1
|
Riquier S, Carthy S, Hughes GM, Touzalin F, Haerty W, Huang Z, Teeling EC. RNA-Seq analysis reveals the long noncoding RNAs associated with immunity in wild Myotis myotis bats. BMC Genomics 2025; 26:345. [PMID: 40188093 PMCID: PMC11972528 DOI: 10.1186/s12864-025-11485-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Bats possess a uniquely adapted immune system that enables them to live with viral infections without the expected maladies. The molecular basis and regulation of bats' immune response is still not fully understood. Long non-coding RNAs (lncRNAs) represent an emerging class of molecules with critical regulatory roles in multiple biological processes, including immunity. We hypothesise that lncRNA-based regulation in bats may enable them to limit disease and live with viral pathogens. RESULTS We developed a lncRNA prediction pipeline to annotate the long non-coding transcriptome across multiple bat tissues and at the population level. Characterisation of our lncRNA dataset based on 100 blood transcriptomes from wild Myotis myotis bats revealed lower and more tissue-specific expression compared with coding genes, reduced GC content and shorter length distributions, consistent with lncRNA profiles observed in other species. Using WGCNA network analyses and gene ontology, we identified two mRNA-lncRNA co-expression modules in Myotis myotis associated with distinct immune response: one linked to T-cell activation and vial processes, and the other to inflammation. From these immune-related lncRNAs, we selected four candidates with high translational potential for regulating viral infections and inflammation. These include a newly identified lncRNA, BatLnc1, with potential antiviral functions; the M. myotis ortholog of TUG1, implicated in viral-host interactions; and well-known lncRNAs MALAT1 and NEAT1, recognised for their roles in inflammatory regulation. CONCLUSIONS We conducted the first ab initio prediction of lncRNAs in a non-model bat species, the wild-caught M. myotis. Our network analysis revealed significant variation in immune status among a subset of individuals, potentially due to pathogenic conditions. From these variations, we identified lncRNAs most likely associated with immune response in bats. This initial exploration lays the groundwork for future experimental validations of lncRNA functions, offering promising insights into their role in bat immunity.
Collapse
Affiliation(s)
- Sebastien Riquier
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Samuel Carthy
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Frederic Touzalin
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
2
|
Lopez-Noriega L, Callingham R, Martinez-Sánchez A, Nawaz S, Pizza G, Haberman N, Cvetesic N, Nguyen-Tu MS, Lenhard B, Marchetti P, Piemonti L, de Koning E, Shapiro AJ, Johnson PR, Leclerc I, Hastoy B, Gauthier BR, Pullen TJ, Rutter GA. Roles for the long non-coding RNA Pax6os1/ PAX6-AS1 in pancreatic beta cell function. iScience 2025; 28:111518. [PMID: 39811653 PMCID: PMC11731260 DOI: 10.1016/j.isci.2024.111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/08/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of beta cell function. Here, we show that an lncRNA-transcribed antisense to Pax6, annotated as Pax6os1/PAX6-AS1, was upregulated by high glucose concentrations in human as well as murine beta cell lines and islets. Elevated expression was also observed in islets from mice on a high-fat diet and patients with type 2 diabetes. Silencing Pax6os1/PAX6-AS1 in MIN6 or EndoC-βH1 cells increased several beta cell signature genes' expression. Pax6os1/PAX6-AS1 was shown to bind to EIF3D, indicating a role in translation of specific mRNAs, as well as histones H3 and H4, suggesting a role in histone modifications. Important interspecies differences were found, with a stronger phenotype in humans. Only female Pax6os1 null mice fed a high-fat diet showed slightly enhanced glucose clearance. In contrast, silencing PAX6-AS1 in human islets enhanced glucose-stimulated insulin secretion and increased calcium dynamics, whereas overexpression of the lncRNA resulted in the opposite phenotype.
Collapse
Affiliation(s)
- Livia Lopez-Noriega
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Rebecca Callingham
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Aida Martinez-Sánchez
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Sameena Nawaz
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Grazia Pizza
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Nejc Haberman
- Computational Regulatory Genomics, MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Nevena Cvetesic
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Marie-Sophie Nguyen-Tu
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Boris Lenhard
- Computational Regulatory Genomics, MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute (SR–DRI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Eelco de Koning
- Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Hubrecht Institute, Utrecht, the Netherlands
| | - A.M. James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Paul R. Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Benoit R. Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Madrid, Spain
| | - Timothy J. Pullen
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Diabetes, King’s College London, London, UK
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- CR-CHUM, Université de Montréal, Montréal, QC, Canada
- Research Institute of McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
3
|
Poloni JF, Oliveira FHS, Feltes BC. Localization is the key to action: regulatory peculiarities of lncRNAs. Front Genet 2024; 15:1478352. [PMID: 39737005 PMCID: PMC11683014 DOI: 10.3389/fgene.2024.1478352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
To understand the transcriptomic profile of an individual cell in a multicellular organism, we must comprehend its surrounding environment and the cellular space where distinct molecular stimuli responses are located. Contradicting the initial perception that RNAs were nonfunctional and that only a few could act in chromatin remodeling, over the last few decades, research has revealed that they are multifaceted, versatile regulators of most cellular processes. Among the various RNAs, long non-coding RNAs (LncRNAs) regulate multiple biological processes and can even impact cell fate. In this sense, the subcellular localization of lncRNAs is the primary determinant of their functions. It affects their behavior by limiting their potential molecular partner and which process it can affect. The fine-tuned activity of lncRNAs is also tissue-specific and modulated by their cis and trans regulation. Hence, the spatial context of lncRNAs is crucial for understanding the regulatory networks by which they influence and are influenced. Therefore, predicting a lncRNA's correct location is not just a technical challenge but a critical step in understanding the biological meaning of its activity. Hence, examining these peculiarities is crucial to researching and discussing lncRNAs. In this review, we debate the spatial regulation of lncRNAs and their tissue-specific roles and regulatory mechanisms. We also briefly highlight how bioinformatic tools can aid research in the area.
Collapse
Affiliation(s)
| | | | - Bruno César Feltes
- Department of Biophysics, Laboratory of DNA Repair and Aging, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Soubeyrand S, Lau P, Nikpay M, Ma L, Bjorkegren JLM, McPherson R. Long Noncoding RNA TRIBAL Links the 8q24.13 Locus to Hepatic Lipid Metabolism and Coronary Artery Disease. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004674. [PMID: 39624902 DOI: 10.1161/circgen.124.004674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/11/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Genome-wide association studies identified a 20-Kb region of chromosome 8 (8q24.13) associated with plasma lipids, hepatic steatosis, and risk for coronary artery disease. The region is proximal to TRIB1, and given its well-established role in lipid regulation in animal models, TRIB1 has been proposed to mediate the contribution of the 8q24.13 locus to these traits. This region overlaps a gene encoding the primate-specific long noncoding RNA transcript TRIBAL/TRIB1AL (TRIB1-associated locus), but the contribution of TRIBAL to coronary artery disease risk remains untested. METHODS Using recently available expression quantitative trait loci data and hepatocyte models, we further investigated this locus by Mendelian randomization analysis. Following antisense oligonucleotide targeting of TRIBAL, transcription array, quantitative reverse transcription polymerase chain reaction, and enrichment analyses were performed and effects on apoB and triglyceride secretion were determined. RESULTS Mendelian randomization analysis supports a causal relationship between genetically determined hepatic TRIBAL expression and markers of hepatic steatosis and coronary artery disease risk. By contrast, expression data sets did not support expression quantitative trait loci relationships between coronary artery disease-associated variants and TRIB1. TRIBAL suppression reduced the expression of key regulators of triglyceride metabolism and bile acid synthesis. Enrichment analyses identified patterns consistent with impaired metabolic functions, including reduced triglyceride and cholesterol handling ability. Furthermore, TRIBAL suppression was associated with reduced hepatocyte secretion of triglycerides. CONCLUSIONS This work identifies TRIBAL as a gene bridging the genotype-phenotype relationship at the 8q24.13 locus with effects on genes regulating hepatocyte lipid metabolism and triglyceride secretion.
Collapse
Affiliation(s)
- Sébastien Soubeyrand
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
| | - Paulina Lau
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
| | - Majid Nikpay
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (L.M., J.L.M.B.)
| | - Johan L M Bjorkegren
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (L.M., J.L.M.B.)
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden (J.L.M.B.)
| | - Ruth McPherson
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
- Division of Cardiology, Ruddy Canadian Cardiovascular Genetics Centre (R.M.), University of Ottawa Heart Institute, Canada
| |
Collapse
|
5
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential. Cancer Lett 2024; 605:217297. [PMID: 39424260 DOI: 10.1016/j.canlet.2024.217297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 151-921, South Korea.
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
6
|
Bagheri-Mohammadi S, Karamivandishi A, Mahdavi SA, Siahposht-Khachaki A. New sights on long non-coding RNAs in glioblastoma: A review of molecular mechanism. Heliyon 2024; 10:e39744. [PMID: 39553554 PMCID: PMC11564028 DOI: 10.1016/j.heliyon.2024.e39744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Glioma or glioblastoma (GBM) is one of the aggressive and fatal primary cerebral malignancies, with the highest mortality rate among all brain-related tumors. Also, glioma mainly progresses as a more invasive phenotype after primary treatment. Cumulative evidence suggested that dysregulation of noncoding RNAs (ncRNAs) such as long non-coding RNAs (LncRNAs) and microRNAs (miRNAs) are associated with tumor initiation, progression, and drug resistance, through epigenetic modifications, transcriptional, and post-transcriptional processes in the cells. Many scientific investigations have revealed that LncRNAs play important roles in various biological procedures linked with the development and progression of GBM. In recent years, it has been shown that dysregulation of molecular mechanisms in many LncRNAs such as MIR22HG, HULC, AGAP2-AS1, MALAT1, PVT1, TTTY14, HOTAIRM1, PTAR, LPP-AS2, LINC00336, and TINCR are connected with the GBM. Therefore, this scientific review paper focused on the molecular mechanisms of these LncRNAs in the context of GBM.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arezoo Karamivandishi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seif Ali Mahdavi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Siahposht-Khachaki
- Immunogenetics Research Center, Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
7
|
Zhao Z, Yang Y, Iqbal A, Wu Q, Zhou L. Biological Insights and Recent Advances in Plant Long Non-Coding RNA. Int J Mol Sci 2024; 25:11964. [PMID: 39596034 PMCID: PMC11593582 DOI: 10.3390/ijms252211964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Long non-coding RNA (lncRNA) refers to an RNA molecule longer than 200 nucleotides (nt) that plays a significant role in regulating essential molecular and biological processes. It is commonly found in animals, plants, and viruses, and is characterized by features such as epigenetic markers, developmental stage-specific expression, and tissue-specific expression. Research has shown that lncRNA participates in anatomical processes like plant progression, while also playing a crucial role in plant disease resistance and adaptation mechanisms. In this review, we provide a concise overview of the formation mechanism, structural characteristics, and databases related to lncRNA in recent years. We primarily discuss the biological roles of lncRNA in plant progression as well as its involvement in response to biotic and abiotic stresses. Additionally, we examine the current challenges associated with lncRNA and explore its potential application in crop production and breeding. Studying plant lncRNAs is highly significant for multiple reasons: It reveals the regulatory mechanisms of plant growth and development, promotes agricultural production and food security, and drives research in plant genomics and epigenetics. Additionally, it facilitates ecological protection and biodiversity conservation.
