1
|
Dempsey B, Pereira da Silva B, Cruz LC, Vileigas D, Silva ARM, Pereira da Silva R, Meotti FC. Unraveling the effects of uric acid on endothelial cells: A global proteomic study. Redox Biol 2025; 82:103625. [PMID: 40203480 PMCID: PMC12005352 DOI: 10.1016/j.redox.2025.103625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025] Open
Abstract
This work aims to understand how normouricemic levels of uric acid can induce endothelial dysfunction seeking global proteomic alterations in Human Umbilical Vein cells (HUVEC). It reveals significant alterations in redox-sensitive and antioxidant proteins, chaperones, and proteins associated with cell migration and adhesion in response to uric acid exposure. Monitoring cellular oxidation with the roGFP2-Grx1 probe proved increased oxidation levels induced by uric acid, which can be attenuated by peroxidasin (PXDN) inhibition, suggesting a regulatory role for PXDN in mitigating oxidative stress induced by uric acid. As a consequence of uric acid oxidation and the formation of reactive intermediate, we identified adducts in proteins (+140 kDa) in a novel post-translation modification named uratylation. Increased misfolded protein levels and p62 aggregation were also found, indicating disturbances in cellular proteostasis. Furthermore, uric acid promoted monocyte adhesion and upregulated ICAM and VCAM protein levels, implicating a pro-inflammatory response in endothelial cells. These findings provide critical insights into the molecular mechanisms underlying vascular damage associated with uric acid.
Collapse
Affiliation(s)
- Bianca Dempsey
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Litiele Cezar Cruz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Danielle Vileigas
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Amanda R M Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Flavia Carla Meotti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Matos IDA, Dallazen JL, Reis LR, Souza LF, Bevevino RC, de Moura RD, Ronsein GE, Hoch NC, da Costa Júnior NB, Costa SKP, Meotti FC. Targeting Myeloperoxidase Ameliorates Gouty Arthritis: A Virtual Screening Success Story. J Med Chem 2024; 67:12012-12032. [PMID: 38991154 DOI: 10.1021/acs.jmedchem.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
This study presents a new approach for identifying myeloperoxidase (MPO) inhibitors with strong in vivo efficacy. By combining inhibitor-like rules and structure-based virtual screening, the pipeline achieved a 70% success rate in discovering diverse, nanomolar-potency reversible inhibitors and hypochlorous acid (HOCl) scavengers. Mechanistic analysis identified RL6 as a genuine MPO inhibitor and RL7 as a potent HOCl scavenger. Both compounds effectively suppressed HOCl production in cells and neutrophils, with RL6 showing a superior inhibition of neutrophil extracellular trap release (NETosis). In a gout arthritis mouse model, intraperitoneal RL6 administration reduced edema, peroxidase activity, and IL-1β levels. RL6 also exhibited oral bioavailability, significantly reducing paw edema when administered orally. This study highlights the efficacy of integrating diverse screening methods to enhance virtual screening success, validating the anti-inflammatory potential of potent inhibitors, and advancing the MPO inhibitor research.
Collapse
Affiliation(s)
- Isaac de A Matos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jorge L Dallazen
- Department of Pharmacology, Institute of Biological Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lorenna R Reis
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luiz Felipe Souza
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Regina C Bevevino
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Rafael D de Moura
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Graziella E Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Nicolas Carlos Hoch
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Soraia Kátia P Costa
- Department of Pharmacology, Institute of Biological Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Flavia C Meotti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
3
|
Dempsey B, Cruz LC, Mineiro MF, da Silva RP, Meotti FC. Uric Acid Reacts with Peroxidasin, Decreases Collagen IV Crosslink, Impairs Human Endothelial Cell Migration and Adhesion. Antioxidants (Basel) 2022; 11:antiox11061117. [PMID: 35740014 PMCID: PMC9220231 DOI: 10.3390/antiox11061117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Uric acid is considered the main substrate for peroxidases in plasma. The oxidation of uric acid by human peroxidases generates urate free radical and urate hydroperoxide, which might affect endothelial function and explain, at least in part, the harmful effects of uric acid on the vascular system. Peroxidasin (PXDN), the most recent heme-peroxidase described in humans, catalyzes the formation of hypobromous acid, which mediates collagen IV crosslinks in the extracellular matrix. This enzyme has gained increasing scientific interest since it is associated with cardiovascular disease, cancer, and renal fibrosis. The main objective here was to investigate whether uric acid would react with PXDN and compromise the function of the enzyme in human endothelial cells. Urate decreased Amplex Red oxidation and brominating activity in the extracellular matrix (ECM) from HEK293/PXDN overexpressing cells and in the secretome of HUVECs. Parallelly, urate was oxidized to 5-hydroxyisourate. It also decreased collagen IV crosslink in isolated ECM from PFHR9 cells. Urate, the PXDN inhibitor phloroglucinol, and the PXDN knockdown impaired migration and adhesion of HUVECs. These results demonstrated that uric acid can affect extracellular matrix formation by competing for PXDN. The oxidation of uric acid by PXDN is likely a relevant mechanism in the endothelial dysfunction related to this metabolite.
