1
|
Du Q, Xu J, Zhang M, Yang J. Uncarboxylated osteocalcin induced miR-143-3p targets SP7 and activates PI3K/Akt signaling in TNBC cells to promote invasion and migration. Transl Oncol 2025; 53:102305. [PMID: 39904283 PMCID: PMC11846592 DOI: 10.1016/j.tranon.2025.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is an exceptionally aggressive malignancy with poor prognosis. Patients often have elevated mortality and recurrence rates, along with a pronounced risk of distant metastasis. Our earlier research highlighted the role of uncarboxylated osteocalcin (GluOC) in fueling TNBC cell proliferation and metastasis; however the molecular underpinnings of its impact on cancer invasion and migration remain enigmatic. In this study, we identified miR-143-3p as a significantly downregulated miRNA following GluOC treatment in TNBC cells. Notably, increased miR-143-3p has been linked to more favorable clinical outcomes in patients with TNBC. miR-143-3p expression has been shown to target and repress the expression of SP7. Furthermore, our findings indicate that GluOC modulates the miR-143-3p/PI3K/Akt signaling pathway, which in turn fosters the invasive and migratory capabilities of TNBC cells. In a xenograft animal model, we observed that the administration of GluOC led to a marked enhancement in tumor growth. Conversely, the delivery of miR-143-3p agomir was associated with a notable reduction in tumor growth. Notably, concurrent administration of miR-143-3p agomir and GluOC partially abrogated the tumorigenic effects induced by GluOC alone. Furthermore, GluOC downregulated the expression of miR-143-3p. Our study findings indicate that GluOC plays a role in the invasion and migration of TNBC cells by regulating the miR-143-3p/SP7 and miR-143-3p/PI3K/Akt axes. These insights suggest that GluOC and miR-143-3p are integral to the invasive and migratory processes of TNBC cells and may serve as promising targets for therapeutic interventions in TNBC.
Collapse
Affiliation(s)
- Qian Du
- Medical School, University of Chinese Academy of Sciences, Beijing 101400, PR China.
| | - Jiaojiao Xu
- Medical School, University of Chinese Academy of Sciences, Beijing 101400, PR China.
| | - Miao Zhang
- Medical School, University of Chinese Academy of Sciences, Beijing 101400, PR China.
| | - Jianhong Yang
- Medical School, University of Chinese Academy of Sciences, Beijing 101400, PR China.
| |
Collapse
|
2
|
Kirk B, Lombardi G, Duque G. Bone and muscle crosstalk in ageing and disease. Nat Rev Endocrinol 2025:10.1038/s41574-025-01088-x. [PMID: 40011751 DOI: 10.1038/s41574-025-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Interorgan communication between bone and skeletal muscle is central to human health. A dysregulation of bone-muscle crosstalk is implicated in several age-related diseases. Ageing-associated changes in endocrine, inflammatory, nutritional and biomechanical stimuli can influence the differentiation capacity, function and survival of mesenchymal stem cells and bone-forming and muscle-forming cells. Consequently, the secretome phenotype of bone and muscle cells is altered, leading to impaired crosstalk and, ultimately, catabolism of both tissues. Adipose tissue acts as a third player in the bone-muscle interaction by secreting factors that affect bone and muscle cells. Physical exercise remains the key biological stimulus for bone-muscle crosstalk, either directly via the release of cytokines from bone, muscle or adipocytes, or indirectly through extracellular vesicles. Overall, bone-muscle crosstalk is considered an inherent process necessary to maintain the structure and function of both tissues across the life cycle. This Review summarizes the latest biomedical advances in bone-muscle crosstalk as it pertains to human ageing and disease. We also outline future research priorities to accommodate the understanding of this rapidly emerging field.
Collapse
Affiliation(s)
- Ben Kirk
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, Melbourne, Victoria, Australia
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Gustavo Duque
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia.
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, Melbourne, Victoria, Australia.
