1
|
Zhang T, Shi C, Ye Z, Deng J, Gu M, Chen Z, Huang L, Su X, Chang Z. Crystal structure combined with metabolomics and biochemical studies indicates that FAM3A participates in fatty acid beta-oxidation upon binding of acyl-L-carnitine. Biochem Biophys Res Commun 2024; 735:150481. [PMID: 39111121 DOI: 10.1016/j.bbrc.2024.150481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 11/05/2024]
Abstract
As the first member of the family with sequence similarity 3 (FAM3), FAM3A promotes synthesis of ATP in mitochondria of hepatic cells and cells from other organs. Dysregulations of FAM3A are involved in the development of diabetes and nonalcoholic fatty liver disease (NAFLD). So far, the molecule mechanism under the physiological and pathological functions of FAM3A is largely unexplored. Here, we determined the crystal structure of FAM3A at high resolution of 1.38Å, complexed with an unknown-source compound which was characterized through metabolomics and confirmed as methacholine by thermal shift assay and surface plasmon resonance (SPR). Exploration for natural ligands of FAM3A was conducted through the same molecular interaction assays. The observed binding of acyl-L-carnitine molecules indicated FAM3A participating in fatty acid beta-oxidation. Knockdown and rescue assays coupled with fatty acid oxidation determination confirmed the role of FAM3A in beta-oxidation. This investigation reveals the molecular mechanism for the biological function of FAM3A and would provide basis for identifying drug target for treatment of diabetes and NAFLD.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Chao Shi
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhaoyang Ye
- State Key Laboratory of Protein and Plant Gene Research and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Jie Deng
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Mingyue Gu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhangxin Chen
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lixin Huang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xiaodong Su
- State Key Laboratory of Protein and Plant Gene Research and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
| | - Zhenzhan Chang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
2
|
Yang L, Du B, Zhang S, Wang M. FAM3A mediates the phenotypic switch of human aortic smooth muscle cells stimulated with oxidised low-density lipoprotein by influencing the PI3K-AKT pathway. In Vitro Cell Dev Biol Anim 2023; 59:431-442. [PMID: 37474885 DOI: 10.1007/s11626-023-00775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/26/2023] [Indexed: 07/22/2023]
Abstract
Family with sequence similarity 3 member A (FAM3A) is a multifunctional protein that is related to the pathological process of various disorders. FAM3A is reportedly able to affect the phenotypic change of vascular smooth muscle cells under a hypertensive state. Whether FAM3A mediates the phenotypic switch of vascular smooth muscle cells under an atherosclerotic state remains unaddressed. This work investigated the roles and mechanisms of FAM3A in mediating the phenotypic switch of human aortic smooth muscle cells (HASMCs) stimulated with oxidised low-density lipoprotein (ox-LDL) in vitro. FAM3A expression was elevated in HASMCs following ox-LDL treatment. FAM3A silencing led to a suppressive effect on ox-LDL-provoked proliferation, migration and inflammation of HASMCs, whereas FAM3A overexpression had an opposite effect. Ox-LDL elicited a change in HASMCs from a contractile phenotype to a synthetic phenotype, which was inhibited by FAM3A silencing or enhanced by FAM3A overexpression. Further investigation elucidated that FAM3A silencing repressed and FAM3A overexpression promoted ox-LDL-induced activation of the PI3K-AKT pathway in HASMCs. Reactivation of AKT reversed the suppressive effect of FAM3A silencing on the ox-LDL-induced phenotypic switch of HASMCs. Restraining AKT blocked the promoting effect of FAM3A overexpression on the ox-LDL-induced phenotypic switch of HASMCs. In summary, this work elucidates that FAM3A mediates the ox-LDL-induced phenotypic switch of HASMCs by influencing the PI3K-AKT pathway, indicating a potential role for FAM3A in atherosclerosis.
Collapse
Affiliation(s)
- Lei Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, Shaanxi Province, 710038, People's Republic of China
| | - Baoshun Du
- Second Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Shitao Zhang
- Department of Neurosurgery, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province, 710018, People's Republic of China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, Shaanxi Province, 710038, People's Republic of China.
| |
Collapse
|
3
|
Lanas A, Tacconelli S, Contursi A, Piazuelo E, Bruno A, Ronci M, Marcone S, Dovizio M, Sopeña F, Falcone L, Milillo C, Mucci M, Ballerini P, Patrignani P. Biomarkers of Response to Low-Dose Aspirin in Familial Adenomatous Polyposis Patients. Cancers (Basel) 2023; 15:cancers15092457. [PMID: 37173923 PMCID: PMC10177499 DOI: 10.3390/cancers15092457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The results of Aspirin prevention of colorectal adenomas in patients with familial adenomatous polyposis (FAP) are controversial. METHODS We conducted a biomarker-based clinical study in eight FAP patients treated with enteric-coated low-dose Aspirin (100 mg daily for three months) to explore whether the drug targets mainly platelet cyclooxygenase (COX)-1 or affects extraplatelet cellular sources expressing COX-isozymes and/or off-target effects in colorectal adenomas. RESULTS In FAP patients, low-dose Aspirin-acetylated platelet COX-1 at Serine529 (>70%) was associated with an almost complete inhibition of platelet thromboxane (TX) B2 generation ex vivo (serum TXB2). However, enhanced residual urinary 11-dehydro-TXB2 and urinary PGEM, primary metabolites of TXA2 and prostaglandin (PG)E2, respectively, were detected in association with incomplete acetylation of COX-1 in normal colorectal biopsies and adenomas. Proteomics of adenomas showed that Aspirin significantly modulated only eight proteins. The upregulation of vimentin and downregulation of HBB (hemoglobin subunit beta) distinguished two groups with high vs. low residual 11-dehydro-TXB2 levels, possibly identifying the nonresponders and responders to Aspirin. CONCLUSIONS Although low-dose Aspirin appropriately inhibited the platelet, persistently high systemic TXA2 and PGE2 biosynthesis were found, plausibly for a marginal inhibitory effect on prostanoid biosynthesis in the colorectum. Novel chemotherapeutic strategies in FAP can involve blocking the effects of TXA2 and PGE2 signaling with receptor antagonists.