Collapse
Affiliation(s)
- Zhihao Zhao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
- Industrial Development Department, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| | - Amjad Iqbal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Qiufei Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| | - Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| |
Collapse
|
8
|
Pinkney HR, Ross CR, Hodgson TO, Pattison ST, Diermeier SD. Discovery of prognostic lncRNAs in colorectal cancer using spatial transcriptomics. NPJ Precis Oncol 2024; 8:230. [PMID: 39390212 PMCID: PMC11467462 DOI: 10.1038/s41698-024-00728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Colorectal cancer (CRC) exhibits significant genetic and epigenetic diversity, evolving into sub-clonal populations with varied metastatic potentials and treatment responses. Predicting metastatic disease in CRC patients remains challenging, underscoring the need for reliable biomarkers. While most research on therapeutic targets and biomarkers has focused on proteins, non-coding RNAs such as long non-coding RNAs (lncRNAs) comprise most of the transcriptome and demonstrate superior tissue- and cancer-specific expression. We utilised spatial transcriptomics to investigate lncRNAs in CRC tumours, offering more precise cell-type-specific expression data compared to bulk RNA sequencing. Our analysis identified 301 lncRNAs linked to malignant CRC regions, which we validated with public data. Further validation using RNA-FISH revealed three lncRNAs (LINC01978, PLAC4, and LINC01303) that are detectable in stage II tumours but not in normal epithelium and are upregulated in metastatic tissues. These lncRNAs hold potential as biomarkers for early risk assessment of metastatic disease.
Collapse
Affiliation(s)
- Holly R Pinkney
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | | - Sarah D Diermeier
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
9
|
Kubaski Benevides AP, Marin AM, Wosniaki DK, Oliveira RN, Koerich GM, Kusma BN, Munhoz EC, Zanette DL, Aoki MN. Expression of HOTAIR and PTGS2 as potential biomarkers in chronic myeloid leukemia patients in Brazil. Front Oncol 2024; 14:1443346. [PMID: 39450252 PMCID: PMC11499243 DOI: 10.3389/fonc.2024.1443346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm in which all the patients has the translocation (9;22) that generates de BCR::ABL1 tyrosine kinase. Despite this disease possessing a good biomarker (BCR::ABL1 transcripts level) for diagnosis and prognosis, many studies has been performed to investigate other molecules, such as the long noncoding RNAs (lncRNAs) and mRNAs, as potential biomarkers with the aim of predicting a change in BCR::ABL1 levels and as an associated biomarker. A RNAseq was performed comparing 6 CML patients with high BCR::ABL1 expression with 6 healthy control individuals, comprising the investigation cohort to investigate these molecules. To validate the results obtained by RNAseq, samples of 87 CML patients and 42 healthy controls were used in the validation cohort by RT-qPCR assays. The results showed lower expression of HOTAIR and PTGS2 in CML patients. The HOTAIR expression is inversely associated with BCR::ABL1 expression in imatinib-treated CML patients, and to PTGS2 showing that CML patients with high BCR::ABL1 expression showed reduced PTGS2 expression.
Collapse
Affiliation(s)
- Ana Paula Kubaski Benevides
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Denise K. Wosniaki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Rafaela Noga Oliveira
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Gabriela Marino Koerich
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Bianca Nichele Kusma
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | | | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| |
Collapse
|
10
|
Yazarlou F, Martinez I, Lipovich L. Radiotherapy and breast cancer: finally, an lncRNA perspective on radiosensitivity and radioresistance. Front Oncol 2024; 14:1437542. [PMID: 39346726 PMCID: PMC11427263 DOI: 10.3389/fonc.2024.1437542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/01/2024] [Indexed: 10/01/2024] Open
Abstract
Radiotherapy (RT) serves as one of the key adjuvant treatments in management of breast cancer. Nevertheless, RT has two major problems: side effects and radioresistance. Given that patients respond differently to RT, it is imperative to understand the molecular mechanisms underlying these differences. Two-thirds of human genes do not encode proteins, as we have realized from genome-scale studies conducted after the advent of the genomic era; nevertheless, molecular understanding of breast cancer to date has been attained almost entirely based on protein-coding genes and their pathways. Long non-coding RNAs (lncRNAs) are a poorly understood but abundant class of human genes that yield functional non-protein-coding RNA transcripts. Here, we canvass the field to seek evidence for the hypothesis that lncRNAs contribute to radioresistance in breast cancer. RT-responsive lncRNAs ranging from "classical" lncRNAs discovered at the dawn of the post-genomic era (such as HOTAIR, NEAT1, and CCAT), to long intergenic lncRNAs such as LINC00511 and LINC02582, antisense lncRNAs such as AFAP-AS1 and FGD5-AS1, and pseudogene transcripts such as DUXAP8 were found during our screen of the literature. Radiation-related pathways modulated by these lncRNAs include DNA damage repair, cell cycle, cancer stem cells phenotype and apoptosis. Thus, providing a clear picture of these lncRNAs' underlying RT-relevant molecular mechanisms should help improve overall survival and optimize the best radiation dose for each individual patient. Moreover, in healthy humans, lncRNAs show greater natural expression variation than protein-coding genes, even across individuals, alluding to their exceptional potential for targeting in truly personalized, precision medicine.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ivan Martinez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Leonard Lipovich
- Department of Biology, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, China
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., Shenzhen, China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
11
|
Amjad M, Wang Y, Han S, Haider MZ, Sami A, Batool A, Shafiq M, Ali Q, Dong J, Sabir IA, Manzoor MA. Genome wide identification of phenylalanine ammonia-lyase (PAL) gene family in Cucumis sativus (cucumber) against abiotic stress. BMC Genom Data 2024; 25:76. [PMID: 39187758 PMCID: PMC11348668 DOI: 10.1186/s12863-024-01259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Phenylalanine ammonia lyase (PAL) is a widely studied enzyme in plant biology due to its role in connecting primary metabolism to secondary phenylpropanoid metabolism, significantly influencing plant growth, development, and stress response. Although PAL genes have been extensively studied in various plant species but their exploration in cucumber has been limited. This study successfully identified 11 CsPAL genes in Cucumis sativus (cucumber). These CsPAL genes were categorized based on their conserved sequences revealing patterns through MEME analysis and multiple sequence alignment. Interestingly, cis-elements related to stress were found in the promoter regions of CsPAL genes, indicating their involvement in responding to abiotic stress. Furthermore, these gene's promoters contained components associated with light, development and hormone responsiveness. This suggests that they may have roles in hormone developmental processes. MicroRNAs were identified as a key regulators for the CsPAL genes, playing a crucial role in modulating their expression. This discovery underscores the complex regulatory network involved in the plant's response to various stress conditions. The influence of these microRNAs further highlights the complicated mechanisms that plants use to manage stress. Gene expression patterns were analyzed using RNA-seq data. The significant upregulation of CsPAL9 during HT3h (heat stress for 3 h) and the heightened upregulation of both CsPAL9 and CsPAL7 under HT6h (heat stress for 6 h) in the transcriptome study suggest a potential role for these genes in cucumber's tolerance to heat stress. This comprehensive investigation aims to enhance our understanding of the PAL gene family's versatility, offering valuable insights for advancements in cucumber genetics.
Collapse
Affiliation(s)
- Muskan Amjad
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
- Department of Botany, Government Graduate College Township, Lahore, Pakistan
| | - Yuexia Wang
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China
| | - Shiming Han
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China.
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China.
| | - Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Alia Batool
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Jihong Dong
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
| | - Irfan Ali Sabir
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Bracken CP, Goodall GJ, Gregory PA. RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer. Semin Cancer Biol 2024; 102-103:4-16. [PMID: 38917876 DOI: 10.1016/j.semcancer.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-β signalling. Both EMT and TGF-β pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-β signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-β signaling with a focus on their functions in cancer progression.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
13
|
Cabané P, Correa C, Bode I, Aguilar R, Elorza AA. Biomarkers in Thyroid Cancer: Emerging Opportunities from Non-Coding RNAs and Mitochondrial Space. Int J Mol Sci 2024; 25:6719. [PMID: 38928426 PMCID: PMC11204084 DOI: 10.3390/ijms25126719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Thyroid cancer diagnosis primarily relies on imaging techniques and cytological analyses. In cases where the diagnosis is uncertain, the quantification of molecular markers has been incorporated after cytological examination. This approach helps physicians to make surgical decisions, estimate cancer aggressiveness, and monitor the response to treatments. Despite the availability of commercial molecular tests, their widespread use has been hindered in our experience due to cost constraints and variability between them. Thus, numerous groups are currently evaluating new molecular markers that ultimately will lead to improved diagnostic certainty, as well as better classification of prognosis and recurrence. In this review, we start reviewing the current preoperative testing methodologies, followed by a comprehensive review of emerging molecular markers. We focus on micro RNAs, long non-coding RNAs, and mitochondrial (mt) signatures, including mtDNA genes and circulating cell-free mtDNA. We envision that a robust set of molecular markers will complement the national and international clinical guides for proper assessment of the disease.
