1
|
Kaplan E, Chaloin L, Guichou J, Berrou K, Rahimova R, Labesse G, Lionne C. APH Inhibitors that Reverse Aminoglycoside Resistance in Enterococcus casseliflavus. ChemMedChem 2025; 20:e202400842. [PMID: 39801466 PMCID: PMC12005471 DOI: 10.1002/cmdc.202400842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Aminoglycoside-phosphotransferases (APHs) are a class of bacterial enzymes that mediate acquired resistance to aminoglycoside antibiotics. Here we report the identification of small molecules counteracting aminoglycoside resistance in Enterococcus casseliflavus. Molecular dynamics simulations were performed to identify an allosteric pocket in three APH enzymes belonging to 3' and 2'' subfamilies in which we then screened, in silico, 12,000 small molecules. From a subset of only 14 high-scored molecules tested in vitro, we identified a compound, named here EK3, able to non-competitively inhibit the APH(2'')-IVa, an enzyme mediating clinical gentamicin resistance. Structure-activity relationship (SAR) exploration of this hit compound allowed us to identify a molecule with improved enzymatic inhibition. By measuring bacterial sensitivity, we found that the three best compounds in this series restored bactericidal activity of various aminoglycosides, including gentamicin, without exhibiting toxicity to HeLa cells. This work not only provides a basis to fight aminoglycoside resistance but also highlights a proof-of-concept for the search of allosteric modulators by using in silico methods.
Collapse
Affiliation(s)
- Elise Kaplan
- Institut de Recherche en Infectiologie de Montpellier – IRIMUniversity of MontpellierCNRS UMR 90041919 route de Mende34293Montpellier cedex 5France
- Current address: University of LyonCNRS, UMR5086, Molecular Microbiology and Structural Biochemistry, IBCP7 Passage du Vercors69367LyonFrance
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier – IRIMUniversity of MontpellierCNRS UMR 90041919 route de Mende34293Montpellier cedex 5France
| | - Jean‐François Guichou
- Centre de Biologie Structurale – CBSUniversity of MontpellierCNRS UMR 5048INSERM U 105429 rue de Navacelles34090MontpellierFrance
| | - Kévin Berrou
- Institut de Recherche en Infectiologie de Montpellier – IRIMUniversity of MontpellierCNRS UMR 90041919 route de Mende34293Montpellier cedex 5France
| | - Rahila Rahimova
- Centre de Biologie Structurale – CBSUniversity of MontpellierCNRS UMR 5048INSERM U 105429 rue de Navacelles34090MontpellierFrance
- Current address: University of Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, 71 avenue des MartyrsCS 10090, 38000GrenobleFrance
| | - Gilles Labesse
- Centre de Biologie Structurale – CBSUniversity of MontpellierCNRS UMR 5048INSERM U 105429 rue de Navacelles34090MontpellierFrance
| | - Corinne Lionne
- Institut de Recherche en Infectiologie de Montpellier – IRIMUniversity of MontpellierCNRS UMR 90041919 route de Mende34293Montpellier cedex 5France
- Centre de Biologie Structurale – CBSUniversity of MontpellierCNRS UMR 5048INSERM U 105429 rue de Navacelles34090MontpellierFrance
- Current address: University of Montpellier, CNRS UMR 5048, INSERM U 1054, CBS, 29 rue de Navacelles34090MontpellierFrance
| |
Collapse
|
2
|
Magaña AJ, Sklenicka J, Pinilla C, Giulianotti M, Chapagain P, Santos R, Ramirez MS, Tolmasky ME. Restoring susceptibility to aminoglycosides: identifying small molecule inhibitors of enzymatic inactivation. RSC Med Chem 2023; 14:1591-1602. [PMID: 37731693 PMCID: PMC10507813 DOI: 10.1039/d3md00226h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 09/22/2023] Open
Abstract
Growing resistance to antimicrobial medicines is a critical health problem that must be urgently addressed. Adding to the increasing number of patients that succumb to infections, there are other consequences to the rise in resistance like the compromise of several medical procedures and dental work that are heavily dependent on infection prevention. Since their introduction in the clinics, aminoglycoside antibiotics have been a critical component of the armamentarium to treat infections. Still, the increase in resistance and their side effects led to a decline in their utilization. However, numerous current factors, like the urgent need for antimicrobials and their favorable properties, led to renewed interest in these drugs. While efforts to design new classes of aminoglycosides refractory to resistance mechanisms and with fewer toxic effects are starting to yield new promising molecules, extending the useful life of those already in use is essential. For this, numerous research projects are underway to counter resistance from different angles, like inhibition of expression or activity of resistance components. This review focuses on selected examples of one aspect of this quest, the design or identification of small molecule inhibitors of resistance caused by enzymatic modification of the aminoglycoside. These compounds could be developed as aminoglycoside adjuvants to overcome resistant infections.