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Smith C, Lin X, Parker L, Yeap BB, Hayes A, Levinger I. The role of bone in energy metabolism: A focus on osteocalcin. Bone 2024; 188:117238. [PMID: 39153587 DOI: 10.1016/j.bone.2024.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Understanding the mechanisms involved in whole body glucose regulation is key for the discovery of new treatments for type 2 diabetes (T2D). Historically, glucose regulation was largely focused on responses to insulin and glucagon. Impacts of incretin-based therapies, and importance of muscle mass, are also highly relevant. Recently, bone was recognized as an endocrine organ, with several bone proteins, known as osteokines, implicated in glucose metabolism through their effects on the liver, skeletal muscle, and adipose tissue. Research efforts mostly focused on osteocalcin (OC) as a leading example. This review will provide an overview on this role of bone by discussing bone turnover markers (BTMs), the receptor activator of nuclear factor kB ligand (RANKL), osteoprotegerin (OPG), sclerostin (SCL) and lipocalin 2 (LCN2), with a focus on OC. Since 2007, some, but not all, research using mostly OC genetically modified animal models suggested undercarboxylated (uc) OC acts as a hormone involved in energy metabolism. Most data generated from in vivo, ex vivo and in vitro models, indicate that exogenous ucOC administration improves whole-body and skeletal muscle glucose metabolism. Although data in humans are generally supportive, findings are often discordant likely due to methodological differences and observational nature of that research. Overall, evidence supports the concept that bone-derived factors are involved in energy metabolism, some having beneficial effects (ucOC, OPG) others negative (RANKL, SCL), with the role of some (LCN2, other BTMs) remaining unclear. Whether the effect of osteokines on glucose regulation is clinically significant and of therapeutic value for people with insulin resistance and T2D remains to be confirmed.
Collapse
Affiliation(s)
- Cassandra Smith
- Nutrition & Health Innovation Research Institute, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Perth, Western Australia, Australia; Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Bu B Yeap
- Medical School, The University of Western Australia, Perth, Western Australia, Australia; Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia.
| |
Collapse
|
4
|
Ami D, Santambrogio C, Vertemara J, Bovio F, Santisteban-Veiga A, Sabín J, Zampella G, Grandori R, Cipolla L, Natalello A. The Landscape of Osteocalcin Proteoforms Reveals Distinct Structural and Functional Roles of Its Carboxylation Sites. J Am Chem Soc 2024; 146:27755-27769. [PMID: 39348444 DOI: 10.1021/jacs.4c09732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Human osteocalcin (OC) undergoes reversible, vitamin K-dependent γ-carboxylation at three glutamic acid residues, modulating its release from bones and its hormonal roles. A complete understanding of OC roles and structure-activity relationships is still lacking, as only uncarboxylated and few differently carboxylated variants have been considered so far. To fill this lack of knowledge, a comprehensive experimental and computational investigation of the structural properties and calcium-binding activity of all the OC variants is reported here. Such a comparative study indicates that the carboxylation sites are not equivalent and differently affect the OC structure and interaction with calcium, properties that are relevant for the modulation of OC functions. This study also discloses cooperative effects and provides structural and mechanistic interpretation. The disclosed peculiar features of each carboxylated proteoform strongly suggest that considering all eight possible OC variants in future studies may help rationalize some of the conflicting hypotheses observed in the literature.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Federica Bovio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Andrea Santisteban-Veiga
- AFFINImeter Scientific & Development team, Software 4 Science Developments, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Applied Physics Department, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Juan Sabín
- AFFINImeter Scientific & Development team, Software 4 Science Developments, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Applied Physics Department, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
- Institute for Advanced Simulations, Forschungszentrum Juelich, 52428 Juelich, Germany
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| |
Collapse
|
5
|
Qi X, He X, Peng Y, He X, Yang Q, Jiao K, Liu H. Roles of osteocalcin in the central nervous system. CNS Neurosci Ther 2024; 30:e70016. [PMID: 39252492 PMCID: PMC11386255 DOI: 10.1111/cns.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Bone-derived protein osteocalcin, which has beneficial effects on brain function, may be a future research direction for neurological disorders. A growing body of evidence suggests a link between osteocalcin and neurological disorders, but the exact relationship is contradictory and unclear. SCOPE OF REVIEW The aim of this review is to summarize the current research on the interaction between osteocalcin and the central nervous system and to propose some speculative future research directions. MAJOR CONCLUSIONS In the normal central nervous system, osteocalcin is involved in neuronal structure, neuroprotection, and the regulation of cognition and anxiety. Studies on osteocalcin-related abnormalities in the central nervous system are divided into animal model studies and human studies, depending on the subject. In humans, the link between osteocalcin and brain function is inconsistent. These conflicting data may be due to methodological inconsistencies. By reviewing the related literature on osteocalcin, some comorbidities of the bone and nervous system and future research directions related to osteocalcin are proposed.
