant L28R mutant forms in the presence of the substrate and its inhibitor trimethoprim. We use molecular dynamics simulations to determine the conformational space, loop dynamics and hydrogen bond distributions at the active site of DHFR for the WT and the L28R mutant. We also report their experimental kcat, Km, and Ki values, accompanied by isothermal titration calorimetry measurements of DHFR that distinguish enthalpic and entropic contributions to trimethoprim binding. Although mutations that confer resistance to competitive inhibitors typically make enzymes more promiscuous and decrease affinity to both the substrate and the inhibitor, strikingly, we find that the L28R mutant has a unique resistance mechanism. While the binding affinity differences between the WT and the mutant for the inhibitor and the substrate are small, the newly formed extra hydrogen bonds with the aminobenzoyl glutamate tail of DHF in the L28R mutant leads to increased barriers for the dissociation of the substrate and the product. Therefore, the L28R mutant indirectly gains resistance by enjoying prolonged binding times in the enzyme-substrate complex. While this also leads to slower product release and decreases the catalytic rate of the L28R mutant, the overall effect is the maintenance of a sufficient product formation rate. Finally, the experimental and computational analyses together reveal the changes that occur in the energetic landscape of DHFR upon the resistance-conferring L28R mutation. We show that the negative entropy associated with the binding of trimethoprim in WT DHFR is due to water organization at the binding interface. Our study lays the framework to study structural changes in other trimethoprim resistant DHFR mutants.
Collapse
Affiliation(s)
- Haleh Abdizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
15
|
Ghanbari Z, Housaindokht M, Bozorgmehr M, Izadyar M. Effects of synergistic and non-synergistic anions on the iron binding site from serum transferrin: A molecular dynamic simulation analysis. J Mol Graph Model 2017; 78:176-186. [DOI: 10.1016/j.jmgm.2017.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 11/15/2022]
|
16
|
Vavilova AA, Stoikov II. p- tert-Butylthiacalix[4]arenes functionalized by N-(4'-nitrophenyl)acetamide and N, N-diethylacetamide fragments: synthesis and binding of anionic guests. Beilstein J Org Chem 2017; 13:1940-1949. [PMID: 29062412 PMCID: PMC5629390 DOI: 10.3762/bjoc.13.188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/24/2017] [Indexed: 11/23/2022] Open
Abstract
New p-tert-butylthiacalix[4]arenes, which are mono-, 1,2-di- and tetrasubstituted at the lower rim containing N-(4'-nitrophenyl)acetamide and N,N-diethylacetamide groups in cone and partial cone conformations have been synthesized. Their complexation ability towards a number of tetrabutylammonium salts n-Bu4NX (X = F-, Cl-, Br-, I-, CH3CO2-, H2PO4-, NO3-) was studied by UV spectroscopy. The effective receptor for the anions studied as well as selective receptors for F-, CH3CO2- and H2PO4- ions, which based on the synthesized thiacalix[4]arenes, have been obtained. It was shown that p-tert-butylthiacalix[4]arene tetrasubstituted at the lower rim by N-(4'-nitrophenyl)acetamide moieties bonded to the anions studied with association constants within the range of 3.55 × 103-7.94 × 105 M-1. Besides, the binding selectivity for F-, Cl-, CH3CO2-, and H2PO4- anions against other anions was in the range of 4.1-223.9. Substituting one or two fragments in the macrocycle with N,N-diethylacetamide groups significantly reduces the complexation ability of the receptor. In contrast to the 1,3-disubstituted macrocycle containing two N-(4'-nitrophenyl)acetamide moieties, the 1,2-disubstituted thiacalix[4]arene, which contains only one such fragment and a N,N-diethylacetamide moiety, selectively binds F- anions.