Collapse
|
4
|
Zhang Y, Miao Q, Shi S, Hao H, Li X, Pu Z, Yang Y, An H, Zhang W, Kong Y, Pang X, Gu C, Gamper N, Wu Y, Zhang H, Du X. Protein disulfide isomerase modulation of TRPV1 controls heat hyperalgesia in chronic pain. Cell Rep 2022; 39:110625. [PMID: 35385753 DOI: 10.1016/j.celrep.2022.110625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Protein disulfide isomerase (PDI) plays a key role in maintaining cellular homeostasis by mediating protein folding via catalyzing disulfide bond formation, breakage, and rearrangement in the endoplasmic reticulum. Increasing evidence suggests that PDI can be a potential treatment target for several diseases. However, the function of PDI in the peripheral sensory nervous system is unclear. Here we report the expression and secretion of PDI from primary sensory neurons is upregulated in inflammatory and neuropathic pain models. Deletion of PDI in nociceptive DRG neurons results in a reduction in inflammatory and neuropathic heat hyperalgesia. We demonstrate that secreted PDI activates TRPV1 channels through oxidative modification of extracellular cysteines of the channel, indicating that PDI acts as an unconventional positive modulator of TRPV1. These findings suggest that PDI in primary sensory neurons plays an important role in development of heat hyperalgesia and can be a potential therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Yongxue Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Pharmacy, The First Hospital of Handan, Handan, Hebei, China
| | - Qi Miao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sai Shi
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, Hebei, China
| | - Han Hao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinmeng Li
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zeyao Pu
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yakun Yang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, Hebei, China
| | - Wei Zhang
- Department of Spinal Surgery of the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Youzhen Kong
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xu Pang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Cunyang Gu
- Department of Pathology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Nikita Gamper
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China; Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, UK
| | - Yi Wu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China.
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
5
|
Wang L, Wang X, Lv X, Jin Q, Shang H, Wang CC, Wang L. The extracellular Ero1α/PDI electron transport system regulates platelet function by increasing glutathione reduction potential. Redox Biol 2022; 50:102244. [PMID: 35077997 PMCID: PMC8792282 DOI: 10.1016/j.redox.2022.102244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/18/2023] Open
Abstract
Protein disulfide isomerase (PDI), an oxidoreductase, possesses two vicinal cysteines in the -Cys-Gly-His-Cys-motif that either form a disulfide bridge (S–S) or exist in a sulfhydryl form (-SH), forming oxidized or reduced PDI, respectively. PDI has been proven to be critical for platelet aggregation, thrombosis, and hemostasis, and PDI inhibition is being evaluated as a novel antithrombotic strategy. The redox states of functional PDI during the regulation of platelet aggregation, however, remain to be elucidated. Endoplasmic reticulum (ER) oxidoreductin-1α (Ero1α) and PDI constitute the pivotal oxidative folding pathway in the ER and play an important role in ER redox homeostasis. Whether Ero1α and PDI constitute an extracellular electron transport pathway to mediate platelet aggregation is an open question. Here, we found that oxidized but not reduced PDI promotes platelet aggregation. On the platelet surface, Ero1α constitutively oxidizes PDI and further regulates platelet aggregation in a glutathione-dependent manner. The Ero1α/PDI system oxidizes reduced glutathione (GSH) and establishes a reduction potential optimal for platelet aggregation. Therefore, platelet aggregation is mediated by the Ero1α-PDI-GSH electron transport system on the platelet surface. We further showed that targeting the functional interplay between PDI and Ero1α by small molecule inhibitors may be a novel strategy for antithrombotic therapy. Oxidized but not reduced PDI promotes platelet aggregation. Ero1α and PDI constitute an electron transport pathway on platelet surface. Ero1α and PDI provide a redox environment optimal for platelet aggregation. The functional interplay between Ero1α and PDI can be a new target for antiplatelet therapy.