Collapse
Affiliation(s)
- Patricio Cabané
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Claudio Correa
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
| | - Ignacio Bode
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Alvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| |
Collapse
|
14
|
Arnold CR, Mangesius J, Portnaia I, Ganswindt U, Wolff HA. Innovative therapeutic strategies to overcome radioresistance in breast cancer. Front Oncol 2024; 14:1379986. [PMID: 38873260 PMCID: PMC11169591 DOI: 10.3389/fonc.2024.1379986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Despite a comparatively favorable prognosis relative to other malignancies, breast cancer continues to significantly impact women's health globally, partly due to its high incidence rate. A critical factor in treatment failure is radiation resistance - the capacity of tumor cells to withstand high doses of ionizing radiation. Advancements in understanding the cellular and molecular mechanisms underlying radioresistance, coupled with enhanced characterization of radioresistant cell clones, are paving the way for the development of novel treatment modalities that hold potential for future clinical application. In the context of combating radioresistance in breast cancer, potential targets of interest include long non-coding RNAs (lncRNAs), micro RNAs (miRNAs), and their associated signaling pathways, along with other signal transduction routes amenable to pharmacological intervention. Furthermore, technical, and methodological innovations, such as the integration of hyperthermia or nanoparticles with radiotherapy, have the potential to enhance treatment responses in patients with radioresistant breast cancer. This review endeavors to provide a comprehensive survey of the current scientific landscape, focusing on novel therapeutic advancements specifically addressing radioresistant breast cancer.
Collapse
Affiliation(s)
| | - Julian Mangesius
- Department of Radiation-Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iana Portnaia
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ute Ganswindt
- Department of Radiation-Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hendrik Andreas Wolff
- Department of Radiology, Nuclear Medicine, and Radiotherapy, Radiology Munich, Munich, Germany
| |
Collapse
|
15
|
Gao J, Yu H, Pan Y, Wang X, Zhang H, Xu Y, Ma W, Zhang W, Fu L, Wang Y. Porcine cis-acting lnc-CAST positively regulates CXCL8 expression through histone H3K27ac. Vet Res 2024; 55:56. [PMID: 38715098 PMCID: PMC11077775 DOI: 10.1186/s13567-024-01296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/26/2024] [Indexed: 05/12/2024] Open
Abstract
The chemokine CXCL8, also known as the neutrophil chemotactic factor, plays a crucial role in mediating inflammatory responses and managing cellular immune reactions during viral infections. Porcine reproductive and respiratory syndrome virus (PRRSV) primarily infects pulmonary alveolar macrophages (PAMs), leading to acute pulmonary infections. In this study, we explored a novel long non-coding RNA (lncRNA), termed lnc-CAST, situated within the Cxcl8 gene locus. This lncRNA was found to be highly expressed in porcine macrophages. We observed that both lnc-CAST and CXCL8 were significantly upregulated in PAMs following PRRSV infection, and after treatments with lipopolysaccharide (LPS) or lipoteichoic acid (LTA). Furthermore, we noticed a concurrent upregulation of lnc-CAST and CXCL8 expression in lungs of PRRSV-infected pigs. We then determined that lnc-CAST positively influenced CXCL8 expression in PAMs. Overexpression of lnc-CAST led to an increase in CXCL8 production, which in turn enhanced the migration of epithelial cells and the recruitment of neutrophils. Conversely, inhibiting lnc-CAST expression resulted in reduced CXCL8 production in PAMs, leading to decreased migration levels of epithelial cells and neutrophils. From a mechanistic perspective, we found that lnc-CAST, localized in the nucleus, facilitated the enrichment of histone H3K27ac in CXCL8 promoter region, thereby stimulating CXCL8 transcription in a cis-regulatory manner. In conclusion, our study underscores the pivotal critical role of lnc-CAST in regulating CXCL8 production, offering valuable insights into chemokine regulation and lung damage during PRRSV infection.
Collapse
Affiliation(s)
- Junxin Gao
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Haidong Yu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yu Pan
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - He Zhang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yunfei Xu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
- Chongqing Academy of Animal Science, Chongqing, 408599, China
| | - Wenjie Ma
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Wenli Zhang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing, 408599, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
| |
Collapse
|
16
|
Dayal S, Chaubey D, Joshi DC, Ranmale S, Pillai B. Noncoding RNAs: Emerging regulators of behavioral complexity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1847. [PMID: 38702948 DOI: 10.1002/wrna.1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 05/06/2024]
Abstract
The mammalian genome encodes thousands of non-coding RNAs (ncRNAs), ranging in size from about 20 nucleotides (microRNAs or miRNAs) to kilobases (long non-coding RNAs or lncRNAs). ncRNAs contribute to a layer of gene regulation that could explain the evolution of massive phenotypic complexity even as the number of protein-coding genes remains unaltered. We propose that low conservation, poor expression, and highly restricted spatiotemporal expression patterns-conventionally considered ncRNAs may affect behavior through direct, rapid, and often sustained regulation of gene expression at the transcriptional, post-transcriptional, or translational levels. Besides these direct roles, their effect during neurodevelopment may manifest as behavioral changes later in the organism's life, especially when exposed to environmental cues like stress and seasonal changes. The lncRNAs affect behavior through diverse mechanisms like sponging of miRNAs, recruitment of chromatin modifiers, and regulation of alternative splicing. We highlight the need for synthesis between rigorously designed behavioral paradigms in model organisms and the wide diversity of behaviors documented by ethologists through field studies on organisms exquisitely adapted to their environmental niche. Comparative genomics and the latest advancements in transcriptomics provide an unprecedented scope for merging field and lab studies on model and non-model organisms to shed light on the role of ncRNAs in driving the behavioral responses of individuals and groups. We touch upon the technical challenges and contentious issues that must be resolved to fully understand the role of ncRNAs in regulating complex behavioral traits. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Sanovar Dayal
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Chaubey
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dheeraj Chandra Joshi
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samruddhi Ranmale
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Beena Pillai
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
Wasson MCD, Venkatesh J, Cahill HF, McLean ME, Dean CA, Marcato P. LncRNAs exhibit subtype-specific expression, survival associations, and cancer-promoting effects in breast cancer. Gene 2024; 901:148165. [PMID: 38219875 DOI: 10.1016/j.gene.2024.148165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in cancer progression, influencing processes such as invasion, metastasis, and drug resistance. Their reported cell type-dependent expression patterns suggest the potential for specialized functions in specific contexts. In breast cancer, lncRNA expression has been associated with different subtypes, highlighting their relevance in disease heterogeneity. However, our understanding of lncRNA function within breast cancer subtypes remains limited, warranting further investigation. We conducted a comprehensive analysis using the TANRIC dataset derived from the TCGA-BRCA cohort, profiling the expression, patient survival associations and immune cell type correlations of 12,727 lncRNAs across subtypes. Our findings revealed subtype-specific associations of lncRNAs with patient survival, tumor infiltrating lymphocytes and other immune cells. Targeting of lncRNAs exhibiting subtype-specific survival associations and expression in a panel of breast cancer cells demonstrated a selective reduction in cell proliferation within their associated subtype, supporting subtype-specific functions of certain lncRNAs. Characterization of HER2 + -specific lncRNA LINC01269 and TNBC-specific lncRNA AL078604.2 showed nuclear localization and altered expression of hundreds of genes enriched in cancer-promoting processes, including apoptosis, cell proliferation and immune cell regulation. This work emphasizes the importance of considering the heterogeneity of breast cancer subtypes and the need for subtype-specific analyses to fully uncover the relevance and potential impact of lncRNAs. Collectively, these findings demonstrate the contribution of lncRNAs to the distinct molecular, prognostic, and cellular composition of breast cancer subtypes.
Collapse
Affiliation(s)
| | | | - Hannah F Cahill
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Meghan E McLean
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Cheryl A Dean
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada; Nova Scotia Health Authority, Halifax, NS B3H1V8, Canada.
| |
Collapse
|
18
|
Joshi R, Sharma A, Kulshreshtha R. Noncoding RNA landscape and their emerging roles as biomarkers and therapeutic targets in meningioma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200782. [PMID: 38596289 PMCID: PMC10951709 DOI: 10.1016/j.omton.2024.200782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Meningiomas are among the most prevalent primary CNS tumors in adults, accounting for nearly 38% of all brain neoplasms. The World Health Organization (WHO) grade assigned to meningiomas guides medical care in patients and is primarily based on tumor histology and malignancy potential. Although often considered benign, meningiomas with complicated histology, limited accessibility for surgical resection, and/or higher malignancy potential (WHO grade 2 and WHO grade 3) are harder to combat, resulting in significant morbidity. With limited treatment options and no systemic therapies, it is imperative to understand meningioma tumorigenesis at the molecular level and identify novel therapeutic targets. The last decade witnessed considerable progress in understanding the noncoding RNA landscape of meningioma, with microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) emerging as molecular entities of interest. This review aims to highlight the commonly dysregulated miRNAs and lncRNAs in meningioma and their correlation with meningioma progression, malignancy, recurrence, and radioresistance. The role of "key" miRNAs as biomarkers and their therapeutic potential has also been reviewed in detail. Furthermore, current and emerging therapeutic modalities for meningioma have been discussed, with emphasis on the need to identify and subsequently employ clinically relevant miRNAs and lncRNAs as novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ritanksha Joshi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anuja Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
19
|
Xiao Y, Zhang C, Liu X, Yang Y, Landén NX, Zhang Z, Li D. Single-cell profiling and functional screening reveal crucial roles for lncRNAs in the epidermal re-epithelialization of human acute wounds. Front Surg 2024; 11:1349135. [PMID: 38468869 PMCID: PMC10925684 DOI: 10.3389/fsurg.2024.1349135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Objectives Re-epithelialization is an important physiological process for repairing skin barrier function during wound healing. It is primarily mediated by coordinated migration, proliferation, and differentiation of keratinocytes. Long noncoding RNAs (lncRNAs) are essential components of the noncoding genome and participate in various biological processes; however, their expression profiles and function in re-epithelialization during wound healing have not been established. Methods We investigated the distribution of lncRNAs during wound re-epithelialization by comparing the genomic profiles of uninjured skin and acute wound (AW) from healthy donors. We performed functional screening of differentially expressed lncRNAs to identify the important lncRNAs for re-epithelialization. Results The expression of multiple lncRNAs is changed during human wound re-epithelialization process. We identified VIM-AS1, SMAD5-AS1, and LINC02581 as critical regulators involved in keratinocyte migration, proliferation, and differentiation, respectively. Conclusion LncRNAs play crucial regulatory roles in wound re-epithelialization. We established lncRNA expression profile in human acute wounds compared with intact skin, offering valuable insights into the physiological mechanisms underlying wound healing and potential therapeutic targets.