Collapse
Affiliation(s)
- Alena A Vavilova
- Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| | - Ivan I Stoikov
- Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| |
Collapse
|
17
|
Kumar S, Sharma D, Kumar R. Role of Macromolecular Crowding on Stability and Iron Release Kinetics of Serum Transferrin. J Phys Chem B 2017; 121:8669-8683. [PMID: 28837344 DOI: 10.1021/acs.jpcb.7b05702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The macromolecular crowding influences the structural stability and functional properties of transferrin (Tf). The equilibrium as well as kinetic studies of Tf at different concentrations of crowding agents (dextran 40, dextran 70, and ficoll 70) and at a fixed concentration of dextran 40 under different concentrations of NaCl at pH 7.4 and 5.6 (±1) revealed that (i) the crowder environment increases the diferric-Tf (Fe2Tf) stability against iron loss and overall denaturation of the protein, (ii) both in the absence and presence of crowder, the presence of salt promotes the loss of iron and overall denaturation of Fe2Tf which is due to ionic screening of electrostatic interactions, (iii) the crowder environment retards iron release from monoferric N-lobe of Tf (FeNTf) by increasing enthalpic barrier, (iv) the retardation of iron release by crowding is enthalpically dominated than the entropic one, (v) both in the absence and presence of crowder, the presence of salt accelerates the iron release from FeNTf due to ionic screening of electrostatic interactions and anion binding to KISAB sites, and (vi) the crowders environment is unable to diminish (a) the salt-induced destabilization of Fe2Tf against the loss of iron and overall denaturation and (b) the anion effect and ionic screening of diffusive counterions responsible to promote iron release from FeNTf.
Collapse
Affiliation(s)
- Sandeep Kumar
- School of Chemistry and Biochemistry, Thapar University , Patiala 147004, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research, Institute of Microbial Technology , Sector 39A, Chandigarh, India
| | - Rajesh Kumar
- Centre for Chemical Sciences, School of Bassic and Applied Sciences, Central University of Punjab , Bathinda 151001, India
| |
Collapse
|
18
|
Nynca J, Dietrich MA, Adamek M, Steinhagen D, Bilińska B, Hejmej A, Ciereszko A. Purification, characterization and expression of transferrin from rainbow trout seminal plasma. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:38-46. [DOI: 10.1016/j.cbpb.2017.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 11/24/2022]
|
19
|
Abdizadeh H, Atilgan AR, Atilgan C. Mechanisms by Which Salt Concentration Moderates the Dynamics of Human Serum Transferrin. J Phys Chem B 2017; 121:4778-4789. [DOI: 10.1021/acs.jpcb.7b02380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Haleh Abdizadeh
- Sabanci University, Faculty of Engineering and Natural Sciences, Tuzla, 34956 Istanbul, Turkey
| | - Ali Rana Atilgan
- Sabanci University, Faculty of Engineering and Natural Sciences, Tuzla, 34956 Istanbul, Turkey
| | - Canan Atilgan
- Sabanci University, Faculty of Engineering and Natural Sciences, Tuzla, 34956 Istanbul, Turkey
| |
Collapse
|
20
|
Thompson RB, Fierke CA. Measuring and Imaging Metal Ions With Fluorescence-Based Biosensors: Speciation, Selectivity, Kinetics, and Other Issues. Methods Enzymol 2017; 589:281-299. [PMID: 28336067 DOI: 10.1016/bs.mie.2017.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fluorescence-based biosensors have shown themselves to be a powerful tool for the study of a variety of chemical species in biological systems, notably including metal ions. This chapter provides an overview of several important issues in using such sensors to study metallobiochemistry. These issues include selectivity for the analyte over potential interferents, including those that do not themselves induce a signal, the different forms in which metal ions are found (speciation), the utility of metal ion buffers, and the importance of kinetics in studying metal ion binding reactions. Finally, the chapter briefly discusses some of the issues in understanding whole-organism distribution of metal ions and its control.