Collapse
Affiliation(s)
- Lu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiying Lv
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qiushuo Jin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Yang M, Flaumenhaft R. Oxidative Cysteine Modification of Thiol Isomerases in Thrombotic Disease: A Hypothesis. Antioxid Redox Signal 2021; 35:1134-1155. [PMID: 34121445 PMCID: PMC8817710 DOI: 10.1089/ars.2021.0108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Oxidative stress is a characteristic of many systemic diseases associated with thrombosis. Thiol isomerases are a family of oxidoreductases important in protein folding and are exquisitely sensitive to the redox environment. They are essential for thrombus formation and represent a previously unrecognized layer of control of the thrombotic process. Yet, the mechanisms by which thiol isomerases function in thrombus formation are unknown. Recent Advances: The oxidoreductase activity of thiol isomerases in thrombus formation is controlled by the redox environment via oxidative changes to active site cysteines. Specific alterations can now be detected owing to advances in the chemical biology of oxidative cysteine modifications. Critical Issues: Understanding of the role of thiol isomerases in thrombus formation has focused largely on identifying single disulfide bond modifications in isolated proteins (e.g., αIIbβ3, tissue factor, vitronectin, or glycoprotein Ibα [GPIbα]). An alternative approach is to conceptualize thiol isomerases as effectors in redox signaling pathways that control thrombotic potential by modifying substrate networks. Future Directions: Cysteine-based chemical biology will be employed to study thiol-dependent dynamics mediated by the redox state of thiol isomerases at the systems level. This approach could identify thiol isomerase-dependent modifications of the disulfide landscape that are prothrombotic.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Martins VS, Triboni ER, Bonilha JBS, Gonçalves LM, Mortara L, Carvalho LAC, Manda BR, Lacerda CD, Meotti FC, Politi MJ, Chaimovich H, Cuccovia IM. Micellar effects and analytical applications of nitro substitution in 4-Nitro- N-alkyl-1,8-naphthalimide by cysteine derivatives. Heliyon 2020; 6:e04938. [PMID: 32995623 PMCID: PMC7502353 DOI: 10.1016/j.heliyon.2020.e04938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/26/2020] [Accepted: 09/10/2020] [Indexed: 12/03/2022] Open
Abstract
The aromatic nucleophilic substitution reactions of the nitro group of 4-Nitro-N-alkyl-1,8-naphthalimides by thiolate anions produce fluorescent derivatives and their rates are strongly accelerated by micelles of hexadecyltrimethylammonium chloride even at low pH. Acceleration factors of this reactions can reach million-fold. As the products are oxidant-insensible, this reaction allows the determination of SH- containing compounds such as cysteine, glutathione or proteins even in oxidative conditions. Limits of detection are as low as 5 × 10−7 M, ten times lower than the limit for the classic 5,5′-dithiobis-(2-nitrobenzoic) acid method. Moreover, this reaction can be developed at pHs between 6.5 and 7.5 thereby diminishing the rate of spontaneous oxidation of the thiols. In addition, we demonstrated that 4-Nitro-N-alkyl-1,8-naphthalimides can be used to evidence SH groups in peptides, proteins and living cells.
Collapse
Affiliation(s)
- V S Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - E R Triboni
- Escola de Engenharia de Lorena da Universidade de São Paulo, Departamento de Engenharia Química (DEQUI), Lorena, SP, Brazil
| | - J B S Bonilha
- Faculdade de Filosofia Ciências e Letras da Universidade de São Paulo, FFCLRP, Ribeirão Preto, SP, Brazil
| | - L M Gonçalves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - L Mortara
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - L A C Carvalho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - B R Manda
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - C D Lacerda
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - F C Meotti
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - M J Politi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - H Chaimovich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - I M Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| |
Collapse
|