Collapse
Affiliation(s)
- Angel J Magaña
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Jan Sklenicka
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Clemencia Pinilla
- Center for Translational Science, Florida International University Port St. Lucie FL 34987 USA
| | - Marc Giulianotti
- Center for Translational Science, Florida International University Port St. Lucie FL 34987 USA
| | - Prem Chapagain
- Department of Physics, Florida International University Miami FL 33199 USA
- Biomolecular Sciences Institute, Florida International University Miami FL 33199 USA
| | - Radleigh Santos
- Department of Mathematics, Nova Southeastern University Fort Lauderdale FL 33314 USA
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| |
Collapse
|
3
|
El-Khoury C, Mansour E, Yuliandra Y, Lai F, Hawkins BA, Du JJ, Sundberg EJ, Sluis-Cremer N, Hibbs DE, Groundwater PW. The role of adjuvants in overcoming antibacterial resistance due to enzymatic drug modification. RSC Med Chem 2022; 13:1276-1299. [PMID: 36439977 PMCID: PMC9667779 DOI: 10.1039/d2md00263a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023] Open
Abstract
Antibacterial resistance is a prominent issue with monotherapy often leading to treatment failure in serious infections. Many mechanisms can lead to antibacterial resistance including deactivation of antibacterial agents by bacterial enzymes. Enzymatic drug modification confers resistance to β-lactams, aminoglycosides, chloramphenicol, macrolides, isoniazid, rifamycins, fosfomycin and lincosamides. Novel enzyme inhibitor adjuvants have been developed in an attempt to overcome resistance to these agents, only a few of which have so far reached the market. This review discusses the different enzymatic processes that lead to deactivation of antibacterial agents and provides an update on the current and potential enzyme inhibitors that may restore bacterial susceptibility.
Collapse
Affiliation(s)
- Christy El-Khoury
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Elissar Mansour
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Yori Yuliandra
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Felcia Lai
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Bryson A Hawkins
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine Atlanta GA 30322 USA
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine Atlanta GA 30322 USA
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine Pittsburgh PA 15213 USA
| | - David E Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Paul W Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
4
|
Hobson C, Chan AN, Wright GD. The Antibiotic Resistome: A Guide for the Discovery of Natural Products as Antimicrobial Agents. Chem Rev 2021; 121:3464-3494. [PMID: 33606500 DOI: 10.1021/acs.chemrev.0c01214] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of life-saving antibiotics has long been plagued by the ability of pathogenic bacteria to acquire and develop an array of antibiotic resistance mechanisms. The sum of these resistance mechanisms, the antibiotic resistome, is a formidable threat to antibiotic discovery, development, and use. The study and understanding of the molecular mechanisms in the resistome provide the basis for traditional approaches to combat resistance, including semisynthetic modification of naturally occurring antibiotic scaffolds, the development of adjuvant therapies that overcome resistance mechanisms, and the total synthesis of new antibiotics and their analogues. Using two major classes of antibiotics, the aminoglycosides and tetracyclines as case studies, we review the success and limitations of these strategies when used to combat the many forms of resistance that have emerged toward natural product-based antibiotics specifically. Furthermore, we discuss the use of the resistome as a guide for the genomics-driven discovery of novel antimicrobials, which are essential to combat the growing number of emerging pathogens that are resistant to even the newest approved therapies.