Collapse
Affiliation(s)
- Richard B Thompson
- University of Maryland School of Medicine, Baltimore, MD, United States.
| | | |
Collapse
|
21
|
The effect of glycosylation on the transferrin structure: A molecular dynamic simulation analysis. J Theor Biol 2016; 404:73-81. [PMID: 27235585 DOI: 10.1016/j.jtbi.2016.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/10/2016] [Accepted: 05/18/2016] [Indexed: 11/20/2022]
Abstract
Transferrins have been defined by the highly cooperative binding of iron and a carbonate anion to form a Fe-CO3-Tf ternary complex. As such, the layout of the binding site residues affects transferrin function significantly; In contrast to N-lobe, C-lobe binding site of the transferrin structure has been less characterized and little research which surveyed the interaction of carbonate with transferrin in the C-lobe binding site has been found. In the present work, molecular dynamic simulation was employed to gain access into the molecular level understanding of carbonate binding site and their interactions in each lobe. Residues responsible for carbonate binding of transferrin structure were pointed out. In addition, native human transferrin is a glycoprotein that two N-linked complex glycan chains located in the C-lobe. Usually, in the molecular dynamic simulation for simplifying, glycan is removed from the protein structure. Here, we explore the effect of glycosylation on the transferrin structure. Glycosylation appears to have an effect on the layout of the binding site residue and transferrin structure. On the other hand, sometimes the entire transferrin formed by separated lobes that it allows the results to be interpreted in a straightforward manner rather than more parameters required for full length protein. But, it should be noted that there are differences between the separated lobe and full length transferrin, hence, a comparative analysis by the molecular dynamic simulation was performed to investigate such structural variations. Results revealed that separation in C-lobe caused a significant structural variation in comparison to N-lobe. Consequently, the separated lobes and the full length one are different, showing the importance of the interlobe communication and the impact of the lobes on each other in the transferrin structure.
Collapse
|
22
|
Abstract
Iron is an essential cofactor for many basic metabolic pathways in pathogenic microbes and their hosts. It is also dangerous as it can catalyse the production of reactive free radicals. This dual character makes the host can either limit iron availability to invading microbes or exploit iron to induce toxicity to pathogens. Successful pathogens, including Leishmania species, must possess mechanisms to circumvent host's iron limitation and iron-induced toxicity in order to survive. In this review, we discuss the regulation of iron metabolism in the setting of infection and delineate the iron acquisition strategies used by Leishmania parasites and their subversions to host iron metabolism to overcome host's iron-related defences.
Collapse
|
23
|
Abdizadeh H, Atilgan C. Predicting long term cooperativity and specific modulators of receptor interactions in human transferrin from dynamics within a single microstate. Phys Chem Chem Phys 2016; 18:7916-26. [DOI: 10.1039/c5cp05107j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PRS identifies regions contacting rapidly evolving residues that mechanically manipulate dissociation from the pathogen in the human transferrin–bacterial receptor complex.
Collapse
Affiliation(s)
- Haleh Abdizadeh
- Faculty of Engineering and Natural Sciences
- Sabanci University
- Tuzla
- Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences
- Sabanci University
- Tuzla
- Turkey
| |
Collapse
|
24
|
Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa. BIOMED RESEARCH INTERNATIONAL 2015; 2015:641392. [PMID: 26090431 PMCID: PMC4450279 DOI: 10.1155/2015/641392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
Abstract
Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites.