Collapse
Affiliation(s)
- Yunting Xiao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Chenyang Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yong Yang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhao Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dongqing Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| |
Collapse
|
20
|
He Z, Lan Y, Zhou X, Yu B, Zhu T, Yang F, Fu LY, Chao H, Wang J, Feng RX, Zuo S, Lan W, Chen C, Chen M, Zhao X, Hu K, Chen D. Single-cell transcriptome analysis dissects lncRNA-associated gene networks in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100717. [PMID: 37715446 PMCID: PMC10873878 DOI: 10.1016/j.xplc.2023.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/14/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The plant genome produces an extremely large collection of long noncoding RNAs (lncRNAs) that are generally expressed in a context-specific manner and have pivotal roles in regulation of diverse biological processes. Here, we mapped the transcriptional heterogeneity of lncRNAs and their associated gene regulatory networks at single-cell resolution. We generated a comprehensive cell atlas at the whole-organism level by integrative analysis of 28 published single-cell RNA sequencing (scRNA-seq) datasets from juvenile Arabidopsis seedlings. We then provided an in-depth analysis of cell-type-related lncRNA signatures that show expression patterns consistent with canonical protein-coding gene markers. We further demonstrated that the cell-type-specific expression of lncRNAs largely explains their tissue specificity. In addition, we predicted gene regulatory networks on the basis of motif enrichment and co-expression analysis of lncRNAs and mRNAs, and we identified putative transcription factors orchestrating cell-type-specific expression of lncRNAs. The analysis results are available at the single-cell-based plant lncRNA atlas database (scPLAD; https://biobigdata.nju.edu.cn/scPLAD/). Overall, this work demonstrates the power of integrative single-cell data analysis applied to plant lncRNA biology and provides fundamental insights into lncRNA expression specificity and associated gene regulation.
Collapse
Affiliation(s)
- Zhaohui He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yangming Lan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bianjiong Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Fa Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Liang-Yu Fu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Haoyu Chao
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahao Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Rong-Xu Feng
- Zhejiang Zhoushan High School, Zhoushan 316099, China
| | - Shimin Zuo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Wenzhi Lan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chunli Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Keming Hu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China.
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
21
|
Jasim SA, Majeed AA, Uinarni H, Alshuhri M, Alzahrani AA, Ibrahim AA, Alawadi A, Abed Al-Abadi NK, Mustafa YF, Ahmed BA. Long non-coding RNA (lncRNA) PVT1 in drug resistance of cancers: Focus on pathological mechanisms. Pathol Res Pract 2024; 254:155119. [PMID: 38309019 DOI: 10.1016/j.prp.2024.155119] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
According to estimates, cancer will be the leading cause of death globally in 2022, accounting for 9.6 million deaths. At present, the three main therapeutic modalities utilized to treat cancer are radiation therapy, chemotherapy, and surgery. However, during treatment, tumor cells resistant to chemotherapy may arise. Drug resistance remains a major oppose since it often leads to therapeutic failure. Furthermore, the term "acquired drug resistance" describes the situation where tumor cells already display drug resistance before undergoing chemotherapy. However, little is still known about the basic mechanisms underlying chemotherapy-induced drug resistance. The development of new technologies and bioinformatics has led to the discovery of additional genes associated with drug resistance. Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) has been linked to an increased risk of cancer, according to a growing body of research. Apart from biological functions associated with cell division, development, pluripotency, and cell cycle, lncRNA PVT1 contributes significantly to the regulation of various aspects of genome function, such as transcription, splicing, and epigenetics. The article will address the mechanism by which lncRNA PVT1 influences drug resistance in cancer cells.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq; Biotechnology department, College of Applied Science, Fallujah University, Anbar, Iraq
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq.
| | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia; Radiology Department of Pantai Indah Kapuk Hospital, Jakarta, Indonesia.
| | - Mohammed Alshuhri
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Kharj, Sauadi Arabia
| | | | - Abeer A Ibrahim
- Inorganic Chemistry Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Batool Ali Ahmed
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| |
Collapse
|
22
|
Akhouri V, Majumder S, Gaikwad AB. Targeting DNA methylation in diabetic kidney disease: A new perspective. Life Sci 2023; 335:122256. [PMID: 37949210 DOI: 10.1016/j.lfs.2023.122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Diabetic kidney disease (DKD) is a leading diabetic complication causing significant mortality among people around the globe. People with poor glycemic control accompanied by hyperinsulinemia, dyslipidemia, hypertension, and obesity develop diabetic complications. These diabetic patients develop epigenetic changes and suffer from diabetic kidney complications even after subsequent glucose control, the phenomenon that is recognized as metabolic memory. DNA methylation is an essential epigenetic modification that contributes to the development and progression of several diabetic complications, including DKD. The aberrant DNA methylation pattern at CpGs sites within several genes, such as mTOR, RPTOR, IRS2, GRK5, SLC27A3, LCAT, and SLC1A5, associated with the accompanying risk factors exacerbate the DKD progression. Although drugs such as azacytidine and decitabine have been approved to target DNA methylation for diseases such as hematological malignancies, none have been approved for the treatment of DKD. More importantly, no DNA hypomethylation-targeting drugs have been approved for any disease conditions. Understanding the alteration in DNA methylation and its association with the disease risk factors is essential to target DKD effectively. This review has discussed the abnormal DNA methylation pattern and the kidney tissue-specific expression of critical genes involved in DKD onset and progression. Moreover, we also discuss the new possible therapeutic approach that can be exploited for treating DNA methylation aberrancy in a site-specific manner against DKD.
Collapse
Affiliation(s)
- Vivek Akhouri
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
23
|
Danilevicz MF, Gill M, Fernandez CGT, Petereit J, Upadhyaya SR, Batley J, Bennamoun M, Edwards D, Bayer PE. DNABERT-based explainable lncRNA identification in plant genome assemblies. Comput Struct Biotechnol J 2023; 21:5676-5685. [PMID: 38058296 PMCID: PMC10696397 DOI: 10.1016/j.csbj.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Abstract
Long non-coding ribonucleic acids (lncRNAs) have been shown to play an important role in plant gene regulation, involving both epigenetic and transcript regulation. LncRNAs are transcripts longer than 200 nucleotides that are not translated into functional proteins but can be translated into small peptides. Machine learning models have predominantly used transcriptome data with manually defined features to detect lncRNAs, however, they often underrepresent the abundance of lncRNAs and can be biased in their detection. Here we present a study using Natural Language Processing (NLP) models to identify plant lncRNAs from genomic sequences rather than transcriptomic data. The NLP models were trained to predict lncRNAs for seven model and crop species (Zea mays, Arabidopsis thaliana, Brassica napus, Brassica oleracea, Brassica rapa, Glycine max and Oryza sativa) using publicly available genomic references. We demonstrated that lncRNAs can be accurately predicted from genomic sequences with the highest accuracy of 83.4% for Z. mays and the lowest accuracy of 57.9% for B. rapa, revealing that genome assembly quality might affect the accuracy of lncRNA identification. Furthermore, we demonstrated the potential of using NLP models for cross-species prediction with an average of 63.1% accuracy using target species not previously seen by the model. As more species are incorporated into the training datasets, we expect the accuracy to increase, becoming a more reliable tool for uncovering novel lncRNAs. Finally, we show that the models can be interpreted using explainable artificial intelligence to identify motifs important to lncRNA prediction and that these motifs frequently flanked the lncRNA sequence.
Collapse
Affiliation(s)
| | - Mitchell Gill
- School of Biological Sciences, University of Western Australia, Australia
| | | | - Jakob Petereit
- School of Biological Sciences, University of Western Australia, Australia
| | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Australia
| | - Mohammed Bennamoun
- School of Physics, Mathematics and Computing, University of Western Australia, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Australia
| | - Philipp E. Bayer
- School of Biological Sciences, University of Western Australia, Australia
| |
Collapse
|
24
|
Glad HM, Tralamazza SM, Croll D. The expression landscape and pangenome of long non-coding RNA in the fungal wheat pathogen Zymoseptoria tritici. Microb Genom 2023; 9. [PMID: 37991492 DOI: 10.1099/mgen.0.001136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are regulatory molecules interacting in a wide array of biological processes. lncRNAs in fungal pathogens can be responsive to stress and play roles in regulating growth and nutrient acquisition. Recent evidence suggests that lncRNAs may also play roles in virulence, such as regulating pathogenicity-associated enzymes and on-host reproductive cycles. Despite the importance of lncRNAs, only a few model fungi have well-documented inventories of lncRNA. In this study, we apply a recent computational pipeline to predict high-confidence lncRNA candidates in Zymoseptoria tritici, an important global pathogen of wheat impacting global food production. We analyse genomic features of lncRNAs and the most likely associated processes through analyses of expression over a host infection cycle. We find that lncRNAs are frequently expressed during early infection, before the switch to necrotrophic growth. They are mostly located in facultative heterochromatic regions, which are known to contain many genes associated with pathogenicity. Furthermore, we find that lncRNAs are frequently co-expressed with genes that may be involved in responding to host defence signals, such as oxidative stress. Finally, we assess pangenome features of lncRNAs using four additional reference-quality genomes. We find evidence that the repertoire of expressed lncRNAs varies substantially between individuals, even though lncRNA loci tend to be shared at the genomic level. Overall, this study provides a repertoire and putative functions of lncRNAs in Z. tritici enabling future molecular genetics and functional analyses in an important pathogen.
Collapse
Affiliation(s)
- Hanna M Glad
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Sabina Moser Tralamazza
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
25
|
Chen H, Luo W, Lu X, Zhang T. Regulatory role of RNA modifications in the treatment of pancreatic ductal adenocarcinoma (PDAC). Heliyon 2023; 9:e20969. [PMID: 37928039 PMCID: PMC10623179 DOI: 10.1016/j.heliyon.2023.e20969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely life-threatening malignancy with a relatively unfavorable prognosis. The early occurrence of metastasis and local recurrence subsequent to surgery contribute to the poor survival rates of PDAC patients, thereby limiting the effectiveness of surgical intervention. Additionally, the desmoplastic and immune-suppressive tumor microenvironment of PDAC diminishes its responsiveness to conventional treatment modalities such as chemotherapy, radiotherapy, and immunotherapy. Therefore, it is imperative to identify novel therapeutic targets for PDAC treatment. Chemical modifications are prevalent in various types of RNA and exert significant influence on their structure and functions. RNA modifications, exemplified by m6A, m5C, m1A, and Ψ, have been identified as general regulators of cellular functions. The abundance of specific modifications, such as m6A, has been correlated with cell proliferation, invasion, migration, and patient prognosis in PDAC. Pre-clinical data has indicated that manipulating RNA modification regulators could enhance the efficacy of chemotherapy, radiotherapy, and immunotherapy. Therefore, targeting RNA modifications in conjunction with current adjuvant or neoadjuvant therapy holds promise. The objective of this review is to provide a comprehensive overview of RNA modifications in PDAC treatment, encompassing their behaviors, mechanisms, and potential treatment targets. Therefore, it aims to stimulate the development of novel therapeutic approaches and future clinical trials.