Collapse
Affiliation(s)
- Angel Lanas
- University Hospital LB, Aragon Health Research Institute (IISAragon), CIBERehd, University of Zaragoza, 50009 Zaragoza, Spain
| | - Stefania Tacconelli
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Annalisa Contursi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Elena Piazuelo
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| | - Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Simone Marcone
- Trinity Translational Medicine Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Melania Dovizio
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Federico Sopeña
- University Hospital LB, Aragon Health Research Institute (IISAragon), CIBERehd, University of Zaragoza, 50009 Zaragoza, Spain
| | - Lorenza Falcone
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Cristina Milillo
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Matteo Mucci
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Paola Patrignani
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| |
Collapse
|
4
|
Yan H, Meng Y, Li X, Xiang R, Hou S, Wang J, Wang L, Yu X, Xu M, Chi Y, Yang J. FAM3A maintains metabolic homeostasis by interacting with F1-ATP synthase to regulate the activity and assembly of ATP synthase. Metabolism 2023; 139:155372. [PMID: 36470472 DOI: 10.1016/j.metabol.2022.155372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Reduced mitochondrial ATP synthase (ATPS) capacity plays crucial roles in the pathogenesis of metabolic disorders. However, there is currently no effective strategy for synchronously stimulating the expressions of ATPS key subunits to restore its assembly. This study determined the roles of mitochondrial protein FAM3A in regulating the activity and assembly of ATPS in hepatocytes. FAM3A is localized in mitochondrial matrix, where it interacts with F1-ATPS to initially activate ATP synthesis and release, and released ATP further activates P2 receptor-Akt-CREB pathway to induce FOXD3 expression. FOXD3 synchronously stimulates the transcriptions of ATPS key subunits and assembly genes to increase its assembly and capacity, augmenting ATP synthesis and inhibiting ROS production. FAM3A, FOXD3 and ATPS expressions were reduced in livers of diabetic mice and NAFLD patients. FOXD3 expression, ATPS capacity and ATP content were reduced in various tissues of FAM3A-deficient mice with dysregulated glucose and lipid metabolism. Hepatic FOXD3 activation increased ATPS assembly to ameliorate dysregulated glucose and lipid metabolism in obese mice. Hepatic FOXD3 inhibition or knockout reduced ATPS capacity to aggravate HFD-induced hyperglycemia and steatosis. In conclusion, FAM3A is an active ATPS component, and regulates its activity and assembly by activating FOXD3. Activating FAM3A-FOXD3 axis represents a viable strategy for restoring ATPS assembly to treat metabolic disorders.
Collapse
Affiliation(s)
- Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoxing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Beijing 100191, China
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
5
|
Liu X, Hou S, Xiang R, Hu C, Chen Z, Li N, Yan H, Yu X, Li X, Chi Y, Yang J. Imipramine activates FAM3A-FOXA2-CPT2 pathway to ameliorate hepatic steatosis. Metabolism 2022; 136:155292. [PMID: 35995281 DOI: 10.1016/j.metabol.2022.155292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 10/31/2022]
Abstract
Mitochondrial FAM3A has been revealed to be a viable target for treating diabetes and nonalcoholic fatty liver disease (NAFLD). However, its distinct mechanism in ameliorating hepatic steatosis remained unrevealed. High-throughput RNA sequencing revealed that carnitine palmityl transferase 2 (CPT2), one of the key enzymes for lipid oxidation, is the downstream molecule of FAM3A signaling pathway in hepatocytes. Intensive study demonstrated that FAM3A-induced ATP release activated P2 receptor to promote the translocation of calmodulin (CaM) from cytoplasm into nucleus, where it functioned as a co-activator of forkhead box protein A2 (FOXA2) to promote the transcription of CPT2, increasing free fatty acid oxidation and reducing lipid deposition in hepatocytes. Furthermore, antidepressant imipramine activated FAM3A-ATP-P2 receptor-CaM-FOXA2-CPT2 pathway to reduce lipid deposition in hepatocytes. In FAM3A-deficient hepatocytes, imipramine failed to activate CaM-FOXA2-CPT2 axis to increase lipid oxidation. Imipramine administration significantly ameliorated hepatic steatosis, hyperglycemia and obesity of obese mice mainly by activating FAM3A-ATP-CaM-FOXA2-CPT2 pathway in liver and thermogenesis in brown adipose tissue (BAT). In FAM3A-deficient mice fed on high-fat-diet, imipramine treatment failed to correct the dysregulated lipid and glucose metabolism, and activate thermogenesis in BAT. In conclusion, imipramine activates FAM3A-ATP-CaM-FOXA2-CPT2 pathway to ameliorate steatosis. For depressive patients complicated with metabolic disorders, imipramine may be recommended in priority as antidepressive drug.
Collapse
Affiliation(s)
- Xiangyang Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Chengqing Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Zhenzhen Chen
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Na Li
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Xiaoxing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
6
|
Lee J, Hong SW, Kim MJ, Moon SJ, Kwon H, Park SE, Rhee EJ, Lee WY. Dulaglutide Ameliorates Palmitic Acid-Induced Hepatic Steatosis by Activating FAM3A Signaling Pathway. Endocrinol Metab (Seoul) 2022; 37:74-83. [PMID: 35144334 PMCID: PMC8901965 DOI: 10.3803/enm.2021.1293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Dulaglutide, a long-acting glucagon-like peptide-1 receptor agonist (GLP-1RA), has been shown to reduce body weight and liver fat content in patients with type 2 diabetes. Family with sequence similarity 3 member A (FAM3A) plays a vital role in regulating glucose and lipid metabolism. The aim of this study was to determine the mechanisms by which dulaglutide protects against hepatic steatosis in HepG2 cells treated with palmitic acid (PA). METHODS HepG2 cells were pretreated with 400 μM PA for 24 hours, followed by treatment with or without 100 nM dulaglutide for 24 hours. Hepatic lipid accumulation was determined using Oil red O staining and triglyceride (TG) assay, and the expression of lipid metabolism-associated factor was analyzed using quantitative real time polymerase chain reaction and Western blotting. RESULTS Dulaglutide significantly decreased hepatic lipid accumulation and reduced the expression of genes associated with lipid droplet binding proteins, de novo lipogenesis, and TG synthesis in PA-treated HepG2 cells. Dulaglutide also increased the expression of proteins associated with lipolysis and fatty acid oxidation and FAM3A in PA-treated cells. However, exendin-(9-39), a GLP-1R antagonist, reversed the expression of FAM3A, and fatty acid oxidation-associated factors increased due to dulaglutide. In addition, inhibition of FAM3A by siRNA attenuated the reducing effect of dulaglutide on TG content and its increasing effect on regulation of fatty acid oxidation. CONCLUSION These results suggest that dulaglutide could be used therapeutically for improving nonalcoholic fatty liver disease, and its effect could be mediated in part via upregulation of FAM3A expression through a GLP-1R-dependent pathway.