Collapse
|
25
|
Barbany M, Meyer T, Hospital A, Faustino I, D'Abramo M, Morata J, Orozco M, de la Cruz X. Molecular dynamics study of naturally existing cavity couplings in proteins. PLoS One 2015; 10:e0119978. [PMID: 25816327 PMCID: PMC4376744 DOI: 10.1371/journal.pone.0119978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Couplings between protein sub-structures are a common property of protein dynamics. Some of these couplings are especially interesting since they relate to function and its regulation. In this article we have studied the case of cavity couplings because cavities can host functional sites, allosteric sites, and are the locus of interactions with the cell milieu. We have divided this problem into two parts. In the first part, we have explored the presence of cavity couplings in the natural dynamics of 75 proteins, using 20 ns molecular dynamics simulations. For each of these proteins, we have obtained two trajectories around their native state. After applying a stringent filtering procedure, we found significant cavity correlations in 60% of the proteins. We analyze and discuss the structure origins of these correlations, including neighbourhood, cavity distance, etc. In the second part of our study, we have used longer simulations (≥100 ns) from the MoDEL project, to obtain a broader view of cavity couplings, particularly about their dependence on time. Using moving window computations we explored the fluctuations of cavity couplings along time, finding that these couplings could fluctuate substantially during the trajectory, reaching in several cases correlations above 0.25/0.5. In summary, we describe the structural origin and the variations with time of cavity couplings. We complete our work with a brief discussion of the biological implications of these results.
Collapse
Affiliation(s)
- Montserrat Barbany
- Translational Bioinformatics in Neurosciences, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Tim Meyer
- Theoretische und computergestützte Biophysik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Adam Hospital
- Joint IRB (Institute for Research in Biomedicine)—BSC (Barcelona Supercomputing Center) Program on Computational Biology, Barcelona, Spain
| | - Ignacio Faustino
- Joint IRB (Institute for Research in Biomedicine)—BSC (Barcelona Supercomputing Center) Program on Computational Biology, Barcelona, Spain
| | - Marco D'Abramo
- Department of Chemistry, Università degli Studi di Roma "La Sapienza", Roma, Italy
| | - Jordi Morata
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
| | - Modesto Orozco
- Joint IRB (Institute for Research in Biomedicine)—BSC (Barcelona Supercomputing Center) Program on Computational Biology, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Xavier de la Cruz
- Translational Bioinformatics in Neurosciences, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
26
|
Abdizadeh H, Atilgan AR, Atilgan C. Detailed molecular dynamics simulations of human transferrin provide insights into iron release dynamics at serum and endosomal pH. J Biol Inorg Chem 2015; 20:705-18. [DOI: 10.1007/s00775-015-1256-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/10/2015] [Indexed: 11/30/2022]
|
27
|
Binding of trivalent chromium to serum transferrin is sufficiently rapid to be physiologically relevant. J Inorg Biochem 2015; 143:48-55. [DOI: 10.1016/j.jinorgbio.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 11/21/2022]
|
28
|
Schreinemachers DM, Ghio AJ, Sobus JR, Williams MA. Perchlorate Exposure is Associated with Oxidative Stress and Indicators of Serum Iron Homeostasis Among NHANES 2005-2008 Subjects. Biomark Insights 2015; 10:9-19. [PMID: 25673971 PMCID: PMC4310500 DOI: 10.4137/bmi.s20089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/04/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022] Open
Abstract
Perchlorate (ClO4 (-)), an oxidizing agent, is a ubiquitous environmental pollutant. Several studies have investigated its thyroid hormone disrupting properties. Its associations with other biological measures are largely unknown. This study, combining 2005-2008 National Health and Nutrition Examination Surveys, investigated associations between urinary perchlorate and biomarkers of iron homeostasis, lipids, blood cell counts, and glucose metabolism. Healthy males (n = 3705), non-pregnant females (n = 2967), and pregnant females (n = 356), aged 12-59 years, were included in the linear regression models, which showed significant positive (+) and negative (-) associations for both males and non-pregnant females with serum uric acid (-), serum iron (-), RBC count (-), blood urea nitrogen (+), and lymphocyte count (+). Other significant associations were observed for either males or non-pregnant females. Among pregnant females, perchlorate was significantly associated with blood urea nitrogen (+) and serum iron (-). These associations may be indicators of perchlorate's potential effect on several biological systems, which when considered in total, may implicate perturbation of iron homeostasis.