Collapse
Affiliation(s)
- Hao Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyue Lu
- Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Jankowski M, Farzaneh M, Ghaedrahmati F, Shirvaliloo M, Moalemnia A, Kulus M, Ziemak H, Chwarzyński M, Dzięgiel P, Zabel M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Unveiling Mesenchymal Stem Cells' Regenerative Potential in Clinical Applications: Insights in miRNA and lncRNA Implications. Cells 2023; 12:2559. [PMID: 37947637 PMCID: PMC10649218 DOI: 10.3390/cells12212559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, UK
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 50-038 Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
27
|
Lim B, Kim SC, Kim WI, Kim JM. Integrative time-serial networks for genome-wide lncRNA-mRNA interactions reveal interferon-inducible antiviral and T-cell receptor regulations against PRRSV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104759. [PMID: 37315774 DOI: 10.1016/j.dci.2023.104759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection severely affects the swine industry each year. Although the host mechanisms against PRRSV infection have been identified in key target tissues through whole transcriptome sequencing, specific molecular regulators have not been elucidated. Long non-coding RNA (lncRNA) expression is highly specific and could thus be used to effectively identify PRRSV-specific candidates. Here, we identified novel lncRNAs in lungs, bronchial lymph nodes, and tonsils after PRRSV infection and constructed phenotype-based integrative co-expression networks using time-series differentially expressed (DE) lncRNAs and mRNAs. After the analyses, a total of 309 lncRNA-mRNA interactions were identified. During early host innate signalling, interferon-inducible and interferon genes were positively regulated by specific lncRNA. Moreover, T-cell receptor genes in lung adaptive immune signalling were negatively regulated by specific lncRNA. Collectively, our findings provide insights into the genome-wide lncRNA-mRNA interactions and dynamic regulation of lncRNA-mediated mechanisms against PRRSV infection.
Collapse
Affiliation(s)
- Byeonghwi Lim
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea.
| | - Jun-Mo Kim
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
28
|
Hazra S, Moulick D, Mukherjee A, Sahib S, Chowardhara B, Majumdar A, Upadhyay MK, Yadav P, Roy P, Santra SC, Mandal S, Nandy S, Dey A. Evaluation of efficacy of non-coding RNA in abiotic stress management of field crops: Current status and future prospective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107940. [PMID: 37738864 DOI: 10.1016/j.plaphy.2023.107940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
Abiotic stresses are responsible for the major losses in crop yield all over the world. Stresses generate harmful ROS which can impair cellular processes in plants. Therefore, plants have evolved antioxidant systems in defence against the stress-induced damages. The frequency of occurrence of abiotic stressors has increased several-fold due to the climate change experienced in recent times and projected for the future. This had particularly aggravated the risk of yield losses and threatened global food security. Non-coding RNAs are the part of eukaryotic genome that does not code for any proteins. However, they have been recently found to have a crucial role in the responses of plants to both abiotic and biotic stresses. There are different types of ncRNAs, for example, miRNAs and lncRNAs, which have the potential to regulate the expression of stress-related genes at the levels of transcription, post-transcription, and translation of proteins. The lncRNAs are also able to impart their epigenetic effects on the target genes through the alteration of the status of histone modification and organization of the chromatins. The current review attempts to deliver a comprehensive account of the role of ncRNAs in the regulation of plants' abiotic stress responses through ROS homeostasis. The potential applications ncRNAs in amelioration of abiotic stresses in field crops also have been evaluated.
Collapse
Affiliation(s)
- Swati Hazra
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | | | - Synudeen Sahib
- S. S. Cottage, Njarackal, P.O.: Perinad, Kollam, 691601, Kerala, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh 792103, India.
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Priyabrata Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, West Bengal 741235, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Sayanti Mandal
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College (affiliated to Savitribai Phule Pune University), Sant Tukaram Nagar, Pimpri, Pune, Maharashtra-411018, India.
| | - Samapika Nandy
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India; Department of Botany, Vedanta College, 33A Shiv Krishna Daw Lane, Kolkata-700054, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India.
| |
Collapse
|
29
|
Zhu P, Liu B, Fan Z. Noncoding RNAs in tumorigenesis and tumor therapy. FUNDAMENTAL RESEARCH 2023; 3:692-706. [PMID: 38933287 PMCID: PMC11197782 DOI: 10.1016/j.fmre.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2024] Open
Abstract
Tumorigenesis is a complicated process in which numerous modulators are involved in different ways. Previous studies have focused primarily on tumor-associated protein-coding genes such as oncogenes and tumor suppressor genes, as well as their associated oncogenic pathways. However, noncoding RNAs (ncRNAs), rising stars in diverse physiological and pathological processes, have recently emerged as additional modulators in tumorigenesis. In this review, we focus on two typical kinds of ncRNAs: long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). We describe the molecular patterns of ncRNAs and focus on the roles of ncRNAs in cancer stem cells (CSCs), tumor cells, and tumor environmental cells. CSCs are a small subset of tumor cells and are generally considered to be cells that initiate tumorigenesis, and dozens of ncRNAs have been defined as critical modulators in CSC maintenance and oncogenesis. Moreover, ncRNAs are widely involved in oncogenetic processes, including sustaining proliferation, resisting cell death, genome instability, metabolic disorders, immune escape and metastasis. We also discuss the potential applications of ncRNAs in tumor diagnosis and therapy. The progress in ncRNA research greatly improves our understanding of ncRNAs in oncogenesis and provides new potential targets for future tumor therapy.
Collapse
Affiliation(s)
- Pingping Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Benyu Liu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
30
|
Wang A, Jiang Y. Correlation analysis of serum levels of H19 and CRP levels and ulcerative colitis. J Med Biochem 2023; 42:420-426. [PMID: 37814617 PMCID: PMC10560500 DOI: 10.5937/jomb0-41359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 10/11/2023] Open
Abstract
Background To elucidate clinical applications of detecting serum levels of H19 and CRP in predicting the severity of ulcerative colitis (UC). Methods Two hundred UC patients were recruited, and classified to mild/moderate group and severe group according to the Truelove-Witts grading system. Serum levels of H19 and CRP in UC patients were detected by turbidimetric inhibition immuno assay and qRT-PCR. Differences in serum levels of H19 and CRP between mild/moderate group and severe group were analyzed. By plotting ROC curves, the diagnostic potentials of H19 and CRP in UC were evaluated. Kappa conformance test was conducted to validate the conformance of detecting serum levels of H19 and CRP to clinical diagnosis of UC. Results Serum levels of H19 and CRP were higher in UC patients of severe group than those of mild/moderate group. Their levels were both positively correlated to the severity of UC. High sensitivity (83.3%) and specificity (80.0%), as well as the maximum Youden index (0.633) were obtained at the cut-off value for H19 level of 2.755, and AUC was 0.8835. Meanwhile, Kappa coefficient (k) was 0.760 at the cut-off value for H19 level of 2.755, showing a high conformance to clinical diagnosis of UC. In addition, acceptable sensitivity (68.49%) and high specificity (85.83%), as well as the maximum Youden index (0.543) were obtained at the cut-off value for CRP level of 6.390 mg/L, and AUC was 0.8018. k was 0.435, showing an acceptable conformance to clinical diagnosis of UC based on serum level of CRP. Conclusions Serum levels of H19 and CRP increase with the deterioration of UC. Detecting their serum levels has a consistent result to clinical diagnosis of UC, with a superior performance of H19 than that of CRP.
Collapse
Affiliation(s)
- Aihua Wang
- Affiliated Danyang Hospital of Nantong University, The People's Hospital of Danyang, Laboratory Medicine, Danyang, China
| | - Yongkang Jiang
- Danyang Hospital of Traditional Chinese Medicine, Laboratory Medicine, Danyang, China
| |
Collapse
|
31
|
Zhang X, Zhang X, Yang G, Wan L, Yin F, Li H, Yin D. LncRNA SOCS2-AS1 promotes the progression of papillary thyroid cancer by destabilizing p53 protein. Biochem Biophys Res Commun 2023; 669:95-102. [PMID: 37267865 DOI: 10.1016/j.bbrc.2023.05.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to contribute to tumorigenesis and cancer progression. However, neither the dysregulation nor the functions of anti-sense lncRNAs in papillary thyroid carcinoma (PTC) have been exhaustively studied. In this study, we accessed The Cancer Genome Atlas (TCGA) database and discovered that the natural antisense lncRNA SOCS2-AS1 is highly expressed in PTC and that patients with a higher level of SOCS2-AS1 had a poor prognosis. Furthermore, loss- and gain-function assays demonstrated that SOCS2-AS1 promotes PTC cell proliferation and growth both in vitro and in vivo. In addition, we demonstrated that SOCS2-AS1 regulates the rate of fatty acid oxidation (FAO) in PTC cells. Analysis of the mechanism revealed that SOCS2-AS1 binds to p53 and controls its stability in PTC cell lines. Overall, our findings showed that the natural antisense lncRNA SOCS2-AS1 stimulates the degradation of p53 and enhances PTC cell proliferation and the FAO rate.
Collapse
Affiliation(s)
- Xiaojian Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, P.R. China; Department of Thyroid Surgery, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Xiaozhou Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, P.R. China; Department of Thyroid Surgery, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Guang Yang
- Department of Thyroid Surgery, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Long Wan
- Department of Clinical Oncology, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Fengyan Yin
- Department of Thyroid Surgery, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Hongqiang Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, P.R. China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, P.R. China.
| |
Collapse
|
32
|
Tenorio M, Serwatowska J, Fernandez-Valverde SL, Oktaba K, Cortez D. Genome-wide analysis of RNA-chromatin interactions in lizards as a mean for functional lncRNA identification. BMC Genomics 2023; 24:444. [PMID: 37550606 PMCID: PMC10405410 DOI: 10.1186/s12864-023-09545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are defined as transcribed molecules longer than 200 nucleotides with little to no protein-coding potential. LncRNAs can regulate gene expression of nearby genes (cis-acting) or genes located on other chromosomes (trans-acting). Several methodologies have been developed to capture lncRNAs associated with chromatin at a genome-wide level. Analysis of RNA-DNA contacts can be combined with epigenetic and RNA-seq data to define potential lncRNAs involved in the regulation of gene expression. RESULTS We performed Chromatin Associated RNA sequencing (ChAR-seq) in Anolis carolinensis to obtain the genome-wide map of the associations that RNA molecules have with chromatin. We analyzed the frequency of DNA contacts for different classes of RNAs and were able to define cis- and trans-acting lncRNAs. We integrated the ChAR-seq map of RNA-DNA contacts with epigenetic data for the acetylation of lysine 16 on histone H4 (H4K16ac), a mark connected to actively transcribed chromatin in lizards. We successfully identified three trans-acting lncRNAs significantly associated with the H4K16ac signal, which are likely involved in the regulation of gene expression in A. carolinensis. CONCLUSIONS We show that the ChAR-seq method is a powerful tool to explore the RNA-DNA map of interactions. Moreover, in combination with epigenetic data, ChAR-seq can be applied in non-model species to establish potential roles for predicted lncRNAs that lack functional annotations.