Collapse
Affiliation(s)
- Jinmi Lee
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Jeong Kim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Mao XL, Cai Y, Chen YH, Wang Y, Jiang XX, Ye LP, Li SW. Novel Targets and Therapeutic Strategies to Protect Against Hepatic Ischemia Reperfusion Injury. Front Med (Lausanne) 2022; 8:757336. [PMID: 35059411 PMCID: PMC8764312 DOI: 10.3389/fmed.2021.757336] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatic ischemia reperfusion injury (IRI), a fascinating topic that has drawn a lot of interest in the last few years, is a major complication caused by a variety of clinical situations, such as liver transplantation, severe trauma, vascular surgery, and hemorrhagic shock. The IRI process involves a series of complex events, including mitochondrial deenergization, metabolic acidosis, adenosine-5'-triphosphate depletion, Kupffer cell activation, calcium overload, oxidative stress, and the upregulation of pro-inflammatory cytokine signal transduction. A number of protective strategies have been reported to ameliorate IRI, including pharmacological therapy, ischemic pre-conditioning, ischemic post-conditioning, and machine reperfusion. However, most of these strategies are only at the stage of animal model research at present, and the potential mechanisms and exact therapeutic targets have yet to be clarified. IRI remains a main cause of postoperative liver dysfunction, often leading to postoperative morbidity or even mortality. Very recently, it was reported that the activation of peroxisome proliferator-activated receptor γ (PPARγ), a member of a superfamily of nuclear transcription factors activated by agonists, can attenuate IRI in the liver, and FAM3A has been confirmed to mediate the protective effect of PPARγ in hepatic IRI. In addition, non-coding RNAs, like LncRNAs and miRNAs, have also been reported to play a pivotal role in the liver IRI process. In this review, we presented an overview of the latest advances of treatment strategies and proposed potential mechanisms behind liver IRI. We also highlighted the role of several important molecules (PPARγ, FAM3A, and non-coding RNAs) in protecting against hepatic IRI. Only after achieving a comprehensive understanding of potential mechanisms and targets behind IRI can we effectively ameliorate IRI in the liver and achieve better therapeutic effects.
Collapse
Affiliation(s)
- Xin-Li Mao
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yue Cai
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ya-Hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yi Wang
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiu-Xiu Jiang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li-Ping Ye
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-Wei Li
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
8
|
Hu B, Tian Y, Li Q, Liu S. Genomic signatures of artificial selection in the Pacific oyster,
Crassostrea gigas. Evol Appl 2021; 15:618-630. [PMID: 35505882 PMCID: PMC9046764 DOI: 10.1111/eva.13286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/06/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
The Pacific oyster, Crassostrea gigas, is an important aquaculture shellfish around the world with great economic and ecological value. Selective breeding programs have been carried out globally to improve production and performance traits, while genomic signatures of artificial selection remain largely unexplored. In China, we performed selective breeding of C. gigas for over a decade, leading to production of several fast‐growing strains. In the present study, we conducted whole‐genome resequencing of 20 oysters from two fast‐growing strains that have been successively selected for 10 generations, and 20 oysters from the two corresponding wild populations. Sequencing depth of >10× was achieved for each sample, leading to identification of over 12.20 million SNPs. The population structures investigated with three independent methods (principal component analysis, phylogenetic tree, and structure) suggested distinct patterns among selected and wild oyster populations. Assessment of the linkage disequilibrium (LD) decay clearly indicated the changes in genetic diversity during selection. Fixation index (Fst) combined with cross‐population composite likelihood ratio (XP‐CLR) allowed for identification of 768 and 664 selective sweeps (encompassing 1042 and 872 genes) tightly linked to selection in the two fast‐growing strains. KEGG enrichment and functional analyses revealed that 33 genes are important for growth regulation, which act as key components of various signaling pathways with close connection and further take part in regulating the process of cell cycle. This work provides valuable information for the understanding of genomic signatures for long‐term selective breeding and will also be important for growth study and genome‐assisted breeding of the Pacific oyster in the future.
Collapse
Affiliation(s)
- Boyang Hu
- Key Laboratory of Mariculture (Ocean University of China) Ministry of Education, and College of Fisheries Ocean University of China Qingdao China
| | - Yuan Tian
- Key Laboratory of Mariculture (Ocean University of China) Ministry of Education, and College of Fisheries Ocean University of China Qingdao China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China) Ministry of Education, and College of Fisheries Ocean University of China Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China) Ministry of Education, and College of Fisheries Ocean University of China Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
9
|
Rendell MS. Current and emerging gluconeogenesis inhibitors for the treatment of Type 2 diabetes. Expert Opin Pharmacother 2021; 22:2167-2179. [PMID: 34348528 DOI: 10.1080/14656566.2021.1958779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In the last several decades, fueled by gene knockout and knockdown techniques, there has been substantial progress in detailing the pathways of gluconeogenesis. A host of molecules have been identified as potential targets for therapeutic intervention. A number of hormones, enzymes and transcription factors participate in gluconeogenesis. Many new agents have come into use to treat diabetes and several of these are in development to suppress gluconeogenesis. AREAS COVERED Herein, the author reviews agents that have been discovered and/or are in development, which control excess gluconeogenesis. The author has used multiple sources including PubMed, the preprint servers MedRxIv, BioRxIv, Research Gate, as well as Google Search and the database of the U.S. Patent and Trademarks Office to find appropriate literature. EXPERT OPINION It is now clear that lipid metabolism and hepatic lipogenesis play a major role in gluconeogenesis and resistance to insulin. Future efforts will focus on the duality of gluconeogenesis and adipose tissue metabolism. The exploration of therapeutic RNA agents will accelerate. The balance of clinical benefit and adverse effects will determine the future of new gluconeogenesis inhibitors.
