1
|
Efthymiou S, Leo CP, Deng C, Lin SJ, Maroofian R, Lin R, Karagoz I, Zhang K, Kaiyrzhanov R, Scardamaglia A, Owrang D, Turchetti V, Jahnke F, Huang K, Petree C, Derrick AV, Rees MI, Alvi JR, Sultan T, Li C, Jacquemont ML, Tran-Mau-Them F, Valenzuela-Palafoll M, Sidlow R, Yoon G, Morrow MM, Carere DA, O'Connor M, Fleischer J, Gerkes EH, Phornphutkul C, Isidor B, Rivier-Ringenbach C, Philippe C, Kurul SH, Soydemir D, Kara B, Sunnetci-Akkoyunlu D, Bothe V, Platzer K, Wieczorek D, Koch-Hogrebe M, Rahner N, Thuresson AC, Matsson H, Frykholm C, Bozdoğan ST, Bisgin A, Chatron N, Lesca G, Cabet S, Tümer Z, Hjortshøj TD, Rønde G, Marquardt T, Reunert J, Afzal E, Zamani M, Azizimalamiri R, Galehdari H, Nourbakhsh P, Chamanrou N, Chung SK, Suri M, Benke PJ, Zaki MS, Gleeson JG, Calame DG, Pehlivan D, Yilmaz HI, Gezdirici A, Rad A, Abumansour IS, Oprea G, Bereketoğlu MB, Banneau G, Julia S, Zeighami J, Ashoori S, Shariati G, Sedaghat A, Sabri A, Hamid M, Parvas S, Tajudin TA, Abdullah U, Baig SM, Chung WK, Glazunova OO, Sabine S, Cheema HA, Zifarelli G, Bauer P, Sidpra J, Mankad K, Vona B, Fry AE, Varshney GK, Houlden H, Fu D. Bi-allelic pathogenic variants in TRMT1 disrupt tRNA modification and induce a neurodevelopmental disorder. Am J Hum Genet 2025:S0002-9297(25)00136-3. [PMID: 40245862 DOI: 10.1016/j.ajhg.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/19/2025] Open
Abstract
The post-transcriptional modification of tRNAs plays a crucial role in tRNA structure and function. Pathogenic variants in tRNA-modification enzymes have been implicated in a wide range of human neurodevelopmental and neurological disorders. However, the molecular basis for many of these disorders remains unknown. Here, we describe a comprehensive cohort of 43 individuals from 31 unrelated families with bi-allelic variants in tRNA methyltransferase 1 (TRMT1). These individuals present with a neurodevelopmental disorder universally characterized by developmental delay and intellectual disability, accompanied by variable behavioral abnormalities, epilepsy, and facial dysmorphism. The identified variants include ultra-rare TRMT1 variants, comprising missense and predicted loss-of-function variants, which segregate with the observed clinical pathology. Our findings reveal that several variants lead to mis-splicing and a consequent loss of TRMT1 protein accumulation. Moreover, cells derived from individuals harboring TRMT1 variants exhibit a deficiency in tRNA modifications catalyzed by TRMT1. Molecular analysis reveals distinct regions of TRMT1 required for tRNA-modification activity and binding. Notably, depletion of Trmt1 protein in zebrafish is sufficient to induce developmental and behavioral phenotypes along with gene-expression changes associated with disrupted cell cycle, immune response, and neurodegenerative disorders. Altogether, these findings demonstrate that loss of TRMT1-catalyzed tRNA modifications leads to intellectual disability and provides insight into the molecular underpinnings of tRNA-modification deficiency caused by pathogenic TRMT1 variants.