Collapse
Affiliation(s)
- Dina M Schreinemachers
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, ORD, US EPA, Durham, NC, USA
| | - Andrew J Ghio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, ORD, US EPA, Durham, NC, USA
| | - Jon R Sobus
- Human Exposure and Atmospheric Sciences Division, National Exposure Research Laboratory, ORD, US EPA, Durham, NC, USA
| | - Marc A Williams
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, ORD, US EPA, Durham, NC, USA
| |
Collapse
|
29
|
Moderate conformational impact of citrate on ovotransferrin considerably increases its capacity to self-assemble at the interface. J Colloid Interface Sci 2015; 437:219-226. [DOI: 10.1016/j.jcis.2014.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022]
|
30
|
Bauer N, Panak PJ. Influence of carbonate on the complexation of Cm(iii) with human serum transferrin studied by time-resolved laser fluorescence spectroscopy (TRLFS). NEW J CHEM 2015. [DOI: 10.1039/c4nj01877j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of carbonate on the complexation of Cm(iii) with transferrin is investigated using TRLFS. The results prove directly that carbonate acts as a synergistic anion for Cm(iii) complexation with transferrin.
Collapse
Affiliation(s)
- Nicole Bauer
- Karlsruhe Institute of Technology (KIT)
- Campus North
- Institute for Nuclear Waste Disposal (INE)
- 76021 Karlsruhe
- Germany
| | - Petra J. Panak
- Karlsruhe Institute of Technology (KIT)
- Campus North
- Institute for Nuclear Waste Disposal (INE)
- 76021 Karlsruhe
- Germany
| |
Collapse
|
31
|
Wong BX, Tsatsanis A, Lim LQ, Adlard PA, Bush AI, Duce JA. β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One 2014; 9:e114174. [PMID: 25464026 PMCID: PMC4252103 DOI: 10.1371/journal.pone.0114174] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/04/2014] [Indexed: 01/24/2023] Open
Abstract
Ceruloplasmin is a ferroxidase that interacts with ferroportin to export cellular iron, but is not expressed in neurons. We recently reported that the amyloid precursor protein (APP) is the analogous iron-exporting chaperone for neurons and other cells. The ferroxidase activity of APP has since been called into question. Using a triplex Fe2+ oxidation assay, we analyzed the activity of a soluble form of APP (sAPPα) within a buffer of physiological pH and anionic charge, and determined that iron oxidation originated from phosphate. Using various techniques such as flow-cytometry to measure surface presented proteins, we confirmed that endogenous APP is essential for ferroportin persistence on the neuronal surface. Therefore, despite lacking ferroxidase activity, APP still supports iron export from neurons.
Collapse
Affiliation(s)
- Bruce X. Wong
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Tsatsanis
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Linh Q. Lim
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul A. Adlard
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I. Bush
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AIB); (JAD)
| | - James A. Duce
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AIB); (JAD)
| |
Collapse
|
32
|
Hughes AL, Friedman R. Evolutionary diversification of the vertebrate transferrin multi-gene family. Immunogenetics 2014; 66:651-61. [PMID: 25142446 DOI: 10.1007/s00251-014-0798-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/13/2014] [Indexed: 01/07/2023]
Abstract
In a phylogenetic analysis of vertebrate transferrins (TFs), six major clades (subfamilies) were identified: (a) S, the mammalian serotransferrins; (b) ICA, the mammalian inhibitor of carbonic anhydrase (ICA) homologs; (c) L, the mammalian lactoferrins; (d) O, the ovotransferrins of birds and reptiles; (e) M, the melanotransferrins of bony fishes, amphibians, reptiles, birds, and mammals; and (f) M-like, a newly identified TF subfamily found in bony fishes, amphibians, reptiles, and birds. A phylogenetic tree based on the joint alignment of N-lobes and C-lobes supported the hypothesis that three separate events of internal duplication occurred in vertebrate TFs: (a) in the common ancestor of the M subfamily, (b) in the common ancestor of the M-like subfamily, and (c) in the common ancestor of other vertebrate TFs. The S, ICA, and L subfamilies were found only in placental mammals, and the phylogenetic analysis supported the hypothesis that these three subfamilies arose by gene duplication after the divergence of placental mammals from marsupials. The M-like subfamily was unusual in several respects, including the presence of a uniquely high proportion of clade-specific conserved residues, including distinctive but conserved residues in the sites homologous to those functioning in carbonate binding of human serotransferrin. The M-like family also showed an unusually high proportion of cationic residues in the positively charged region corresponding to human lactoferrampin, suggesting a distinctive role of this region in the M-like subfamily, perhaps in antimicrobial defense.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, Coker Life Sciences Building, University of South Carolina, 715 Sumter St. Columbia, Columbia, SC, 29208, USA,