Collapse
Affiliation(s)
- Marc S Rendell
- The Association of Diabetes Investigators, Newport Coast, California, United States.,The Rose Salter Medical Research Foundation, Newport Coast, California, United States
| |
Collapse
|
10
|
Huang R, Zhang C, Wang X, Hu H. PPARγ in Ischemia-Reperfusion Injury: Overview of the Biology and Therapy. Front Pharmacol 2021; 12:600618. [PMID: 33995008 PMCID: PMC8117354 DOI: 10.3389/fphar.2021.600618] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a complex pathophysiological process that is often characterized as a blood circulation disorder caused due to various factors (such as traumatic shock, surgery, organ transplantation, burn, and thrombus). Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. Theoretically, IRI can occur in various tissues and organs, including the kidney, liver, myocardium, and brain, among others. The advances made in research regarding restoring tissue perfusion in ischemic areas have been inadequate with regard to decreasing the mortality and infarct size associated with IRI. Hence, the clinical treatment of patients with severe IRI remains a thorny issue. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of a superfamily of nuclear transcription factors activated by agonists and is a promising therapeutic target for ameliorating IRI. Therefore, this review focuses on the role of PPARγ in IRI. The protective effects of PPARγ, such as attenuating oxidative stress, inhibiting inflammatory responses, and antagonizing apoptosis, are described, envisaging certain therapeutic perspectives.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xing Wang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Chen Z, Liu X, Luo Y, Wang J, Meng Y, Sun L, Chang Y, Cui Q, Yang J. Repurposing Doxepin to Ameliorate Steatosis and Hyperglycemia by Activating FAM3A Signaling Pathway. Diabetes 2020; 69:1126-1139. [PMID: 32312868 PMCID: PMC7243289 DOI: 10.2337/db19-1038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/13/2020] [Indexed: 01/07/2023]
Abstract
Mitochondrial protein FAM3A suppresses hepatic gluconeogenesis and lipogenesis. This study aimed to screen drug(s) that activates FAM3A expression and evaluate its effect(s) on hyperglycemia and steatosis. Drug-repurposing methodology predicted that antidepressive drug doxepin was among the drugs that potentially activated FAM3A expression. Doxepin was further validated to stimulate the translocation of transcription factor HNF4α from the cytoplasm into the nucleus, where it promoted FAM3A transcription to enhance ATP synthesis, suppress gluconeogenesis, and reduce lipid deposition in hepatocytes. HNF4α antagonism or FAM3A deficiency blunted doxepin-induced suppression on gluconeogenesis and lipid deposition in hepatocytes. Doxepin administration attenuated hyperglycemia, steatosis, and obesity in obese diabetic mice with upregulated FAM3A expression in liver and brown adipose tissues (BAT). Notably, doxepin failed to correct dysregulated glucose and lipid metabolism in FAM3A-deficient mice fed on high-fat diet. Doxepin's effects on ATP production, Akt activation, gluconeogenesis, and lipogenesis repression were also blunted in FAM3A-deficient mouse livers. In conclusion, FAM3A is a therapeutic target for diabetes and steatosis. Antidepressive drug doxepin activates FAM3A signaling pathways in liver and BAT to improve hyperglycemia and steatosis of obese diabetic mice. Doxepin might be preferentially recommended as an antidepressive drug in potential treatment of patients with diabetes complicated with depression.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, China
| | - Xiangyang Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Yanjin Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Yongsheng Chang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Qinghua Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
12
|
Xiang R, Chen J, Li S, Yan H, Meng Y, Cai J, Cui Q, Yang Y, Xu M, Geng B, Yang J. VSMC-Specific Deletion of FAM3A Attenuated Ang II-Promoted Hypertension and Cardiovascular Hypertrophy. Circ Res 2020; 126:1746-1759. [PMID: 32279581 DOI: 10.1161/circresaha.119.315558] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RATIONALE Dysregulated purinergic signaling transduction plays important roles in the pathogenesis of cardiovascular diseases. However, the role and mechanism of vascular smooth muscle cell (VSMC)-released ATP in the regulation of blood pressure, and the pathogenesis of hypertension remain unknown. FAM3A (family with sequence similarity 3 member A) is a new mitochondrial protein that enhances ATP production and release. High expression of FAM3A in VSMC suggests it may play a role in regulating vascular constriction and blood pressure. OBJECTIVE To determine the role and mechanism of FAM3A-ATP signaling pathway in VSMCs in the regulation of blood pressure and the pathogenesis of hypertension. METHODS AND RESULTS In the media layer of hypertensive rat and mouse arteries, and the internal mammary artery of hypertensive patients, FAM3A expression was increased. VSMC-specific deletion of FAM3A reduced vessel contractility and blood pressure levels in mice. Moreover, deletion of FAM3A in VSMC attenuated Ang II (angiotensin II)-induced vascular constriction and remodeling, hypertension, and cardiac hypertrophy in mice. In cultured VSMCs, Ang II activated HSF1 (heat shock factor 1) to stimulate FAM3A expression, activating ATP-P2 receptor pathway to promote the change of VSMCs from contractile phenotype to proliferative phenotype. In the VSMC layer of spontaneously hypertensive rat arteries, Ang II-induced hypertensive mouse arteries and the internal mammary artery of hypertensive patients, HSF1 expression was increased. Treatment with HSF1 inhibitor reduced artery contractility and ameliorated hypertension of spontaneously hypertensive rats. CONCLUSIONS FAM3A is an important regulator of vascular constriction and blood pressure. Overactivation of HSF1-FAM3A-ATP signaling cascade in VSMCs plays important roles in Ang II-induced hypertension and cardiovascular diseases. Inhibitors of HSF1 could be potentially used to treat hypertension.
Collapse
Affiliation(s)
- Rui Xiang
- From the Department of Physiology and Pathophysiology (R.X., J. Chen, H.Y., Y.M., J.Y.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| | - Ji Chen
- From the Department of Physiology and Pathophysiology (R.X., J. Chen, H.Y., Y.M., J.Y.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| | - Shuangyue Li
- Hypertension Center, Fuwai Hospital, CAMS&PUMC. State Key Laboratory of Cardiovascular Disease (S.L., J. Cai, B.G.)
| | - Han Yan
- From the Department of Physiology and Pathophysiology (R.X., J. Chen, H.Y., Y.M., J.Y.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| | - Yuhong Meng
- From the Department of Physiology and Pathophysiology (R.X., J. Chen, H.Y., Y.M., J.Y.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| | - Jun Cai
- Hypertension Center, Fuwai Hospital, CAMS&PUMC. State Key Laboratory of Cardiovascular Disease (S.L., J. Cai, B.G.)
| | - Qinghua Cui
- Department of Biomedical Informatics (Q.C.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| | - Yan Yang
- Department of Surgery, Fuwai Hospital, CAMS&PUMC (Y.Y.)