Collapse
Affiliation(s)
- Christian Hobson
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Andrew N Chan
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
5
|
Martí S, Bastida A, Świderek K. Theoretical Studies on Mechanism of Inactivation of Kanamycin A by 4'-O-Nucleotidyltransferase. Front Chem 2019; 6:660. [PMID: 30761287 PMCID: PMC6361787 DOI: 10.3389/fchem.2018.00660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 01/31/2023] Open
Abstract
This work is focused on mechanistic studies of the transfer of an adenylyl group (Adenoside-5'-monophosfate) from adenosine 5'-triphosphate (ATP) to a OH-4' hydroxyl group of an antibiotic. Using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques, we study the substrate and base-assisted mechanisms of the inactivation process of kanamycin A (KAN) catalyzed by 4'-O-Nucleotidyltransferase [ANT(4')], an active enzyme against almost all aminoglycoside antibiotics. Free energy surfaces, obtained with Free Energy Perturbation methods at the M06-2X/MM level of theory, show that the most favorable reaction path presents a barrier of 12.2 kcal·mol-1 that corresponds to the concerted activation of O4' from KAN by Glu145. In addition, the primary and secondary 18O kinetic isotope effects (KIEs) have been computed for bridge O3α, and non-bridge O1α, O2α, and O5' atoms of ATP. The observed normal 1°-KIE of 1.2% and 2°-KIE of 0.07% for the Glu145-assisted mechanism are in very good agreement with experimentally measured data. Additionally, based on the obtained results, the role of electrostatic and compression effects in enzymatic catalysis is discussed.
Collapse
Affiliation(s)
- Sergio Martí
- Departament de Química Física i Analítica, Universitat Jaume I, Castelló de La Plana, Spain
| | - Agatha Bastida
- Departamento de Química Bio-orgánica, Instituto de Química Orgánica General (CSIC), Madrid, Spain
| | - Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I, Castelló de La Plana, Spain
| |
Collapse
|
6
|
Zhu L, Liu R, Liu T, Zou X, Xu Z, Guan H. A novel strategy to screen inhibitors of multiple aminoglycoside-modifying enzymes with ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. J Pharm Biomed Anal 2018; 164:520-527. [PMID: 30458385 DOI: 10.1016/j.jpba.2018.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022]
Abstract
Resistance to aminoglycoside antibiotics occurs primarily as a result of aminoglycoside-modification enzymes (AMEs) that modify the antibiotics. In this work, a novel strategy to combat the effects of antibiotic resistance was developed by screening multiple AMEs inhibitors with ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF MS). The method screened inhibitors of three AMEs (AAC(6')-APH(2"), AAC(6') and APH(2")) simultaneously through measuring the acetyltransferase activity and phosphotransferase activity of AAC(6')-APH(2") enzyme in a single assay. Screening inhibitors of multiple targets could greatly improve the screening efficiency at early-stages of drug discovery. In this study, enzyme reaction conditions including cosubstrate, enzyme concentration and cosubstrate concentration were optimized. The inhibition constants (Ki) for two known inhibitors, paromomycin and quercetin, were determined to be 1.23 and 20.27 μM, respectively. The assay was further validated through the determination of a high Z' factor value of 0.73. The developed assay was applied to screen a chemical library against bifunctional AAC(6')-APH(2'') enzyme. Using this assay, two pyrimidinyl indole derivatives were found to be potent, and effective AAC(6')-APH(2'') inhibitors. The assay of exploring the selective inhibitory effect on two AAC(6')-APH(2'') active sites was further performed. Two pyrimidinyl indole derivatives were found to exhibit striking inhibitory activities on AAC(6').
