1
|
Matkivska R, Samborska I, Maievskyi O. Effect of animal venom toxins on the main links of the homeostasis of mammals (Review). Biomed Rep 2024; 20:16. [PMID: 38144889 PMCID: PMC10739175 DOI: 10.3892/br.2023.1704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The human body is affected by environmental factors. The dynamic balance between the organism and its environment results from the influence of natural, anthropogenic and social aspects. The factors of exogenous origin determine development of adaptive changes. The present article summarises the mechanisms of animal venom toxins and homeostasis disruption in the body of mammals. The mechanisms underlying pathological changes are associated with shifts in biochemical reactions. Components of the immune, nervous and endocrine systems are key in the host defense and adaptation processes in response to venom by triggering signalling pathways (PI3kinase pathway, arachidonic acid cascade). Animal venom toxins initiate the development of inflammatory processes, the synthesis of pro-inflammatory mediators (cytokines), ROS, proteolytic enzymes, activate the migration of leukocytes and macrophages. Keratinocytes and endothelial cells act as protective barriers under the action of animal venom toxins on the body of mammals. In addition, the formation of pores in cell membranes, structural changes in cell ion channels are characteristic of the action of animal venom toxins.
Collapse
Affiliation(s)
- Ruzhena Matkivska
- Department of Descriptive and Clinical Anatomy, Bogomolets National Medical University, Kyiv 03680, Ukraine
| | - Inha Samborska
- Department of Biological and General Chemistry, National Pirogov Memorial Medical University, Vinnytsya 21018, Ukraine
| | - Oleksandr Maievskyi
- Department of Clinical Medicine, Educational and Scientific Center ‘Institute of Biology and Medicine’ of Taras Shevchenko National University of Kyiv, Kyiv 03127, Ukraine
| |
Collapse
|
2
|
Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins (Basel) 2022; 14:toxins14120875. [PMID: 36548772 PMCID: PMC9784998 DOI: 10.3390/toxins14120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022] Open
Abstract
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Collapse
|
3
|
Rádis-Baptista G. Cell-Penetrating Peptides Derived from Animal Venoms and Toxins. Toxins (Basel) 2021; 13:147. [PMID: 33671927 PMCID: PMC7919042 DOI: 10.3390/toxins13020147] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-penetrating peptides (CPPs) comprise a class of short polypeptides that possess the ability to selectively interact with the cytoplasmic membrane of certain cell types, translocate across plasma membranes and accumulate in the cell cytoplasm, organelles (e.g., the nucleus and mitochondria) and other subcellular compartments. CPPs are either of natural origin or de novo designed and synthesized from segments and patches of larger proteins or designed by algorithms. With such intrinsic properties, along with membrane permeation, translocation and cellular uptake properties, CPPs can intracellularly convey diverse substances and nanomaterials, such as hydrophilic organic compounds and drugs, macromolecules (nucleic acids and proteins), nanoparticles (nanocrystals and polyplexes), metals and radionuclides, which can be covalently attached via CPP N- and C-terminals or through preparation of CPP complexes. A cumulative number of studies on animal toxins, primarily isolated from the venom of arthropods and snakes, have revealed the cell-penetrating activities of venom peptides and toxins, which can be harnessed for application in biomedicine and pharmaceutical biotechnology. In this review, I aimed to collate examples of peptides from animal venoms and toxic secretions that possess the ability to penetrate diverse types of cells. These venom CPPs have been chemically or structurally modified to enhance cell selectivity, bioavailability and a range of target applications. Herein, examples are listed and discussed, including cysteine-stabilized and linear, α-helical peptides, with cationic and amphipathic character, from the venom of insects (e.g., melittin, anoplin, mastoparans), arachnids (latarcin, lycosin, chlorotoxin, maurocalcine/imperatoxin homologs and wasabi receptor toxin), fish (pardaxins), amphibian (bombesin) and snakes (crotamine and cathelicidins).