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.X.)
| | - Bin Geng
- Hypertension Center, Fuwai Hospital, CAMS&PUMC. State Key Laboratory of Cardiovascular Disease (S.L., J. Cai, B.G.)
| | - Jichun Yang
- From the Department of Physiology and Pathophysiology (R.X., J. Chen, H.Y., Y.M., J.Y.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| |
Collapse
|
13
|
Yang W, Chi Y, Meng Y, Chen Z, Xiang R, Yan H, Yang J. FAM3A plays crucial roles in controlling PDX1 and insulin expressions in pancreatic beta cells. FASEB J 2020; 34:3915-3931. [PMID: 31944392 DOI: 10.1096/fj.201902368rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 11/11/2022]
Abstract
So far, the mechanism that links mitochondrial dysfunction to PDX1 inhibition in the pathogenesis of pancreatic β cell dysfunction under diabetic condition remains largely unclear. This study determined the role of mitochondrial protein FAM3A in regulating PDX1 expression in pancreatic β cells using gain- and loss-of function methods in vitro and in vivo. Within pancreas, FAM3A is highly expressed in β, α, δ, and pp cells of islets. Islet FAM3A expression was correlated with insulin expression under physiological and diabetic conditions. Mice with specific knockout of FAM3A in islet β cells exhibited markedly blunted insulin secretion and glucose intolerance. FAM3A-deficient islets showed significant decrease in PDX1 expression, and insulin expression and secretion. FAM3A overexpression upregulated PDX1 and insulin expressions, and augmented insulin secretion in cultured islets and β cells. Mechanistically, FAM3A enhanced ATP production to elevate cellular Ca2+ level and promote insulin secretion. Furthermore, FAM3A-induced ATP release activated CaM to function as a co-activator of FOXA2, stimulating PDX1 gene transcription. In conclusion, FAM3A plays crucial roles in controlling PDX1 and insulin expressions in pancreatic β cells. Inhibition of FAM3A will trigger mitochondrial dysfunction to repress PDX1 and insulin expressions.
Collapse
Affiliation(s)
- Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Zhenzhen Chen
- State Key Laboratory of Cardiovascular Disease, Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
14
|
Yan S, Jiang C, Li H, Li D, Dong W. FAM3A protects chondrocytes against interleukin-1β-induced apoptosis through regulating PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun 2019; 516:209-214. [PMID: 31208715 DOI: 10.1016/j.bbrc.2019.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Chondrocyte death due to apoptosis is central for osteoarthritis (OA) pathogenesis. The family with sequence similarity 3A (FAM3A) is a mitochondrial protein that plays an important role for cellular adaptation to stress and cell survival. Yet, whether FAM3A is associated with chondrocyte apoptosis and OA pathogenesis remains uncharacterized. In this study, we found that FAM3A expression was downregulated in cartilage tissue from an experimental OA mouse model. Besides, FAM3A expression was also reduced in chondrocytes treated with interleukin-1β (IL-1β), an inflammatory cytokine that promotes cartilage degradation. Moreover, we discovered that FAM3A attenuated chondrocyte apoptosis induced by IL-1β treatment in vitro, suggesting a protective effect of FAM3A against chondrocyte apoptosis. Moreover, mechanistically, FAM3A activated PI3K/Akt/mTOR pathway in IL-1β-treated chondrocytes, and blockade of PI3K/Akt/mTOR pathway with specific inhibitors, wortmannin and LY294002, diminished FAM3A effect on IL-1β-induced chondrocyte apoptosis, hence demonstrating that FAM3A attenuates IL-1β-induced chondrocyte apoptosis through activating the pro-survival PI3K/Akt/mTOR pathway. In conclusion, our study may identify FAM3A as a potential regulator of chondrocyte apoptosis involved in OA pathogenesis.
Collapse
Affiliation(s)
- Song Yan
- Bone and Joint Surgery, Shenzhen Baoan Shiyan People's Hospital, China
| | - Changqing Jiang
- Department of Sports Medicine, Peking University Shenzhen Hospital, China
| | - Hong Li
- Department of General Surgery, People's Hospital of Baoan District, China
| | - Deyan Li
- Bone and Joint Surgery, Shenzhen Baoan Shiyan People's Hospital, China
| | - Wei Dong
- Bone and Joint Surgery, Shenzhen Baoan Shiyan People's Hospital, China.
| |
Collapse
|
15
|
Rampes S, Ma D. Hepatic ischemia-reperfusion injury in liver transplant setting: mechanisms and protective strategies. J Biomed Res 2019; 33:221-234. [PMID: 32383437 DOI: 10.7555/jbr.32.20180087] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatic ischemia-reperfusion injury is a major cause of liver transplant failure, and is of increasing significance due to increased use of expanded criteria livers for transplantation. This review summarizes the mechanisms and protective strategies for hepatic ischemia-reperfusion injury in the context of liver transplantation. Pharmacological therapies, the use of pre-and post-conditioning and machine perfusion are discussed as protective strategies. The use of machine perfusion offers significant potential in the reconditioning of liver grafts and the prevention of hepatic ischemia-reperfusion injury, and is an exciting and active area of research, which needs more study clinically.
Collapse
Affiliation(s)
- Sanketh Rampes
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1U, UK
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK
| |
Collapse
|
16
|
Novel Targets for Treating Ischemia-Reperfusion Injury in the Liver. Int J Mol Sci 2018; 19:ijms19051302. [PMID: 29701719 PMCID: PMC5983804 DOI: 10.3390/ijms19051302] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is a major complication of hemorrhagic shock, liver transplantation, and other liver surgeries. It is one of the leading causes for post-surgery hepatic dysfunction, always leading to morbidity and mortality. Several strategies, such as low-temperature reperfusion and ischemic preconditioning, are useful for ameliorating liver IRI in animal models. However, these methods are difficult to perform in clinical surgeries. It has been reported that the activation of peroxisome proliferator activated receptor gamma (PPARγ) protects the liver against IRI, but with unidentified direct target gene(s) and unclear mechanism(s). Recently, FAM3A, a direct target gene of PPARγ, had been shown to mediate PPARγ’s protective effects in liver IRI. Moreover, noncoding RNAs, including LncRNAs and miRNAs, had also been reported to play important roles in the process of hepatic IRI. This review briefly discussed the roles and mechanisms of several classes of important molecules, including PPARγ, FAM3A, miRNAs, and LncRNAs, in liver IRI. In particular, oral administration of PPARγ agonists before liver surgery or liver transplantation to activate hepatic FAM3A pathways holds great promise for attenuating human liver IRI.