Collapse
Affiliation(s)
- Mariela Tenorio
- Center for Genome Sciences, National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | | | - Selene L Fernandez-Valverde
- Center for Research and Advanced Studies (Cinvestav), Irapuato, Mexico
- School of Biotechnology and Biomolecular Sciences and the RNA Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Katarzyna Oktaba
- Center for Research and Advanced Studies (Cinvestav), Irapuato, Mexico
| | - Diego Cortez
- Center for Genome Sciences, National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico.
| |
Collapse
|
33
|
Karri K, Waxman DJ. Dysregulation of murine long noncoding single-cell transcriptome in nonalcoholic steatohepatitis and liver fibrosis. RNA (NEW YORK, N.Y.) 2023; 29:977-1006. [PMID: 37015806 PMCID: PMC10275269 DOI: 10.1261/rna.079580.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
LncRNAs comprise a heterogeneous class of RNA-encoding genes typified by low expression, nuclear enrichment, high tissue-specificity, and functional diversity, but the vast majority remain uncharacterized. Here, we assembled the mouse liver noncoding transcriptome from >2000 bulk RNA-seq samples and discovered 48,261 liver-expressed lncRNAs, a majority novel. Using these lncRNAs as a single-cell transcriptomic reference set, we elucidated lncRNA dysregulation in mouse models of high fat diet-induced nonalcoholic steatohepatitis and carbon tetrachloride-induced liver fibrosis. Trajectory inference analysis revealed lncRNA zonation patterns across the liver lobule in each major liver cell population. Perturbations in lncRNA expression and zonation were common in several disease-associated liver cell types, including nonalcoholic steatohepatitis-associated macrophages, a hallmark of fatty liver disease progression, and collagen-producing myofibroblasts, a central feature of liver fibrosis. Single-cell-based gene regulatory network analysis using bigSCale2 linked individual lncRNAs to specific biological pathways, and network-essential regulatory lncRNAs with disease-associated functions were identified by their high network centrality metrics. For a subset of these lncRNAs, promoter sequences of the network-defined lncRNA target genes were significantly enriched for lncRNA triplex formation, providing independent mechanistic support for the lncRNA-target gene linkages predicted by the gene regulatory networks. These findings elucidate liver lncRNA cell-type specificities, spatial zonation patterns, associated regulatory networks, and temporal patterns of dysregulation during hepatic disease progression. A subset of the liver disease-associated regulatory lncRNAs identified have human orthologs and are promising candidates for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
34
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 914] [Impact Index Per Article: 457.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Yu D, Wu Y, Zhu L, Wang Y, Sheng D, Zhao X, Liang G, Gan L. The landscape of the long non-coding RNAs in developing mouse retinas. BMC Genomics 2023; 24:252. [PMID: 37165305 PMCID: PMC10173636 DOI: 10.1186/s12864-023-09354-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND The long non-coding RNAs (lncRNAs) are critical regulators of diverse biological processes. Nevertheless, a global view of its expression and function in the mouse retina, a crucial model for neurogenesis study, still needs to be made available. RESULTS Herein, by integrating the established gene models and the result from ab initio prediction using short- and long-read sequencing, we characterized 4,523 lncRNA genes (MRLGs) in developing mouse retinas (from the embryonic day of 12.5 to the neonatal day of P28), which was so far the most comprehensive collection of retinal lncRNAs. Next, derived from transcriptomics analyses of different tissues and developing retinas, we found that the MRLGs were highly spatiotemporal specific in expression and played essential roles in regulating the genesis and function of mouse retinas. In addition, we investigated the expression of MRLGs in some mouse mutants and revealed that 97 intergenic MRLGs might be involved in regulating differentiation and development of retinal neurons through Math5, Isl1, Brn3b, NRL, Onecut1, or Onecut2 mediated pathways. CONCLUSIONS In summary, this work significantly enhanced our knowledge of lncRNA genes in mouse retina development and provided valuable clues for future exploration of their biological roles.
Collapse
Affiliation(s)
- Dongliang Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China.
| | - Yuqing Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Leilei Zhu
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Yuying Wang
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Donglai Sheng
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Xiaofeng Zhao
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Guoqing Liang
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China.
| | - Lin Gan
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
36
|
Gong Y, Lin Z, Wang Y, Liu Y. Research progress of non-coding RNAs regulation on intramuscular adipocytes in domestic animals. Gene 2023; 860:147226. [PMID: 36736503 DOI: 10.1016/j.gene.2023.147226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Intramuscular fat (IMF) is the main determinant of the economic value of domestic animal meat, and has a vital impact on the sensory quality characteristics, while the content of IMF is mainly determined by the size and number of intramuscular adipocytes. In recent years, due to the development of sequencing technology and omics technology, a large number of non-coding RNAs have been identified in intramuscular adipocytes. Non-coding RNAs are a kind of RNA regulatory factors with biological functions but without translation function, which mainly include microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These non-coding RNAs regulate the key genes of intramuscular adipocyte growth and development at post-transcriptional level through a variety of regulatory mechanisms, and affect the number and size of intramuscular adipocytes, thus affecting the content of IMF. Here, the review summarizes the candidate non-coding RNAs (miRNAs, lncRNAs, circRNAs) and genes involved in the regulation of intramuscular adipocytes, the related regulation mechanism and signaling pathways, in order to provide reference for further clarifying the molecular regulation mechanism of non-coding RNAs on intramuscular adipocytes in domestic animals.
Collapse
Affiliation(s)
- Yanrong Gong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
37
|
Zhang L, Piipponen M, Liu Z, Li D, Bian X, Niu G, Geara J, Toma MA, Sommar P, Xu Landén N. Human skin specific long noncoding RNA HOXC13-AS regulates epidermal differentiation by interfering with Golgi-ER retrograde transport. Cell Death Differ 2023; 30:1334-1348. [PMID: 36869179 PMCID: PMC10154349 DOI: 10.1038/s41418-023-01142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
After a skin injury, keratinocytes switch from a state of homeostasis to one of regeneration leading to the reconstruction of the epidermal barrier. The regulatory mechanism of gene expression underpinning this key switch during human skin wound healing is enigmatic. Long noncoding RNAs (lncRNAs) constitute a new horizon in the understanding of the regulatory programs encoded in the mammalian genome. By comparing the transcriptome of an acute human wound and skin from the same donor as well as keratinocytes isolated from these paired tissue samples, we generated a list of lncRNAs showing changed expression in keratinocytes during wound repair. Our study focused on HOXC13-AS, a recently evolved human lncRNA specifically expressed in epidermal keratinocytes, and we found that its expression was temporally downregulated during wound healing. In line with its enrichment in suprabasal keratinocytes, HOXC13-AS was found to be increasingly expressed during keratinocyte differentiation, but its expression was reduced by EGFR signaling. After HOXC13-AS knockdown or overexpression in human primary keratinocytes undergoing differentiation induced by cell suspension or calcium treatment and in organotypic epidermis, we found that HOXC13-AS promoted keratinocyte differentiation. Moreover, RNA pull-down assays followed by mass spectrometry and RNA immunoprecipitation analysis revealed that mechanistically HOXC13-AS sequestered the coat complex subunit alpha (COPA) protein and interfered with Golgi-to-endoplasmic reticulum (ER) molecular transport, resulting in ER stress and enhanced keratinocyte differentiation. In summary, we identified HOXC13-AS as a crucial regulator of human epidermal differentiation.
Collapse
Affiliation(s)
- Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Minna Piipponen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Dongqing Li
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden.,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Guanglin Niu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Jennifer Geara
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Maria A Toma
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden. .,Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
38
|
Hyttinen JMT, Blasiak J, Kaarniranta K. Non-Coding RNAs Regulating Mitochondrial Functions and the Oxidative Stress Response as Putative Targets against Age-Related Macular Degeneration (AMD). Int J Mol Sci 2023; 24:ijms24032636. [PMID: 36768958 PMCID: PMC9917342 DOI: 10.3390/ijms24032636] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Age-related macular degeneration (AMD) is an ever-increasing, insidious disease which reduces the quality of life of millions of elderly people around the world. AMD is characterised by damage to the retinal pigment epithelium (RPE) in the macula region of the retina. The origins of this multi-factorial disease are complex and still not fully understood. Oxidative stress and mitochondrial imbalance in the RPE are believed to be important factors in the development of AMD. In this review, the regulation of the mitochondrial function and antioxidant stress response by non-coding RNAs (ncRNAs), newly emerged epigenetic factors, is discussed. These molecules include microRNAs, long non-coding RNAs, and circular non-coding RNAs. They act mainly as mRNA suppressors, controllers of other ncRNAs, or by interacting with proteins. We include here examples of these RNA molecules which affect various mitochondrial processes and antioxidant signaling of the cell. As a future prospect, the possibility to manipulate these ncRNAs to strengthen mitochondrial and antioxidant response functions is discussed. Non-coding RNAs could be used as potential diagnostic markers for AMD, and in the future, also as therapeutic targets, either by suppressing or increasing their expression. In addition to AMD, it is possible that non-coding RNAs could be regulators in other oxidative stress-related degenerative diseases.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence:
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| |
Collapse
|
39
|
Li J, Wang D, Yang Z, Liu M. HEGANLDA: A Computational Model for Predicting Potential Lncrna-Disease Associations Based On Multiple Heterogeneous Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:388-398. [PMID: 34932483 DOI: 10.1109/tcbb.2021.3136886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) play vital regulatory roles in many human complex diseases, however, the number of validated lncRNA-disease associations is notable rare so far. How to predict potential lncRNA-disease associations precisely through computational methods remains challenging. In this study, we proposed a novel method, LDVCHN (LncRNA-Disease Vector Calculation Heterogeneous Networks), and also developed the corresponding model, HEGANLDA (Heterogeneous Embedding Generative Adversarial Networks LncRNA-Disease Association), for predicting potential lncRNA-disease associations. In HEGANLDA, the graph embedding algorithm (HeGAN) was introduced for mapping all nodes in the lncRNA-miRNA-disease heterogeneous network into the low-dimensional vectors which severed as the inputs of LDVCHN. HEGANLDA effectively adopted the XGBoost (eXtreme Gradient Boosting) classifier, which was trained by the low-dimensional vectors, to predict potential lncRNA-disease associations. The 10-fold cross-validation method was utilized to evaluate the performance of our model, our model finally achieved an area under the ROC curve of 0.983. According to the experiment results, HEGANLDA outperformed any one of five current state-of-the-art methods. To further evaluate the effectiveness of HEGANLDA in predicting potential lncRNA-disease associations, both case studies and robustness tests were performed and the results confirmed its effectiveness and robustness. The source code and data of HEGANLDA are available at https://github.com/HEGANLDA/HEGANLDA.