Collapse
Affiliation(s)
- Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza 60165-081, Brazil
| |
Collapse
|
4
|
Salazar E, Rodriguez-Acosta A, Lucena S, Gonzalez R, McLarty MC, Sanchez O, Suntravat M, Garcia E, Finol HJ, Giron ME, Fernandez I, Deba F, Bessac BF, Sánchez EE. Biological activities of a new crotamine-like peptide from Crotalus oreganus helleri on C2C12 and CHO cell lines, and ultrastructural changes on motor endplate and striated muscle. Toxicon 2020; 188:95-107. [PMID: 33065200 PMCID: PMC7720416 DOI: 10.1016/j.toxicon.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/05/2020] [Accepted: 10/11/2020] [Indexed: 01/08/2023]
Abstract
Crotamine and crotamine-like peptides are non-enzymatic polypeptides, belonging to the family of myotoxins, which are found in high concentration in the venom of the Crotalus genus. Helleramine was isolated and purified from the venom of the Southern Pacific rattlesnake, Crotalus oreganus helleri. This peptide had a similar, but unique, identity to crotamine and crotamine-like proteins isolated from other rattlesnakes species. The variability of crotamine-like protein amino acid sequences may allow different toxic effects on biological targets or optimize the action against the same target of different prey. Helleramine was capable of increasing intracellular Ca2+ in Chinese Hamster Ovary (CHO) cell line. It inhibited cell migration as well as cell viability (IC50 = 11.44 μM) of C2C12, immortalized skeletal myoblasts, in a concentration dependent manner, and promoted early apoptosis and cell death under our experimental conditions. Skeletal muscle harvested from mice 24 h after helleramine injection showed contracted myofibrils and profound vacuolization that enlarged the subsarcolemmal space, along with loss of plasmatic and basal membrane integrity. The effects of helleramine provide further insights and evidence of myotoxic activities of crotamine-like peptides and their possible role in crotalid envenomings.
Collapse
Affiliation(s)
- Emelyn Salazar
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Alexis Rodriguez-Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico, Universidad Central de Venezuela, Caracas, Venezuela
| | - Sara Lucena
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Roschman Gonzalez
- Centro de Microscopía Electrónica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | - Morgan C McLarty
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Oscar Sanchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Estefanie Garcia
- Centro de Microscopía Electrónica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | - Hector J Finol
- Centro de Microscopía Electrónica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | - Maria E Giron
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico, Universidad Central de Venezuela, Caracas, Venezuela
| | - Irma Fernandez
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico, Universidad Central de Venezuela, Caracas, Venezuela
| | - Farah Deba
- Texas A&M Rangel College of Pharmacy, Kingsville, TX, USA
| | - Bret F Bessac
- Texas A&M Rangel College of Pharmacy, Kingsville, TX, USA; Jerry H. Hodge School of Pharmacy, Texas Tech University HSC, Amarillo, TX, USA
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA.
| |
Collapse
|
5
|
Falcao CB, Radis-Baptista G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides 2020; 126:170234. [PMID: 31857106 DOI: 10.1016/j.peptides.2019.170234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
A global public health crisis has emerged with the extensive dissemination of multidrug-resistant microorganisms. Antimicrobial peptides (AMPs) from plants and animals have represented promising tools to counteract those resistant pathogens due to their multiple pharmacological properties such as antimicrobial, anticancer, immunomodulatory and cell-penetrating activities. In this review, we will focus on crotamine and crotalicidin, which are two interesting examples of membrane active peptides derived from the South America rattlesnake Crotalus durrisus terrificus venom. Their full-sequences and structurally-minimized fragments have potential applications, as anti-infective and anti-proliferative agents and diagnostics in medicine and in pharmaceutical biotechnology.