Collapse
|
17
|
Chen Z, Wang J, Yang W, Chen J, Meng Y, Geng B, Cui Q, Yang J. FAM3A mediates PPARγ's protection in liver ischemia-reperfusion injury by activating Akt survival pathway and repressing inflammation and oxidative stress. Oncotarget 2018; 8:49882-49896. [PMID: 28562339 PMCID: PMC5564815 DOI: 10.18632/oncotarget.17805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
FAM3A is a novel mitochondrial protein, and its biological function remains largely unknown. This study determined the role and mechanism of FAM3A in liver ischemia-reperfusion injury (IRI). In mouse liver after IRI, FAM3A expression was increased. FAM3A-deficient mice exhibited exaggerated liver damage with increased serum levels of AST, ALT, MPO, MDA and oxidative stress when compared with WT mice after liver IRI. FAM3A-deficient mouse livers had a decrease in ATP content, Akt activity and anti-apoptotic protein expression with an increase in apoptotic protein expression, inflammation and oxidative stress when compared WT mouse livers after IRI. Rosiglitazone pretreatment protected against liver IRI in wild type mice but not in FAM3A-deficient mice. In cultured hepatocytes, FAM3A overexpression protected against, whereas FAM3A deficiency exaggerated oxidative stress-induced cell death. FAM3A upregulation or FAM3A overexpression inhibited hypoxia/reoxygenation-induced activation of apoptotic gene and hepatocyte death in P2 receptor-dependent manner. FAM3A deficiency blunted rosiglitazone's beneficial effects on Akt activation and cell survival in cultured hepatocytes. Collectively, FAM3A protects against liver IRI by activating Akt survival pathways, repressing inflammation and attenuating oxidative stress. Moreover, the protective effects of PPARγ agonist(s) on liver IRI are dependent on FAM3A-ATP-Akt pathway.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China.,Department of Biomedical Informatics, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ji Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Bin Geng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
18
|
Chen Z, Wang J, Yang W, Chen J, Meng Y, Feng B, Chi Y, Geng B, Zhou Y, Cui Q, Yang J. FAM3C activates HSF1 to suppress hepatic gluconeogenesis and attenuate hyperglycemia of type 1 diabetic mice. Oncotarget 2017; 8:106038-106049. [PMID: 29285313 PMCID: PMC5739700 DOI: 10.18632/oncotarget.22524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
FAM3C, a member of FAM3 gene family, has been shown to improve insulin resistance and hyperglycemia in obese mice. This study further determined whether FAM3C functions as a hepatokine to suppress hepatic gluconeogenesis of type 1 diabetic mice. In STZ-induced type 1 diabetic mouse liver, the FAM3C-HSF1-CaM signaling axis was repressed. Hepatic FAM3C overexpression activated HSF1-CaM-Akt pathway to repress gluconeogenic gene expression and ameliorate hyperglycemia of type 1 diabetic mice. Moreover, hepatic HSF1 overexpression also activated CaM-Akt pathway to repress gluconeogenic gene expression and improve hyperglycemia of type 1 diabetic mice. Hepatic FAM3C and HSF1 overexpression had little effect on serum insulin levels in type 1 diabetic mice. In cultured hepatocytes, conditioned medium of Ad-FAM3C-infected cells induced Akt phosphorylation. Moreover, Akt activation and gluconeogenesis repression induced by FAM3C overexpression were reversed by the treatment with anti-FAM3C antibodies. Treatment with recombinant FAM3C protein induced Akt activation in a HSF1- and CaM-dependent manner in cultured hepatocytes. Furthermore, recombinant FAM3C protein repressed gluconeogenic gene expression and gluconeogenesis by inactivating FOXO1 in a HSF1-dependent manner in cultured hepatocytes. In conclusion, FAM3C is a new hepatokine that suppresses hepatic gluconeogenic gene expression and gluconeogenesis independent of insulin by activating HSF1-CaM-Akt pathway.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ji Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Biaoqi Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yujing Chi
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Bin Geng
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Yong Zhou
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qinghua Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China.,Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education, Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
19
|
Zeng J, Hu J, Lian Y, Jiang Y, Chen B. SFRP5 is a target gene transcriptionally regulated by PPARγ in 3T3-L1 adipocytes. Gene 2017; 641:190-195. [PMID: 29066306 DOI: 10.1016/j.gene.2017.10.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022]
Abstract
Secreted frizzled-related protein 5 (SFRP5) is a newly identified adipokine. SFRP5 expression increases during the differentiation and maturation of adipocytes, but the factors regulating SFRP5 expression during this process remain unclear. This study showed that peroxisome proliferator-activated receptor γ (PPARγ) adenovirus transfection could enhance the SFRP5 expression of 3T3-L1 adipocytes. Three potential binding sites of PPARγ in the SFRP5 promoter domain were found by bioinformatics analysis. Luciferase reporter gene assay demonstrated that PPARγ regulated the activity of the SFRP5 promoter through cis-acting elements at -2,284--1,500bp. Further experiments verified that PPARγ could specifically bind to the SFRP5 promoter at -2,284--2,263bp using chromatin immunoprecipitation and electrophoretic mobility shift assay. These results suggest that SFRP5 be a target gene of PPARγ, and its expression may be under the transcriptional regulation of PPARγ.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jiongyu Hu
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yu Lian
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Youzhao Jiang
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Bing Chen
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
20
|
Xu M, Yang X, Zeng Q, He H, Lu P, Huang G. BIRC5 is a novel target of peroxisome proliferator‑activated receptor γ in brain microvascular endothelium cells during cerebral ischemia. Mol Med Rep 2017; 16:8882-8890. [PMID: 29039513 PMCID: PMC5779969 DOI: 10.3892/mmr.2017.7750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/16/2017] [Indexed: 11/23/2022] Open
Abstract
Cerebral ischemia is a leading cause of ischemic stroke, which may lead to severe disability and mortality worldwide. There are some key factors concerned in cardioprotection, such as peroxisome proliferator-activated receptor γ (PPARγ), a ligand binding transcription factor involved in various biological functions including atherosclerosis, vascular dysfunction and hypertension, and baculoviral IAP repeat-containing 5 (BIRC5), which may protect human brain endothelial cells from ischemia-induced apoptosis. To determine the potential roles of PPARγ in brain microvascular endothelial (bEnd.3) cells during cerebral ischemia and the relationship between PPARγ and BIRC5, a cerebral ischemia model was established with bEnd.3 cells cells by oxygen-glucose deprivation (OGD) treatment. OGD treatment reduced proliferation and enhanced apoptosis of bEnd.3 cells in a time-dependent manner. PPARγ expression levels were decreased in bEnd.3 cells following OGD treatment. Upregulation of PPARγ expression protected bEnd.3 cells from ischemia injury and also upregulated BIRC5 expression. PPARγ-specific binding sites in the BIRC5 promoter were predicted bioinformatically and verified by luciferase reporter experiments. Results from electrophoretic mobility shift/supershift and chromatin immunoprecipitation assays suggested that BIRC5 may be a novel target of PPARγ transcriptional regulation during ischemic injury. The present results indicated that PPARγ may serve a protective role on bEnd.3 cells and that BIRC5 may be a downstream target of PPARγ regulation during cerebral ischemia.