Collapse
Affiliation(s)
- Stephanie Efthymiou
- Department of Neuromuscular disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Cailyn P Leo
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Chenghong Deng
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Reza Maroofian
- Department of Neuromuscular disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Renee Lin
- Department of Neuromuscular disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Irem Karagoz
- Department of Neuromuscular disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Kejia Zhang
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Annarita Scardamaglia
- Department of Neuromuscular disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Daniel Owrang
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | - Valentina Turchetti
- Department of Neuromuscular disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Friederike Jahnke
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Anna V Derrick
- Neurology Research Group, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Mark I Rees
- Neurology Research Group, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK; Faculty of Medicine & Health, Camperdown, University of Sydney, Sydney, NSW, Australia
| | - Javeria Raza Alvi
- Department of Pediatric Neurology, Institute of Child Health, Children's Hospital, Lahore 54590, Pakistan
| | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health, Children's Hospital, Lahore 54590, Pakistan
| | - Chumei Li
- McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Marie-Line Jacquemont
- Unité de Génétique Médicale et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU de la Réunion, Saint-Pierre, France
| | - Frederic Tran-Mau-Them
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France; INSERM UMR1231 GAD, F-21000 Dijon, France
| | - Maria Valenzuela-Palafoll
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital and Medicine Genetics Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Rich Sidlow
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Grace Yoon
- Hospital for Sick Children, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | | | | | - Mary O'Connor
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Julie Fleischer
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erica H Gerkes
- Department of Medical Genetics, University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Chanika Phornphutkul
- Division of Human Genetics, Department of Pediatrics, Warren Alpert Medical School of Brown University, Hasbro Children's Hospital, Providence, RI, USA
| | - Bertrand Isidor
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Nantes, France; INSERM, CNRS, UNIV Nantes, L'institut du Thorax, Nantes, France
| | | | - Christophe Philippe
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France; Laboratoire de Génétique, Hôpital Mercy, CHR Metz-Thionville, Metz, France
| | - Semra Hiz Kurul
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey; İzmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, İzmir, Turkey; İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| | - Didem Soydemir
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Bulent Kara
- Division of Pediatric Neurology, Department of Pediatrics, Kocaeli University, Kocaeli, Turkey
| | | | - Viktoria Bothe
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Margarete Koch-Hogrebe
- Vestische Kinder- und Jugendklinik Datteln, Abteilung für Neuropädiatrie, Datteln, Germany
| | - Nils Rahner
- MVZ Institute for Clinical Genetics and Tumor Genetics, Bonn, Germany
| | - Ann-Charlotte Thuresson
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Hans Matsson
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Carina Frykholm
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Sevcan Tuğ Bozdoğan
- VariantGen Genetic Diagnosis, Treatment, and Healthcare Center, Adana, Turkey
| | - Atil Bisgin
- Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Adana, Turkey; VariantGen Genetic Diagnosis, Treatment, and Healthcare Center, Adana, Turkey
| | - Nicolas Chatron
- Hospices Civils de Lyon, Service de Génétique, Centre Labélisé Anomalies du Développement CLAD Sud-Est, Lyon, France; Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Equipe Métabolisme énergétique et développement neuronal, CNRS UMR 5310, INSERM U1217, Université Lyon 1, Lyon, France
| | - Gaetan Lesca
- Hospices Civils de Lyon, Service de Génétique, Centre Labélisé Anomalies du Développement CLAD Sud-Est, Lyon, France; Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Equipe Métabolisme énergétique et développement neuronal, CNRS UMR 5310, INSERM U1217, Université Lyon 1, Lyon, France
| | - Sara Cabet
- Pediatric, Woman and Fetal Imaging Department, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, 69500 Bron, France; Institut NeuroMyoGène, CNRS UMR5292, INSERM U1028, Claude Bernard Lyon 1 University, 69000 Lyon, France
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina D Hjortshøj
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Gitte Rønde
- Department of Paediatrics and Adolescent Medicine, University Hospital Herlev, Herlev, Denmark
| | - Thorsten Marquardt
- Department of Paediatrics, Metabolic Diseases, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Janine Reunert
- Department of Paediatrics, Metabolic Diseases, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Erum Afzal