| | | |
Collapse
|
33
|
Electrostatic effects control the stability and iron release kinetics of ovotransferrin. J Biol Inorg Chem 2014; 19:1009-24. [DOI: 10.1007/s00775-014-1145-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
34
|
Frazer DM, Anderson GJ. The regulation of iron transport. Biofactors 2014; 40:206-14. [PMID: 24132807 DOI: 10.1002/biof.1148] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/02/2013] [Accepted: 09/06/2013] [Indexed: 01/01/2023]
Abstract
Iron is an essential nutrient, but its concentration and distribution in the body must be tightly controlled due to its inherent toxicity and insolubility in aqueous solution. Living systems have successfully overcome these potential limitations by evolving a range of iron binding proteins and transport systems that effectively maintain iron in a nontoxic and soluble form for much, if not all, of its time within the body. In the circulation, iron is transported to target organs bound to the serum iron binding protein transferrin. Individual cells modulate their uptake of transferrin-bound iron depending on their iron requirements, using both transferrin receptor 1-dependent and independent pathways. Once inside the cell, iron can be chaperoned to sites of need or, if in excess, stored within ferritin. Iron is released from cells by the iron export protein ferroportin1, which requires the ferroxidase activity of ceruloplasmin or hephestin to load iron safely onto transferrin. The regulation of iron export is controlled predominantly at the systemic level by the master regulator of iron homeostasis hepcidin. Hepcidin, in turn, responds to changes in body iron demand, making use of a range of regulatory mechanisms that center on the bone morphogenetic protein signaling pathway. This review provides an overview of recent advances in the field of iron metabolism and outlines the key components of the iron transport and regulation systems.
Collapse
Affiliation(s)
- David M Frazer
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia
| | | |
Collapse
|
35
|
Abstract
Iron is a redox active metal which is abundant in the Earth's crust. It has played a key role in the evolution of living systems and as such is an essential element in a wide range of biological phenomena, being critical for the function of an enormous array of enzymes, energy transduction mechanisms, and oxygen carriers. The redox nature of iron renders the metal toxic in excess and consequently all biological organisms carefully control iron levels. In this overview the mechanisms adopted by man to control body iron levels are described.Low body iron levels are related to anemia which can be treated by various forms of iron fortification and supplementation. Elevated iron levels can occur systemically or locally, each giving rise to specific symptoms. Systemic iron overload results from either the hyperabsorption of iron or regular blood transfusion and can be treated by the use of a selection of iron chelating molecules. The symptoms of many forms of neurodegeneration are associated with elevated levels of iron in certain regions of the brain and iron chelation therapy is beginning to find an application in the treatment of such diseases. Iron chelators have also been widely investigated for the treatment of cancer, tuberculosis, and malaria. In these latter studies, selective removal of iron from key enzymes or iron binding proteins is sought. Sufficient selectivity between the invading organism and the host has yet to be established for such chelators to find application in the clinic.Iron chelation for systemic iron overload and iron supplementation therapy for the treatment of various forms of anemia are now established procedures in clinical medicine. Chelation therapy may find an important role in the treatment of various neurodegenerative diseases in the near future.
Collapse
|