Collapse
Affiliation(s)
- Mingjing Xu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xianli Yang
- Department of Medical Quality Management, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - He He
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Pengcheng Lu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
21
|
Webb R, Hughes MG, Thomas AW, Morris K. The Ability of Exercise-Associated Oxidative Stress to Trigger Redox-Sensitive Signalling Responses. Antioxidants (Basel) 2017; 6:antiox6030063. [PMID: 28796154 PMCID: PMC5618091 DOI: 10.3390/antiox6030063] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss exercise as an oxidative stressor, and elucidate the mechanisms and downstream consequences of exercise-induced oxidative stress. Reactive oxygen species (ROS) are generated in the mitochondria of contracting skeletal myocytes; also, their diffusion across the myocyte membrane allows their transport to neighbouring muscle tissue and to other regions of the body. Although very intense exercise can induce oxidative damage within myocytes, the magnitudes of moderate-intensity exercise-associated increases in ROS are quite modest (~two-fold increases in intracellular and extracellular ROS concentrations during exercise), and so the effects of such increases are likely to involve redox-sensitive signalling effects rather than oxidative damage. Therefore, the responses of muscle and non-muscle cells to exercise-associated redox-sensitive signalling effects will be reviewed; for example, transcription factors such as Peroxisome Proliferator Activated Receptor-gamma (PPARγ) and Liver X-Receptor-alpha (LXRα) comprise redox-activable signalling systems, and we and others have reported exercise-associated modulation of PPARγ and/or LXRα-regulated genes in skeletal myocyte and in non-muscle cell-types such as monocyte-macrophages. Finally, the consequences of such responses in the context of management of chronic inflammatory conditions, and also their implications for the design of exercise training programmes (particularly the use of dietary antioxidants alongside exercise), will be discussed.
Collapse
Affiliation(s)
- Richard Webb
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK.
| | - Michael G Hughes
- Physiology and Health, Cardiff School of Sport, Cardiff Metropolitan University, Cardiff CF23 6XD, UK.
| | - Andrew W Thomas
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK.
| | - Keith Morris
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK.
| |
Collapse
|
22
|
Chi Y, Li J, Li N, Chen Z, Ma L, Peng W, Pan X, Li M, Yu W, He X, Geng B, Cui Q, Liu Y, Yang J. FAM3A enhances adipogenesis of 3T3-L1 preadipocytes via activation of ATP-P2 receptor-Akt signaling pathway. Oncotarget 2017; 8:45862-45873. [PMID: 28515350 PMCID: PMC5542233 DOI: 10.18632/oncotarget.17578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 04/23/2017] [Indexed: 12/14/2022] Open
Abstract
FAM3A plays important roles in regulating hepatic glucose/lipid metabolism and the proliferation of VSMCs. This study determined the role and mechanism of FAM3A in the adipogenesis of 3T3-L1 preadipocytes. During the adipogenesis of 3T3-L1 preadipocytes, FAM3A expression was significantly increased. FAM3A overexpression enhanced 3T3-L1 preadipocyte adipogenesis with increased phosphorylated Akt (pAkt) level, whereas FAM3A silencing inhibited 3T3-L1 preadipocyte adipogenesis with reduced pAkt level. Moreover, FAM3A silencing reduced the expression and secretion of adipokines in 3T3-L1 cells. FAM3A protein is mainly located in mitochondrial fraction of 3T3-L1 cells and mouse adipose tissue. FAM3A overexpression increased, whereas FAM3A silencing decreased ATP production in 3T3-L1 preadipocytes. FAM3A-induced adipogenesis of 3T3-L1 preadipocytes was blunted by inhibitor of P2 receptor. In white adipose tissues of db/db and HFD-fed obese mice, FAM3A expression was reduced. One-month rosiglitazone administration upregulated FAM3A expression, and increased cellular ATP content and pAkt level in white adipose tissues of normal and obese mice. In conclusion, FAM3A enhances the adipogenesis of preadipocytes by activating ATP-P2 receptor-Akt pathway. Under obese condition, a decrease in FAM3A expression in adipose tissues plays important roles in the development of adipose dysfunction and type 2 diabetes.
Collapse
Affiliation(s)
- Yujing Chi
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Jing Li
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Na Li
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Liping Ma
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Weikang Peng
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Xiuying Pan
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Mei Li
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Weidong Yu
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Xiangjun He
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Bin Geng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Yulan Liu
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| |
Collapse
|
23
|
Transcriptional regulation analysis of FAM3A gene and its effect on adipocyte differentiation. Gene 2016; 595:92-98. [DOI: 10.1016/j.gene.2016.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/04/2016] [Accepted: 09/24/2016] [Indexed: 11/17/2022]
|
24
|
FAM3A attenuates ER stress-induced mitochondrial dysfunction and apoptosis via CHOP-Wnt pathway. Neurochem Int 2016; 94:82-9. [DOI: 10.1016/j.neuint.2016.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022]
|
25
|
Ge Z, Zhang P, Hong T, Tang S, Meng R, Bi Y, Zhu D. Erythropoietin alleviates hepatic insulin resistance via PPARγ-dependent AKT activation. Sci Rep 2015; 5:17878. [PMID: 26643367 PMCID: PMC4672330 DOI: 10.1038/srep17878] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/06/2015] [Indexed: 12/30/2022] Open
Abstract
Erythropoietin (EPO) has beneficial effects on glucose metabolism and insulin resistance. However, the mechanism underlying these effects has not yet been elucidated. This study aimed to investigate how EPO affects hepatic glucose metabolism. Here, we report that EPO administration promoted phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation in palmitic acid (PA)-treated HepG2 cells and in the liver of high-fat diet (HFD)-fed mice, whereas adenovirus-mediated silencing of the erythropoietin receptor (EPOR) blocked EPO-induced AKT signalling in HepG2 cells. Importantly, a peroxisome proliferator-activated receptor γ (PPARγ) antagonist and PPARγ small interfering RNA (siRNA) abrogated the EPO-induced increase in p-AKT in HepG2 cells. Lentiviral vector-mediated hepatic PPARγ silencing in HFD-fed C57BL/6 mice impaired EPO-mediated increases in glucose tolerance, insulin sensitivity and hepatic AKT activation. Furthermore, EPO activated the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signalling pathway, and AMPKα and SIRT1 knockdown each attenuated the EPO-induced PPARγ expression and deacetylation and PPARγ-dependent AKT activation in HepG2 cells. In summary, these findings suggest that PPARγ is involved in EPO/EPOR-induced AKT activation, and targeting the PPARγ/AKT pathway via EPO may have therapeutic implications for hepatic insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Zhijuan Ge