- Department of Developmental and Behavioral Pediatrics, Children's Hospital and Institute of Child Health, Multan, Punjab 60000, Pakistan
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Pardis Nourbakhsh
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Chamanrou
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Seo-Kyung Chung
- Neurology Research Group, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK; Brain & Mind Centre, Faculty of Medicine & Health, Camperdown, University of Sydney, Sydney, NSW, Australia; Kids Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Paul J Benke
- Department of Clinical Genetics, Joe DiMaggio Children's Hospital, Hollywood, FL 33021, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, Centre of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Joseph G Gleeson
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, CA, USA
| | - Daniel G Calame
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Davut Pehlivan
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Halil I Yilmaz
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | | | - Iman Sabri Abumansour
- Neurogenetic Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Pediatrics, International Medical Center, Jeddah, Saudi Arabia
| | | | | | | | - Sophie Julia
- Department of Clinical Genetics, CHU Toulouse, Toulouse, France
| | - Jawaher Zeighami
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Saeed Ashoori
- Department of Dermatology, School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran; Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sedaghat
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran; Health Research Institute, Diabetes Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alihossein Sabri
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran; Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hamid
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sahere Parvas
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Tajul Arifin Tajudin
- KPJ Puteri Specialist Hospital, Hospital Sultan Ismail Johor, Johor Bahru, Malaysia
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46301, Pakistan
| | - Shahid Mahmood Baig
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Olga O Glazunova
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Sigaudy Sabine
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Huma Arshad Cheema
- Department of Pediatric Gastroenterology, Hepatology and Genetic Diseases, Children's Hospital and University of Child Health Sciences, Lahore, Pakistan
| | | | - Peter Bauer
- CENTOGENE GmbH, Am Strande 7, 18055 Rostock, Germany
| | - Jai Sidpra
- Developmental Biology and Cancer Section, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Barbara Vona
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | - Andrew E Fry
- Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK; Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Henry Houlden
- Department of Neuromuscular disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
2
|
Zhang W, Westhof E. The Biology of tRNA t 6A Modification and Hypermodifications-Biogenesis and Disease Relevance. J Mol Biol 2025:169091. [PMID: 40155300 DOI: 10.1016/j.jmb.2025.169091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025]
Abstract
The structure and function of transfer RNAs (tRNAs) are highly dependent on post-transcriptional chemical modifications that attach distinct chemical groups to various nucleobase atoms at selected tRNA positions via enzymatic reactions. In all three domains of life, the greatest diversity of chemical modifications is concentrated at positions 34 and 37 of the tRNA anticodon loops. N6-threonylcarbamoyladenosine (t6A) is an essential and universal modification occurring at position 37 of tRNAs that decode codons beginning with an adenine. In a subset of tRNAs from specific organisms, t6A is converted into a variety of hypermodified forms, including cyclic N6-threonylcarbamoyladenosine (ct6A), hydroxy-N6-threonylcarbamoyladenosine (ht6A), N6-methyl-N6-threonylcarbamoyladenosine (m6t6A), 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A) and 2-methylthio-cyclic N6-threonylcarbamoyladenosine (ms2ct6A). The tRNAs carrying t6A or one of its hypermodified derivatives are dubbed as the t6A family. The t6A family modifications pre-organize the anticodon loop in a conformation that enhances binding to the cognate mRNA codons, thereby promoting translational fidelity. The dysfunctional installation of modifications in the tRNA t6A family leads to translation errors, compromises proteostasis and cell viability, interferes with the growth and development of higher eukaryotes and is implicated in several human diseases, such as neurological disorders, mitochondrial encephalomyopathies, type 2 diabetes and cancers. In addition, loss-of-function mutations in KEOPS complex-the tRNA t6A-modifying enzyme-are associated with shortened telomeres, defects in DNA damage response and transcriptional dysregulation in eukaryotes. The chemical structures, the molecular functions, the known cellular roles and the biosynthetic pathways of the t6A tRNA family are described by integrating and linking biochemical and structural data on these modifications to their biological functions.
Collapse
Affiliation(s)
- Wenhua Zhang
- School of Life Sciences, Lanzhou University, 730000 Lanzhou, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000 Lanzhou, China.