Collapse
Affiliation(s)
- Xiao‐Shan Qi
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
- The First Clinical Medical CollegeZunyi Medical UniversityZunyiChina
| | - Xin He
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Ying Peng
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Xing‐Hong He
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Qian‐Yu Yang
- The First Clinical Medical CollegeZunyi Medical UniversityZunyiChina
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, School of StomatologyThe Fourth Military Medical UniversityXi‘anChina
| | - Heng Liu
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| |
Collapse
|
6
|
Celik B, Leal AF, Tomatsu S. Potential Targeting Mechanisms for Bone-Directed Therapies. Int J Mol Sci 2024; 25:8339. [PMID: 39125906 PMCID: PMC11312506 DOI: 10.3390/ijms25158339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Bone development is characterized by complex regulation mechanisms, including signal transduction and transcription factor-related pathways, glycobiological processes, cellular interactions, transportation mechanisms, and, importantly, chemical formation resulting from hydroxyapatite. Any abnormal regulation in the bone development processes causes skeletal system-related problems. To some extent, the avascularity of cartilage and bone makes drug delivery more challenging than that of soft tissues. Recent studies have implemented many novel bone-targeting approaches to overcome drawbacks. However, none of these strategies fully corrects skeletal dysfunction, particularly in growth plate-related ones. Although direct recombinant enzymes (e.g., Vimizim for Morquio, Cerezyme for Gaucher, Elaprase for Hunter, Mepsevii for Sly diseases) or hormone infusions (estrogen for osteoporosis and osteoarthritis), traditional gene delivery (e.g., direct infusion of viral or non-viral vectors with no modifications on capsid, envelope, or nanoparticles), and cell therapy strategies (healthy bone marrow or hematopoietic stem cell transplantation) partially improve bone lesions, novel delivery methods must be addressed regarding target specificity, less immunogenicity, and duration in circulation. In addition to improvements in bone delivery, potential regulation of bone development mechanisms involving receptor-regulated pathways has also been utilized. Targeted drug delivery using organic and inorganic compounds is a promising approach in mostly preclinical settings and future clinical translation. This review comprehensively summarizes the current bone-targeting strategies based on bone structure and remodeling concepts while emphasizing potential approaches for future bone-targeting systems.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
| | - Andrés Felipe Leal
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
7
|
Jalaja AR, Nair A, Bindumadhavan V, Soumya NPP, Rauf AA. Targeting the Role of PRME in Regulating Bone Remodelling During Postmenopausal Osteoporosis. Chem Biodivers 2024; 21:e202400172. [PMID: 38369572 DOI: 10.1002/cbdv.202400172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Kariavattom Campus Postmenopausal osteoporosis (PMO) is an old age disorder associated with estrogen deficiency, which reduces bone mass and makes bones more prone to fracture. The present study was proposed to evaluate the invivo osteogenic efficiency of Pterospermum rubiginosum methanolic bark extract (PRME) in the PMO model. Molecular docking studies on transcription factor NFATC1 showed excellent interactions with phytochemical ligands with the lowest binding energies. Female Sprague Dawley (SD) rats (n=24) were divided into four groups, (n=6 each) sham control (Group I) and osteoporotic control (Group II) groups treated with saline, PRME (50 mg/kg/day) and alendronate (10 mg/kg/day) treated with Group III and Group IV (n=6) respectively. The serum tartrate-resistant acid phosphatase 5b and cathepsin-K also exhibited a significant rise after PRME treatment 12.33±2.30 mU/ml and 427.68±46.97 pg/ml, respectively. DEXA results exhibited a remarkable increase in total bone mineral content and density values in PRME-treated animals (0.175±0.002 g/cm2) and (7.95±0.23 g) when compared to osteoporotic control (0.163±0.004 g/cm2) and (6.83±0.34 g). Long-term toxicity study revealed that PRME is non-toxic, up to 100 mg/kg bodyweight for 6 months. Our findings suggest PRME protects osteoporotic SD rats from PMO damage resulting from estrogen deficiency by regulating bone remodelling markers and upregulating BMD indices.