- Department of Endocrinology, DrumTower hospital affiliated to Nanjing University Medical School, No321 Zhongshan Road, Nanjing, 210008, China
| | - Pengzi Zhang
- Department of Endocrinology, DrumTower hospital affiliated to Nanjing University Medical School, No321 Zhongshan Road, Nanjing, 210008, China
| | - Ting Hong
- Department of Endocrinology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, 210008, China
| | - Sunyinyan Tang
- Department of Endocrinology, DrumTower hospital affiliated to Nanjing University Medical School, No321 Zhongshan Road, Nanjing, 210008, China
| | - Ran Meng
- Department of Endocrinology, DrumTower hospital affiliated to Nanjing University Medical School, No321 Zhongshan Road, Nanjing, 210008, China
| | - Yan Bi
- Department of Endocrinology, DrumTower hospital affiliated to Nanjing University Medical School, No321 Zhongshan Road, Nanjing, 210008, China
| | - Dalong Zhu
- Department of Endocrinology, DrumTower hospital affiliated to Nanjing University Medical School, No321 Zhongshan Road, Nanjing, 210008, China
| |
Collapse
|
26
|
MENG XIANGYU, LI MENG, GUO JUN, TANG WEIQING, WANG SHU, MAN YONG, HUANG XIUQING, LI JIAN. Protein phosphatase 4 promotes hepatic lipogenesis through dephosphorylating acetyl-CoA carboxylase 1 on serine 79. Mol Med Rep 2014; 10:1959-63. [DOI: 10.3892/mmr.2014.2397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/09/2014] [Indexed: 11/06/2022] Open
|
27
|
Jia S, Chen Z, Li J, Chi Y, Wang J, Li S, Luo Y, Geng B, Wang C, Cui Q, Guan Y, Yang J. FAM3A promotes vascular smooth muscle cell proliferation and migration and exacerbates neointima formation in rat artery after balloon injury. J Mol Cell Cardiol 2014; 74:173-82. [PMID: 24857820 DOI: 10.1016/j.yjmcc.2014.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/07/2014] [Accepted: 05/14/2014] [Indexed: 11/17/2022]
Abstract
The biological function of FAM3A, the first member of family with sequence similarity 3 (FAM3) gene family, remains largely unknown. This study aimed to determine its role in the proliferation and migration of vascular smooth muscle cells (VSMCs). Immunohistochemical staining revealed that FAM3A protein is expressed in the tunica media of rodent arteries, and its expression is reduced with an increase in prostaglandin E receptor 2 (EP2) expression after injury. In vitro, FAM3A overexpression promotes proliferation and migration of VSMCs, whereas FAM3A silencing inhibits these processes. In vivo, FAM3A overexpression results in exaggerated neointima formation of rat carotid artery after balloon injury. FAM3A activates Akt in a PI3K-dependent manner. In contrast, FAM3A induces ERK1/2 activation independent of PI3K. FAM3A protein is subcellularly located in mitochondria, where it affects ATP production and release. Activation of EP2 represses FAM3A expression, leading to impaired ATP production and release in VSMCs. FAM3A-induced activation of Akt and ERK1/2 pathways, proliferation and migration of VSMCs are inhibited by P2 receptor antagonist suramin. Furthermore, inhibition or knockdown of P2Y1 receptor inihibits FAM3A-induced proliferation and migration of VSMCs. In conclusion, FAM3A promotes proliferation and migration of VSMCs via P2Y1 receptor-mediated activation of Akt and ERK1/2 pathways. In injured vessels, FAM3A was repressed by upregulated EP2 expression, leading to the attenuation of ATP-P2Y1 receptor signaling, which is beneficial for preventing excessive proliferation and migration of VSMCs.
Collapse
MESH Headings
- Animals
- Balloon Occlusion
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Cell Movement
- Cell Proliferation
- Cytokines/genetics
- Cytokines/metabolism
- Gene Expression Regulation
- Male
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima/genetics
- Neointima/metabolism
- Neointima/pathology
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Purinergic P2Y1/genetics
- Receptors, Purinergic P2Y1/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Shi Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Jing Li
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Yujing Chi
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Jinyu Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Sha Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Yanjin Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Bin Geng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Cheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Qinghua Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Youfei Guan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
28
|
Wang C, Chi Y, Li J, Miao Y, Li S, Su W, Jia S, Chen Z, Du S, Zhang X, Zhou Y, Wu W, Zhu M, Wang Z, Yang H, Xu G, Wang S, Yang J, Guan Y. FAM3A activates PI3K p110α/Akt signaling to ameliorate hepatic gluconeogenesis and lipogenesis. Hepatology 2014; 59:1779-90. [PMID: 24806753 DOI: 10.1002/hep.26945] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/18/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED FAM3A belongs to a novel cytokine-like gene family, and its physiological role remains largely unknown. In our study, we found a marked reduction of FAM3A expression in the livers of db/db and high-fat diet (HFD)-induced diabetic mice. Hepatic overexpression of FAM3A markedly attenuated hyperglycemia, insulin resistance, and fatty liver with increased Akt (pAkt) signaling and repressed gluconeogenesis and lipogenesis in the livers of those mice. In contrast, small interfering RNA (siRNA)-mediated knockdown of hepatic FAM3A resulted in hyperglycemia with reduced pAkt levels and increased gluconeogenesis and lipogenesis in the livers of C57BL/6 mice. In vitro study revealed that FAM3A was mainly localized in the mitochondria, where it increases adenosine triphosphate (ATP) production and secretion in cultured hepatocytes. FAM3A activated Akt through the p110α catalytic subunit of PI3K in an insulin-independent manner. Blockade of P2 ATP receptors or downstream phospholipase C (PLC) and IP3R and removal of medium calcium all significantly reduced FAM3A-induced increase in cytosolic free Ca(2+) levels and attenuated FAM3A-mediated PI3K/Akt activation. Moreover, FAM3A-induced Akt activation was completely abolished by the inhibition of calmodulin (CaM). CONCLUSION FAM3A plays crucial roles in the regulation of glucose and lipid metabolism in the liver, where it activates the PI3K-Akt signaling pathway by way of a Ca(2+) /CaM-dependent mechanism. Up-regulating hepatic FAM3A expression may represent an attractive means for the treatment of insulin resistance, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Chunjiong Wang
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|