| | - Eric Westhof
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, 325000 Wenzhou, China; Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg 67084 Strasbourg, France
| |
Collapse
|
3
|
Stegemann F, Marcus E, Neupert S, Ostrowski S, Mathews DH, Phizicky EM. Schizosaccharomyces pombe pus1 mutants are temperature sensitive due to decay of tRNA Ile(UAU) by the 5'-3' exonuclease Dhp1, primarily targeting the unspliced pre-tRNA. RNA (NEW YORK, N.Y.) 2025; 31:566-584. [PMID: 39848696 PMCID: PMC11912914 DOI: 10.1261/rna.080315.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
The pseudouridylase Pus1 catalyzes pseudouridine (Ψ) formation at multiple uridine residues in tRNAs, and in some snRNAs and mRNAs. Although Pus1 is highly conserved, and mutations are associated with human disease, little is known about eukaryotic Pus1 biology. Here, we show that Schizosaccharomyces pombe pus1Δ mutants are temperature sensitive due to decay of tRNAIle(UAU), as tRNAIle(UAU) levels are reduced, and its overexpression suppresses the defect. We show that tRNAIle(UAU) is degraded by the 5'-3' exonuclease Dhp1 (ortholog of Saccharomyces cerevisiae Rat1), as each of four spontaneous pus1Δ suppressors had dhp1 mutations and restored tRNAIle(UAU) levels, and two suppressors that also restored tRNAIle(UAU) levels had mutations in tol1 (S. cerevisiae MET22 ortholog), predicted to inhibit Dhp1. We show that Pus1 modifies U27, U34, and U36 of tRNAIle(UAU), raising the question about how these modifications prevent decay. Our results suggest that Dhp1 targets unspliced pre-tRNAIle(UAU), as a pus1Δ strain in which the only copy of tRNAIle(UAU) has no intron [tI(UAU)-iΔ] is temperature resistant and undergoes no detectable decay, and the corresponding pus1Δ tI(UAU)-WT strain accumulates unspliced pre-tRNAIle(UAU) Moreover, the predicted exon-intron structure of pre-tRNAIle(UAU) differs from the canonical bulge-helix-loop structure compatible with tRNA splicing, and a pus1Δ tI(UAU)i-var strain with intron mutations predicted to improve exon-intron structure is temperature resistant and undergoes little decay. These results suggest that decay of tRNAIle(UAU) by Dhp1 in pus1Δ strains occurs at the level of unspliced pre-tRNAIle(UAU), implying a substantial role for one or more of the Ψ residues in stabilizing the pre-tRNA structure for splicing.
Collapse
Affiliation(s)
- Franziska Stegemann
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Erin Marcus
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Savanah Neupert
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Sarah Ostrowski
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - David H Mathews
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
4
|
Zhang K, Manning AC, Lentini JM, Howard J, Dalwigk F, Maroofian R, Efthymiou S, Chan P, Eliseev SI, Yang Z, Chang H, Karimiani EG, Bakhshoodeh B, Houlden H, Kaiser SM, Lowe TM, Fu D. Human TRMT1 and TRMT1L paralogs ensure the proper modification state, stability, and function of tRNAs. Cell Rep 2025; 44:115092. [PMID: 39786990 PMCID: PMC11831618 DOI: 10.1016/j.celrep.2024.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025] Open
Abstract
The tRNA methyltransferase 1 (TRMT1) enzyme catalyzes the N2,N2-dimethylguanosine (m2,2G) modification in tRNAs. Intriguingly, vertebrates encode an additional tRNA methyltransferase 1-like (TRMT1L) paralog. Here, we use a comprehensive tRNA sequencing approach to decipher targets of human TRMT1 and TRMT1L. We find that TRMT1 methylates all known tRNAs containing guanosine at position 26, while TRMT1L represents the elusive enzyme catalyzing m2,2G at position 27 in tyrosine tRNAs. Surprisingly, TRMT1L is also necessary for maintaining 3-(3-amino-3-carboxypropyl)uridine (acp3U) modifications in a subset of tRNAs through a process that can be uncoupled from methyltransferase activity. We also demonstrate that tyrosine and serine tRNAs are dependent upon m2,2G modifications for their stability and function in translation. Notably, human patient cells with disease-associated TRMT1 variants exhibit reduced levels of tyrosine and serine tRNAs. These findings uncover unexpected roles for TRMT1 paralogs, decipher functions for m2,2G modifications, and pinpoint tRNAs dysregulated in human disorders caused by tRNA modification deficiency.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Aidan C Manning
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Jonathan Howard
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Felix Dalwigk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, WC1N 3BG London, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, WC1N 3BG London, UK
| | - Patricia Chan
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Sergei I Eliseev
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Zi Yang
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Hayley Chang
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Ehsan Ghayoor Karimiani