Collapse
|
40
|
Li J, Li Z, Wang Y, Lin H, Wu B. TLSEA: a tool for lncRNA set enrichment analysis based on multi-source heterogeneous information fusion. Front Genet 2023; 14:1181391. [PMID: 37205123 PMCID: PMC10185877 DOI: 10.3389/fgene.2023.1181391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play an important regulatory role in gene transcription and post-transcriptional modification, and lncRNA regulatory dysfunction leads to a variety of complex human diseases. Hence, it might be beneficial to detect the underlying biological pathways and functional categories of genes that encode lncRNA. This can be carried out by using gene set enrichment analysis, which is a pervasive bioinformatic technique that has been widely used. However, accurately performing gene set enrichment analysis of lncRNAs remains a challenge. Most conventional enrichment analysis methods have not exhaustively included the rich association information among genes, which usually affects the regulatory functions of genes. Here, we developed a novel tool for lncRNA set enrichment analysis (TLSEA) to improve the accuracy of the gene functional enrichment analysis, which extracted the low-dimensional vectors of lncRNAs in two functional annotation networks with the graph representation learning method. A novel lncRNA-lncRNA association network was constructed by merging lncRNA-related heterogeneous information obtained from multiple sources with the different lncRNA-related similarity networks. In addition, the random walk with restart method was adopted to effectively expand the lncRNAs submitted by users according to the lncRNA-lncRNA association network of TLSEA. In addition, a case study of breast cancer was performed, which demonstrated that TLSEA could detect breast cancer more accurately than conventional tools. The TLSEA can be accessed freely at http://www.lirmed.com:5003/tlsea.
Collapse
Affiliation(s)
- Jianwei Li
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, China
- *Correspondence: Jianwei Li,
| | - Zhiguang Li
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Yinfei Wang
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Hongxin Lin
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Baoqin Wu
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| |
Collapse
|
41
|
Dashti F, Mirazimi SMA, Kazemioula G, Mohammadi M, Hosseini M, Razaghi Bahabadi Z, Mirazimi MS, Abadi MHJN, Shahini A, Afshari M, Mirzaei H. Long non-coding RNAs and melanoma: From diagnosis to therapy. Pathol Res Pract 2023; 241:154232. [PMID: 36528985 DOI: 10.1016/j.prp.2022.154232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Although extremely rare, malignant melanoma is the deadliest type of skin malignancy with the inherent capability to invade other organs and metastasize to distant tissues. In 2021, it was estimated that approximately 106,110 patients may have received the diagnosis of melanoma, with a mortality rate of 7180. Surgery remains the common choice for treatment in patients with melanoma. Despite many advances in the treatment of melanoma, some patients, such as those who have received cytotoxic chemotherapeutic and immunotherapic agents, a significant number of patients may show inadequate treatment response following initiating these treatments. Non-coding RNAs, including lncRNAs, have become recently popular and attracted the attention of many researchers to make new insights into the pathogenesis of many diseases, particularly malignancies. LncRNAs have been thoroughly investigated in multiple cancers such as melanoma and have been shown to play a major role in regulating various physiological and pathological cellular processes. Considering their core regulatory function, these non-coding RNAs may be appropriate candidates for melanoma patients' diagnosis, prognosis, and treatment. In this review, we will cover all the current literature available for lncRNAs in melanoma and will discuss their potential benefits as diagnostic and/or prognostic markers or potent therapeutic targets in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Golnesa Kazemioula
- Department of Medical Genetics, School of Medicine,Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marjan Hosseini
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Mirazimi
- Department of Obstetrics & Gynocology,Isfahan School of Medicine,Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Afshari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
42
|
Yadav VK, Sawant SV, Yadav A, Jalmi SK, Kerkar S. Genome-wide analysis of long non-coding RNAs under diel light exhibits role in floral development and the circadian clock in Arabidopsis thaliana. Int J Biol Macromol 2022; 223:1693-1704. [PMID: 36257367 DOI: 10.1016/j.ijbiomac.2022.09.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
The circadian clock is regulated by signaling networks that enhance a plant's ability to coordinate internal events with the external environment. In this study, we examine the rhythmic expression of long non-coding RNAs (lncRNAs) using multiple transcriptomes of Arabidopsis thaliana in the diel light cycle and integrated this information to have a better understanding of the functions of lncRNAs in regulating the circadian clock. We identified 968, 1050, and 998 lncRNAs at 8 h light, 16 h light and 8 h dark conditions, respectively. Among these, 423, 486, and 417 lncRNAs were uniquely present at 8 h light, 16 h light, and 8 h dark, respectively, whereas 334 lncRNAs were common under the three conditions. The specificity of identified lncRNAs under different light conditions was verified using qRT-PCR. The identified lncRNAs were less GC-rich and expressed at a significantly lower level than the mRNAs of protein-coding genes. In addition, we identified enriched motifs in lncRNA transcribing regions that were associated with light-responsive genes (SORLREP and SORLIP), flower development (AGAMOUS), and circadian clock (CCA1) under all three light conditions. We identified 10 and 12 different lncRNAs targeting different miRNAs with perfect and interrupted complementarity (endogenous target mimic). These predicted lncRNA-interacting miRNAs govern the function of a set of genes involved in the developmental process, reproductive structure development, gene silencing and transcription regulation. We demonstrated that the lncRNA transcribing regions were enriched for epigenetic marks such as H3.3, H3K4me2, H3K4me3, H4K16ac, H3K36ac, H3K56ac and depleted for heterochromatic (H3K9me2 and H3K27me1) and repressive (H3K27me3) histone modifications. Further, we found that hypermethylated genomic regions negatively correlated with lncRNA transcribing regions. Overall, our study showed that lncRNAs expressed corresponding to the diel light cycle are implicated in regulating the circadian rhythm and governing the developmental stage-specific growth.
Collapse
Affiliation(s)
- Vikash Kumar Yadav
- School of Biological Sciences and Biotechnology, Goa University, Goa 403206, India.
| | | | - Amrita Yadav
- CSIR-National Botanical Research Institute, Lucknow 226001, India
| | | | - Savita Kerkar
- School of Biological Sciences and Biotechnology, Goa University, Goa 403206, India
| |
Collapse
|
43
|
Sabaie H, Khorami Rouz S, Kouchakali G, Heydarzadeh S, Asadi MR, Sharifi-Bonab M, Hussen BM, Taheri M, Ayatollahi SA, Rezazadeh M. Identification of potential regulatory long non-coding RNA-associated competing endogenous RNA axes in periplaque regions in multiple sclerosis. Front Genet 2022; 13:1011350. [PMID: 36324503 PMCID: PMC9619104 DOI: 10.3389/fgene.2022.1011350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Slow-burning inflammation at the lesion rim is connected to the expansion of chronic multiple sclerosis (MS) lesions. However, the underlying processes causing expansion are not clearly realized. In this context, the current study used a bioinformatics approach to identify the expression profiles and related lncRNA-associated ceRNA regulatory axes in the periplaque region in MS patients. Expression data (GSE52139) from periplaque regions in the secondary progressive MS spinal cord and controls were downloaded from the Gene Expression Omnibus database (GEO), which has details on mRNAs and lncRNAs. Using the R software's limma package, the differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were found. The RNA interactions were also found using the DIANA-LncBase, miRTarBase, and HMDD databases. The Pearson correlation coefficient was used to determine whether there were any positive correlations between DEmRNAs and DElncRNAs in the ceRNA network. Finally, lncRNA-associated ceRNA axes were created based on co-expression and connections between DElncRNA, miRNA, and DEmRNA. We used the Enrichr tool to enrich the biological process, molecular function, and pathways for DEmRNAs and DElncRNAs. A network of DEmRNAs' protein-protein interactions was developed, and the top five hub genes were found using Cytoscape and STRING. The current study indicates that 15 DEmRNAs, including FOS, GJA1, NTRK2, CTNND1, and SP3, are connected to the MS ceRNA network. Additionally, four DElncRNAs (such as TUG1, ASB16-AS1, and LINC01094) that regulated the aforementioned mRNAs by sponging 14 MS-related miRNAs (e.g., hsa-miR-145-5p, hsa-miR-200a-3p, hsa-miR-20a-5p, hsa-miR-22-3p, hsa-miR-23a-3p, hsa-miR-27a-3p, hsa-miR-29b-3p, hsa-miR-29c-3p, hsa-miR-34a-5p) were found. In addition, the analysis of pathway enrichment revealed that DEmRNAs were enriched in the pathways for the "MAPK signaling pathway", "Kaposi sarcoma-associated herpesvirus infection", "Human immunodeficiency virus one infection", "Lipid and atherosclerosis", and "Amphetamine addiction". Even though the function of these ceRNA axes needs to be investigated further, this study provides research targets for studying ceRNA-mediated molecular mechanisms related to periplaque demyelination in MS.
Collapse
Affiliation(s)
- Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ghazal Kouchakali
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Heydarzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | | | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Lei B, Song H, Xu F, Wei Q, Wang F, Tan G, Ma H. When does hepatitis B virus meet long-stranded noncoding RNAs? Front Microbiol 2022; 13:962186. [PMID: 36118202 PMCID: PMC9479684 DOI: 10.3389/fmicb.2022.962186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/22/2022] [Indexed: 01/16/2023] Open
Abstract
Hepatitis B virus (HBV) infection in humans and its associated diseases are long-standing problems. HBV can produce a large number of non-self-molecules during its life cycle, which acts as targets for innate immune recognition and initiation. Among these, interferon and its large number of downstream interferon-stimulated gene molecules are important early antiviral factors. However, the development of an effective antiviral immune response is not simple and depends not only on the delicate regulation of the immune response but also on the various mechanisms of virus-related immune escape and immune tolerance. Therefore, despite there being a relatively well-established consensus on the major pathways of the antiviral response and their component molecules, the complete clearance of HBV remains a challenge in both basic and clinical research. Long-noncoding RNAs (lncRNAs) are generally >200 bp in length and perform different functions in the RNA strand encoding the protein. As an important part of the IFN-inducible genes, interferon-stimulated lncRNAs are involved in the regulation of several HBV infection-related pathways. This review traces the basic elements of such pathways and characterizes the various recent targets of lncRNAs, which not only complement the regulatory mechanisms of pathways related to chronic HBV infection, fibrosis, and cancer promotion but also present with new potential therapeutic targets for controlling HBV infection and the malignant transformation of hepatocytes.