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ruonan Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tangrong Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xuan Zou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhe Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| |
Collapse
|
7
|
Parvaiz N, Abbasi SW, Uddin R, Azam SS. Targeting isoprenoid biosynthesis pathway in Staphylococcus lugdunensis: Comparative docking and simulation studies of conventional and allosteric sites. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Cao H, Liu L, Xu F, Yu J, Ye T, Yuan M. Immobilization of Neutral Protease from Bacillus Subtilis via a High-affinity Ligand. CHEM LETT 2018. [DOI: 10.1246/cl.171033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hui Cao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lulu Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Fei Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Jingsong Yu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Tai Ye
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Min Yuan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
9
|
Thamban Chandrika N, Garneau-Tsodikova S. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chem Soc Rev 2018; 47:1189-1249. [PMID: 29296992 PMCID: PMC5818290 DOI: 10.1039/c7cs00407a] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A systematic analysis of all synthetic and chemoenzymatic methodologies for the preparation of aminoglycosides for a variety of applications (therapeutic and agricultural) reported in the scientific literature up to 2017 is presented. This comprehensive analysis of derivatization/generation of novel aminoglycosides and their conjugates is divided based on the types of modifications used to make the new derivatives. Both the chemical strategies utilized and the biological results observed are covered. Structure-activity relationships based on different synthetic modifications along with their implications for activity and ability to avoid resistance against different microorganisms are also presented.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | |
Collapse
|
10
|
Zárate SG, Claure MLDLC, Benito-Arenas R, Revuelta J, Santana AG, Bastida A. Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors. Molecules 2018; 23:molecules23020284. [PMID: 29385736 PMCID: PMC6017855 DOI: 10.3390/molecules23020284] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/12/2018] [Accepted: 01/26/2018] [Indexed: 11/17/2022] Open
Abstract
Resistance to aminoglycoside antibiotics has had a profound impact on clinical practice. Despite their powerful bactericidal activity, aminoglycosides were one of the first groups of antibiotics to meet the challenge of resistance. The most prevalent source of clinically relevant resistance against these therapeutics is conferred by the enzymatic modification of the antibiotic. Therefore, a deeper knowledge of the aminoglycoside-modifying enzymes and their interactions with the antibiotics and solvent is of paramount importance in order to facilitate the design of more effective and potent inhibitors and/or novel semisynthetic aminoglycosides that are not susceptible to modifying enzymes.
Collapse
Affiliation(s)
- Sandra G. Zárate
- Facultad de Tecnología-Carrera de Ingeniería Química, Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Regimiento Campos 180, Casilla 60-B, Sucre, Bolivia;
| | - M. Luisa De la Cruz Claure
- Facultad de Ciencias Químico Farmacéuticas y Bioquímicas, Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Dalence 51, Casilla 497, Sucre, Bolivia;
| | - Raúl Benito-Arenas
- Departmento de Química Bio-Orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-A.); (J.R.)
| | - Julia Revuelta
- Departmento de Química Bio-Orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-A.); (J.R.)
| | - Andrés G. Santana
- Departmento de Química Bio-Orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-A.); (J.R.)
- Correspondence: (A.G.S.); (A.B.); Tel: +34-915-612-800 (A.B.)
| | - Agatha Bastida
- Departmento de Química Bio-Orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-A.); (J.R.)
- Correspondence: (A.G.S.); (A.B.); Tel: +34-915-612-800 (A.B.)
| |
Collapse
|
11
|
de Ruyck J, Roos G, Krammer EM, Prévost M, Lensink MF, Bouckaert J. Molecular Mechanisms of Drug Action: X-ray Crystallography at the Basis of Structure-based and Ligand-based Drug Design. BIOPHYSICAL TECHNIQUES IN DRUG DISCOVERY 2017. [DOI: 10.1039/9781788010016-00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biological systems are recognized for their complexity and diversity and yet we sometimes manage to cure disease via the administration of small chemical drug molecules. At first, active ingredients were found accidentally and at that time there did not seem a need to understand the molecular mechanism of drug functioning. However, the urge to develop new drugs, the discovery of multipurpose characteristics of some drugs, and the necessity to remove unwanted secondary drug effects, incited the pharmaceutical sector to rationalize drug design. This did not deliver success in the years directly following its conception, but it drove the evolution of biochemical and biophysical techniques to enable the characterization of molecular mechanisms of drug action. Functional and structural data generated by biochemists and structural biologists became a valuable input for computational biologists, chemists and bioinformaticians who could extrapolate in silico, based on variations in the structural aspects of the drug molecules and their target. This opened up new avenues with much improved predictive power because of a clearer perception of the role and impact of structural elements in the intrinsic affinity and specificity of the drug for its target. In this chapter, we review how crystal structures can initiate structure-based drug design in general.
Collapse
Affiliation(s)
- J. de Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - G. Roos
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - E.-M. Krammer
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. Prévost
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. F. Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - J. Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| |
Collapse
|