Collapse
Affiliation(s)
- Anish Rajamohanan Jalaja
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Trivandrum, Thiruvananthapuram, 695581, India Tel
| | - Aswathy Nair
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Trivandrum, Thiruvananthapuram, 695581, India Tel
- Kerala State Palmyrah Products Development and Workers' Welfare Corporation Limited, Trivandrum, India
| | | | - Neelakanta Pillai Padmakumari Soumya
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Trivandrum, Thiruvananthapuram, 695581, India Tel
- Kerala State Animal Husbandry Department, Mararikulam south, Alappuzha, Kerala, India
| | - Arun A Rauf
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Trivandrum, Thiruvananthapuram, 695581, India Tel
| |
Collapse
|
8
|
Wang D, Zhang M, Xu J, Yang J. Uncarboxylated Osteocalcin Decreases SCD1 by Activating AMPK to Alleviate Hepatocyte Lipid Accumulation. Molecules 2023; 28:molecules28073121. [PMID: 37049884 PMCID: PMC10095730 DOI: 10.3390/molecules28073121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Uncarboxylated osteocalcin (GluOC), a small-molecule protein specifically synthesized and secreted by osteoblasts, is important in the regulation of energy metabolism. In our previous study, GluOC was shown to be effective in ameliorating dyslipidemia and hepatic steatosis in KKAy mice. However, the underlying mechanism of GluOC action on hepatocytes has not been well validated. In this study, oleic acid/palmitic acid (OA/PA)-induced HepG2 and NCTC 1469 cells were used as non-alcoholic fatty liver disease (NAFLD) cell models, and triacylglycerol (TG) levels were measured by oil red O staining, Nile Red staining, and ELISA. The fatty acid synthesis-related protein expression was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunofluorescence. The results show that GluOC reduced triglyceride levels, and decreased the expression of sterol regulatory element-binding protein-1c (SREBP-1c) and stearyl-coenzyme A desaturase 1 (SCD1). si-SCD1 mimicked the lipid accumulation-reducing effect of GluOC, while overexpression of SCD1 attenuated the effect of GluOC. In addition, GluOC activated AMP-activated protein kinase (AMPK) phosphorylation to affect lipid metabolism in hepatocytes. Overall, the results of this study suggest that GluOC decreases SCD1 by activating AMPK to alleviate hepatocyte lipid accumulation, which provides a new target for improving NAFLD in further research.