Collapse
Affiliation(s)
- Claudio Borges Falcao
- Laboratory of Biochemistry and Biotechnology, Graduate program in Pharmaceutical Sciences, Federal University of Ceara, Brazil; Peter Pan Association to Fight Childhood Cancer, Fortaleza, CE, 60410-770, Brazil.
| | - Gandhi Radis-Baptista
- Laboratory of Biochemistry and Biotechnology, Graduate program in Pharmaceutical Sciences and Institute for Marine Sciences, Federal University of Ceara, Av da Abolição 3207, Fortaleza, CE, 60165-081, Brazil.
| |
Collapse
|
6
|
Silvestrini AVP, de Macedo LH, de Andrade TAM, Mendes MF, Pigoso AA, Mazzi MV. Intradermal Application of Crotamine Induces Inflammatory and Immunological Changes In Vivo. Toxins (Basel) 2019; 11:toxins11010039. [PMID: 30646542 PMCID: PMC6357061 DOI: 10.3390/toxins11010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Crotamine is a single-chain polypeptide with cell-penetrating properties, which is considered a promising molecule for clinical use. Nevertheless, its biosafety data are still scarce. Herein, we assessed the in vivo proinflammatory properties of crotamine, including its local effect and systemic serum parameters. Sixty male Wistar rats were intradermically injected with 200, 400 and 800 µg crotamine and analyzed after 1, 3 and 7 days. Local effect of crotamine was assessed by determination of MPO and NAG activities, NO levels and angiogenesis. Systemic inflammatory response was assessed by determination of IL-10, TNF-α, CRP, NO, TBARS and SH groups. Crotamine induced macrophages and neutrophils chemotaxis as evidenced by the upregulation of both NAG (0.5–0.6 OD/mg) and MPO (0.1–0.2 OD/mg) activities, on the first and third day of analysis, respectively. High levels of NO were observed for all concentrations and time-points. Moreover, 800 μg crotamine resulted in serum NO (64.7 μM) and local tissue NO (58.5 μM) levels higher or equivalent to those recorded for their respective histamine controls (55.7 μM and 59.0 μM). Crotamine also induced a significant angiogenic response compared to histamine. Systemically, crotamine induced a progressive increase in serum CRP levels up to the third day of analysis (22.4–45.8 mg/mL), which was significantly greater than control values. Crotamine (400 μg) also caused an increase in serum TNF-α, in the first day of analysis (1095.4 pg/mL), however a significant increase in IL-10 (122.2 pg/mL) was also recorded for the same time-point, suggesting the induction of an anti-inflammatory effect. Finally, crotamine changed the systemic redox state by inducing gradual increase in serum levels of TBARS (1.0–1.8 μM/mL) and decrease in SH levels (124.7–19.5 μM/mL) throughout the experimental period of analysis. In summary, rats intradermally injected with crotamine presented local and systemic acute inflammatory responses similarly to histamine, which limits crotamine therapeutic use on its original form.
Collapse
Affiliation(s)
- Ana Vitória Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Luana Henrique de Macedo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Thiago Antônio Moretti de Andrade
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| | - Maíra Felonato Mendes
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| | - Acácio Antônio Pigoso
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| | - Maurício Ventura Mazzi
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| |
Collapse
|
7
|
Dietz JDC, Almeida DAD, Cintra LC, Oliveira BFRD, Magalhães MR, Jesuíno RSA. EVALUATION OF THE ANTIBACTERIAL ACTIVITY OF Crotalus durissus terrificus CRUDE VENOM. CIÊNCIA ANIMAL BRASILEIRA 2018. [DOI: 10.1590/1809-6891v19e-51322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Abstract Snake venoms are recognized as a promising source of pharmacologically active substances and are potentially useful for the development of new antimicrobial drugs. This study aimed to investigate the antimicrobial activity of the venom from the rattlesnake Crotalus durissus terrificus against several bacteria. Antibacterial activity was determined by using the plate microdilution method and the activity on the bacterial envelope structure was screened by using the crystal violet assay. The proteins in crude venom were separated by electrophoresis and characterized regarding their proteolytic activity. C. d. terrificus venom exhibited antimicrobial action against gram-positive and gram-negative bacteria. MIC values were defined for Pseudomonas aeruginosa ATCC 27853 (62.5 µg/mL), Staphylococcus aureus ATCC 25923 (125 µg/mL), and Micrococcus luteus ATCC 9341 (≤500 µg/mL). For Salmonella enterica serovar typhimurium ATCC 14028 and Corynebacterium glutamicum ATCC 13032, the decrease in bacterial growth was not detected visually, but was statistically significant. The crystal violet assay demonstrated that the crude venom increased bacterial cell permeability and the secreted protein profile agreed with previous reports. The results suggest that the proteins with lytic activity against bacteria in C. d. terrificus venom deserve further characterization as they may offer reinforcements to the weak therapeutic arsenal used to fight microbial multidrug resistance.