Collapse
Affiliation(s)
- Bingxin Lei
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongxiao Song
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengchao Xu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qi Wei
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fei Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guangyun Tan
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Guangyun Tan,
| | - Haichun Ma
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
- Haichun Ma,
| |
Collapse
|
45
|
Picerno A, Giannuzzi F, Curci C, De Palma G, Di Chiano MG, Simone S, Franzin R, Gallone A, Di Lorenzo VF, Stasi A, Pertosa GB, Sabbà C, Gesualdo L, Sallustio F. The long non-coding RNA HOTAIR controls the self-renewal, cell senescence, and secretion of antiaging protein α-Klotho in human adult renal progenitor cells. Stem Cells 2022; 40:963-975. [PMID: 35922038 DOI: 10.1093/stmcls/sxac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022]
Abstract
The long non-coding RNAs (lncRNA) play an important role in several biological processes including some renal diseases. Nevertheless, little is known on lncRNA that are expressed in healthy kidney and involved in renal cell homeostasis and development, and even less is known about lncRNA involved in the maintenance of human adult renal stem/progenitor cells (ARPCs) that have been shown to be very important for renal homeostasis and repair processes. Through a whole genome transcriptome screening, we found that the HOTAIR lncRNA is highly expressed in renal progenitors and potentially involved in cell cycle and senescence biological processes. By CRISPR/Cas9 genome editing, we generated HOTAIR knock-out ARPC lines and established a key role of this lncRNA in ARPC self-renewal properties by sustaining their proliferative capacity and limiting the apoptotic process. Intriguingly, the HOTAIR knock-out led to the ARPC senescence and to a significant decrease of the CD133 stem cell marker expression, that is an inverse marker of ARPC senescence and can regulate renal tubular repair after the damage. Furthermore, we found that ARPCs expressed high levels of the α-Klotho anti-aging protein and especially 2.6-fold higher levels compared to that secreted by renal proximal tubular cells (RPTECs). Finally, we showed that HOTAIR exerts its function through the epigenetic silencing of the cell cycle inhibitor p15 inducing the trimethylation of the histone H3K27. Altogether, these results shed new light on the mechanisms of regulation of these important renal cells and may support the future development of precision therapies for kidney diseases.
Collapse
Affiliation(s)
- Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Claudia Curci
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Giuseppe De Palma
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Maria Giovanna Di Chiano
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italia
| | - Simona Simone
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy.,MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Gallone
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy.,Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, 70124, Bari, Italy
| | | | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy.,MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giovanni Battista Pertosa
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy.,MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy.,MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124, Bari, Italy.,MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
46
|
Bondhus L, Varma R, Hernandez Y, Arboleda VA. Balancing the transcriptome: leveraging sample similarity to improve measures of gene specificity. Brief Bioinform 2022; 23:6582882. [PMID: 35534150 PMCID: PMC9487600 DOI: 10.1093/bib/bbac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 01/28/2023] Open
Abstract
The spatial and temporal domain of a gene's expression can range from ubiquitous to highly specific. Quantifying the degree to which this expression is unique to a specific tissue or developmental timepoint can provide insight into the etiology of genetic diseases. However, quantifying specificity remains challenging as measures of specificity are sensitive to similarity between samples in the sample set. For example, in the Gene-Tissue Expression project (GTEx), brain subregions are overrepresented at 13 of 54 (24%) unique tissues sampled. In this dataset, existing specificity measures have a decreased ability to identify genes specific to the brain relative to other organs. To solve this problem, we leverage sample similarity information to weight samples such that overrepresented tissues do not have an outsized effect on specificity estimates. We test this reweighting procedure on 4 measures of specificity, Z-score, Tau, Tsi and Gini, in the GTEx data and in single cell datasets for zebrafish and mouse. For all of these measures, incorporating sample similarity information to weight samples results in greater stability of sets of genes called as specific and decreases the overall variance in the change of specificity estimates as sample sets become more unbalanced. Furthermore, the genes with the largest improvement in their specificity estimate's stability are those with functions related to the overrepresented sample types. Our results demonstrate that incorporating similarity information improves specificity estimates' stability to the choice of the sample set used to define the transcriptome, providing more robust and reproducible measures of specificity for downstream analyses.
Collapse
Affiliation(s)
- Leroy Bondhus
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Roshni Varma
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Yenifer Hernandez
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Molecular Biology Institute, UCLA, Los Angeles, CA 90095,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095,Corresponding author. Valerie A. Arboleda, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA. Tel.: +1-310-983-3568; E-mail:
| |
Collapse
|
47
|
LncR-133a Suppresses Myoblast Differentiation by Sponging miR-133a-3p to Activate the FGFR1/ERK1/2 Signaling Pathway in Goats. Genes (Basel) 2022; 13:genes13050818. [PMID: 35627202 PMCID: PMC9141198 DOI: 10.3390/genes13050818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 12/03/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in a variety of biological processes and illnesses. While a considerable number of lncRNAs have been discovered in skeletal muscle to far, their role and underlying processes during myogenesis remain mostly unclear. In this study, we described a new functional lncRNA named lncR-133a. Gene overexpression and interference studies in goat skeletal muscle satellite cells (MuSCs) were used to establish its function. The molecular mechanism by which lncR-133a governs muscle differentiation was elucidated primarily using quantitative real-time PCR (qRT-PCR), Western blotting, dual-luciferase activity assays, RNA immunoprecipitation, biotin-labeled probe, and RNA fluorescence in situ hybridization analyses. LncR-133a was found to be substantially expressed in longissimus thoracis et lumborum muscle, and its expression levels changed during MuSC differentiation in goats. We validated that lncR-133a suppresses MuSC differentiation in vitro. Dual-luciferase reporter screening, Argonaute 2 (AGO2) RNA immunoprecipitation assays, biotin-labeled lncR-133a capture, and fluorescence in situ hybridization showed that lncR-133a interacted with miR-133a-3p. Additionally, miR-133a-3p facilitated MuSC differentiation, but lncR-133a reversed this effect. The luciferase reporter assay and functional analyses established that miR-133a-3p directly targets fibroblast growth factor receptor 1 (FGFR1). Moreover, lncR-133a directly reduced miR-133a-3p’s capacity to suppress FGFR1 expression, and positively regulated the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). In summary, our results suggested that lncR-133a suppresses goat muscle differentiation by targeting miR-133a-3p and activating FGFR1/ERK1/2 signaling pathway.
Collapse
|
48
|
Li S, Lu C, Li X, Li F, Zhao Y, Xu M, Jia H, Yuan S. LncRNA HOXA10-AS functions as an oncogene by binding miR-6509-5p to upregulate Y-box binding protein 1 in gastric cancer. Bioengineered 2022; 13:11373-11387. [PMID: 35521747 PMCID: PMC9276040 DOI: 10.1080/21655979.2022.2059615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC) is one of the serious malignant diseases, accounting for several cases globally. The prevention, discovery and cure of GC depend on its molecular mechanism. In recent decades, it has been increasingly recognized that the long noncoding RNAs (lncRNAs) have been involved in GC progression. Therefore, the present study is aimed at identifying relevant lncRNAs that could act as biomarkers for GC prognosis. LncRNA HOXA10-AS is identified to be highly expressed in GC using the ENCORI database. Kaplan-Meier plot analysis indicated that the survival rate of the patient is associated with the expression of lncRNA HOXA10-AS. Interference of HOXA10-AS inhibited GC cell proliferation, migration, and invasion as well as facilitated GC apoptosis. The targets of HOXA10-AS included miR-6509-5p and Y-box binding protein 1 (YBX1). Specifically, HOXA10-AS downregulated miR-6509-5p in GC. An increase of miR-6509-5p inhibited GC cell growth. Meanwhile, miR-6509-5p interacted with YBX1 in GC. Together, lncRNA HOXA10-AS potentially acted as an oncogene through the lncRNA HOXA10-AS/miR-6509-5p/YBX1 signaling pathway in GC.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Gastroenterology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, PR China
| | - Chuanhui Lu
- Department of Colorectal Cancer Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
- Department of Colorectal Cancer Surgery, The Third Clinical Medical College, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Xinyu Li
- Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou City 362002, Fujian Province, China
| | - Fan Li
- Department of Colorectal Cancer Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
- Department of Colorectal Cancer Surgery, The Third Clinical Medical College, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Yunfeng Zhao
- Department of Cardiovascular Internal Medicine CCU Ward, First Hospital of Qinhuangdao, Qinhuangdao 066000, Hebei Province, China
| | - Meimei Xu
- Department of Gastroenterology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, PR China
| | - Hongyu Jia
- Department of Gastroenterology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, PR China
| | - Sibo Yuan
- Department of Gastrointestinal Surgery and Xiamen City Key Laboratory of Gastrointestinal Cancer, Zhongshan Hospital, Xiamen University, Xiamen 361000, Fujian Province, China
| |
Collapse
|
49
|
Li D, Niu G, Landén NX. Beyond the Code: Noncoding RNAs in Skin Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041230. [PMID: 35197246 PMCID: PMC9438779 DOI: 10.1101/cshperspect.a041230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An increasing number of noncoding RNAs (ncRNAs) have been found to regulate gene expression and protein functions, playing important roles in diverse biological processes and diseases. Their crucial functions have been reported in almost every cell type and all stages of skin wound healing. Evidence of their pathogenetic roles in common wound complications, such as chronic nonhealing wounds and excessive scarring, is also accumulating. Given their unique expression and functional properties, ncRNAs are promising therapeutic and diagnostic entities. In this review, we discuss current knowledge about the functional roles of noncoding elements, such as microRNAs, long ncRNAs, and circular RNAs, in skin wound healing, focusing on in vivo evidence from studies of human wound samples and animal wound models. Finally, we provide a perspective on the outlook of ncRNA-based therapeutics in wound care.
Collapse
Affiliation(s)
- Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Guanglin Niu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
50
|
Brodnicki TC. A Role for lncRNAs in Regulating Inflammatory and Autoimmune Responses Underlying Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:97-118. [DOI: 10.1007/978-3-030-92034-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|