Collapse
|
9
|
Verdelli C, Tavanti GS, Forno I, Vaira V, Maggiore R, Vicentini L, Dalino Ciaramella P, Perticone F, Lombardi G, Corbetta S. Osteocalcin modulates parathyroid cell function in human parathyroid tumors. Front Endocrinol (Lausanne) 2023; 14:1129930. [PMID: 37065733 PMCID: PMC10098338 DOI: 10.3389/fendo.2023.1129930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
INTRODUCTION The bone matrix protein osteocalcin (OC), secreted by osteoblasts, displays endocrine effects. We tested the hypothesis that OC modulates parathyroid tumor cell function. METHODS Primary cell cultures derived from parathyroid adenomas (PAds) and HEK293 cells transiently transfected with the putative OC receptor GPRC6A or the calcium sensing receptor (CASR) were used as experimental models to investigate γ-carboxylated OC (GlaOC) or uncarboxylated OC (GluOC) modulation of intracellular signaling. RESULTS In primary cell cultures derived from PAds, incubation with GlaOC or GluOC modulated intracellular signaling, inhibiting pERK/ERK and increasing active β-catenin levels. GlaOC increased the expression of PTH, CCND1 and CASR, and reduced CDKN1B/p27 and TP73. GluOC stimulated transcription of PTH, and inhibited MEN1 expression. Moreover, GlaOC and GluOC reduced staurosporin-induced caspase 3/7 activity. The putative OC receptor GPRC6A was detected in normal and tumor parathyroids at membrane or cytoplasmic level in cells scattered throughout the parenchyma. In PAds, the membrane expression levels of GPRC6A and its closest homolog CASR positively correlated; GPRC6A protein levels positively correlated with circulating ionized and total calcium, and PTH levels of the patients harboring the analyzed PAds. Using HEK293A transiently transfected with either GPRC6A or CASR, and PAds-derived cells silenced for CASR, we showed that GlaOC and GluOC modulated pERK/ERK and active β-catenin mainly through CASR activation. CONCLUSION Parathyroid gland emerges as a novel target of the bone secreted hormone osteocalcin, which may modulate tumor parathyroid CASR sensitivity and parathyroid cell apoptosis.
Collapse
Affiliation(s)
- Chiara Verdelli
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Giulia Stefania Tavanti
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Irene Forno
- Division of Pathology, Fondazione IRCCS Ca` Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca` Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | | | | | | | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Athletics, Strenght and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Sabrina Corbetta
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- *Correspondence: Sabrina Corbetta,
| |
Collapse
|
10
|
Zhang Z, Jia B, Yang H, Han Y, Wu Q, Dai K, Zheng Y. Biodegradable ZnLiCa ternary alloys for critical-sized bone defect regeneration at load-bearing sites: In vitro and in vivo studies. Bioact Mater 2021; 6:3999-4013. [PMID: 33997489 PMCID: PMC8085902 DOI: 10.1016/j.bioactmat.2021.03.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
A novel biodegradable metal system, ZnLiCa ternary alloys, were systematically investigated both in vitro and in vivo. The ultimate tensile strength (UTS) of Zn0.8Li0.1Ca alloy reached 567.60 ± 9.56 MPa, which is comparable to pure Ti, one of the most common material used in orthopedics. The elongation of Zn0.8Li0.1Ca is 27.82 ± 18.35%, which is the highest among the ZnLiCa alloys. The in vitro degradation rate of Zn0.8Li0.1Ca alloy in simulated body fluid (SBF) showed significant acceleration than that of pure Zn. CCK-8 tests and hemocompatibility tests manifested that ZnLiCa alloys exhibit good biocompatibility. Real-time PCR showed that Zn0.8Li0.1Ca alloy successfully stimulated the expressions of osteogenesis-related genes (ALP, COL-1, OCN and Runx-2), especially the OCN. An in vivo implantation was conducted in the radius of New Zealand rabbits for 24 weeks, aiming to treat the bone defects. The Micro-CT and histological evaluations proved that the regeneration of bone defect was faster within the Zn0.8Li0.1Ca alloy scaffold than the pure Ti scaffold. Zn0.8Li0.1Ca alloy showed great potential to be applied in orthopedics, especially in the load-bearing sites. The first research work of ZnLiCa alloys to be used as biodegradable metals. The ultimate tensile strength (UTS) of Zn0.8Li0.1Ca alloy reached 567.60 ± 9.56 MPa, which is comparable to pure Ti, one of the most common material used in orthopedics. Porous scaffolds made of Zn0.8Li0.1Ca showed superior bone-defect-treating effects to pure Ti scaffolds in New Zealand rabbits.
Collapse
Affiliation(s)
- Zechuan Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Bo Jia
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Hongtao Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yu Han
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Qiang Wu
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Kerong Dai
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
- Corresponding author. Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Corresponding author. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|