Collapse
|
8
|
Fernandes de Lima VM, Pereira A. The Plastic Glial-Synaptic Dynamics within the Neuropil: A Self-Organizing System Composed of Polyelectrolytes in Phase Transition. Neural Plast 2016; 2016:7192427. [PMID: 26949548 PMCID: PMC4753343 DOI: 10.1155/2016/7192427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/27/2015] [Indexed: 11/17/2022] Open
Abstract
Several explanations have been proposed to account for the mechanisms of neuroglial interactions involved in neural plasticity. We review experimental results addressing plastic nonlinear interactions between glial membranes and synaptic terminals. These results indicate the necessity of elaborating on a model based on the dynamics of hydroionic waves within the neuropil. These waves have been detected in a small scale experimental model of the central nervous system, the in vitro retina. We suggest that the brain, as the heart and kidney, is a system for which the state of water is functional. The use of nonlinear thermodynamics supports experiments at convenient biological spatiotemporal scales, while an understanding of the properties of ions and their interactions with water requires explanations based on quantum theories. In our approach, neural plasticity is seen as part of a larger process that encompasses higher brain functions; in this regard, hydroionic waves within the neuropil are considered to carry both physiological and cognitive functions.
Collapse
Affiliation(s)
- Vera Maura Fernandes de Lima
- Centro de Biotecnologia, IPEN-CNEN/SP, Avenida Prof. Lineu Prestes 2242, Butantã, 05508-000 São Paulo, SP, Brazil
| | - Alfredo Pereira
- Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Campus Rubião Jr., 18618-970 Botucatu, SP, Brazil
| |
Collapse
|
9
|
V.M FDL, W H. Relevance of excitable media theory and retinal spreading depression experiments in preclinical pharmacological research. Curr Neuropharmacol 2014; 12:413-33. [PMID: 25426010 PMCID: PMC4243032 DOI: 10.2174/1570159x12666140630190800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/29/2014] [Accepted: 06/29/2014] [Indexed: 11/22/2022] Open
Abstract
In preclinical neuropharmacological research, molecular, cell-based, and systems using animals are well established. On the tissue level the situation is less comfortable, although during the last decades some effort went into establishing such systems, i.e. using slices of the vertebrate brain together with optical and electrophysiological techniques. However, these methods are neither fast, nor can they be automated or upscaled. By contrast, the chicken retina can be used as a suitable model. It is easy accessible and can be kept alive in vitro for hours up to days. Due to its structure, in addition the retina displays remarkable intrinsic optical signals, which can be easily used in experiments. Also to electrophysiological methods the retina is well accessible. In excitable tissue, to which the brain and the retina belong, propagating excitation waves can be expected, and the spreading depression is such a phenomenon. It has been first observed in the forties of the last century. Later, Martins-Ferreira established it in the chicken retina (retinal spreading depression or RSD). The electrophysiological characteristics of it are identical with those of the cortical SD. The metabolic differences are known and can be taken into account. The experimental advantage of the RSD compared to the cortical SD is the pronounced intrinsic optical signal (IOS) associated with the travelling wave. This is due to the maximum transparency of retinal tissue in the functional state; thus any physiological event will change it markedly and therefore can be easily seen even by naked eye. The theory can explain wave spread in one (action potentials), two (RSDs) and three dimensions (one heart beat). In this review we present the experimental and the excitable media context for the data interpretation using as example the cholinergic pharmacology in relation to functional syndromes. We also discuss the intrinsic optical signal and how to use it in pre-clinical research.
Collapse
Affiliation(s)
- Fernandes de Lima V.M
- Medical Faculty, Federal University São João Del Rei, CCO, Divinopolis, MG, Brazil LIM- 26 Medical Faculty, USP, Medical Faculty, Sao Paulo, Brazil
| | - Hanke W
- University of Hohenheim, Inst. Physiol., Stuttgart, Germany
| |
Collapse
|