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, WC1N 3BG London, UK
| | - Behnoosh Bakhshoodeh
- Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan Province 91778 99191, Iran
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, WC1N 3BG London, UK
| | - Stefanie M Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
5
|
Gonskikh Y, Tirrito C, Bommisetti P, Mendoza-Figueroa M, Stoute J, Kim J, Wang Q, Song Y, Liu K. Spatial regulation of NSUN2-mediated tRNA m5C installation in cognitive function. Nucleic Acids Res 2025; 53:gkae1169. [PMID: 39673800 PMCID: PMC11754655 DOI: 10.1093/nar/gkae1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024] Open
Abstract
Enzyme-mediated modifications of tRNA, such as 5-methylcytosine (m5C) installed by nuclear-enriched NOP2/Sun RNA methyltransferase 2 (NSUN2), play a critical role in neuronal development and function. However, our understanding of these modifications' spatial installation and biological functions remains incomplete. In this study, we demonstrate that a nucleoplasm-localized G679R NSUN2 mutant, linked to intellectual disability, diminishes NSUN2-mediated tRNA m5C in human cell lines and Drosophila. Our findings indicate that inability of G679R-NSUN2 to install m5C is primarily attributed to its reduced binding to tRNA rather than its nucleoplasmic localization. Conversely, an NSUN2 variant lacking an internal intrinsically disordered region (ΔIDR-NSUN2) can install ∼80% m5C within the nucleoplasm. Furthermore, we show that tRNA m5C levels are positively correlated to cognitive performance in Drosophila, where expressing G679R-NSUN2 leads to the most severe social behavioral deficits while expressing ΔIDR-NSUN2 results in less pronounced deficits. This work illuminates the molecular mechanism underlying G679R disease mutation in cognitive function and offers valuable insights into the significance of the cellular localization of m5C installation on tRNA for neuronal function.
Collapse
Affiliation(s)
- Yulia Gonskikh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christian Tirrito
- Biology Graduate Group, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Praneeth Bommisetti
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Saraí Mendoza-Figueroa
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julian Stoute
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua Kim
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Qin Wang
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuanquan Song
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Zhang K, Löhner K, Lemmink HH, Boon M, Lentini JM, de Silva N, Fu D. Epileptic encephalopathy linked to a DALRD3 missense variant that impairs tRNA modification. HGG ADVANCES 2025; 6:100377. [PMID: 39482881 PMCID: PMC11615593 DOI: 10.1016/j.xhgg.2024.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024] Open
Abstract
Epileptic encephalopathies are severe epilepsy syndromes characterized by early onset and progressive cerebral dysfunction. A nonsense variant in the DALR anticodon binding domain containing 3 (DALRD3) gene has been implicated in epileptic encephalopathy, but no other disease-associated variants in DALRD3 have been described. In human cells, the DALRD3 protein forms a complex with the METTL2 methyltransferase to generate the 3-methylcytosine (m3C) modification in specific arginine tRNAs. Here, we identify an individual with a homozygous missense variant in DALRD3 who displays developmental delay, cognitive deficiencies, and multifocal epilepsy. The missense variant substitutes an arginine residue to cysteine (R517C) within the DALR domain of the DALRD3 protein that is required for binding tRNAs. Cells derived from the individual homozygous for the DALRD3-R517C variant exhibit reduced levels of m3C modification in arginine tRNAs, indicating that the R517C variant impairs DALRD3 function. Notably, the DALRD3-R517C protein displays reduced association with METTL2 and loss of interaction with substrate tRNAs. Our results uncover another loss-of-function variant in DALRD3 linked to epileptic encephalopathy disorders. Importantly, these findings underscore DALRD3-dependent tRNA modification as a key contributor to proper brain development and function.
Collapse
Affiliation(s)
- Kejia Zhang
- Center for RNA Biology, Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Katharina Löhner
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Henny H Lemmink
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maartje Boon
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jenna M Lentini
- Center for RNA Biology, Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Naduni de Silva
- Center for RNA Biology, Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Dragony Fu
- Center for RNA Biology, Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
7
|
Madhwani KR, Sayied S, Ogata CH, Hogan CA, Lentini JM, Mallik M, Dumouchel JL, Storkebaum E, Fu D, O’Connor-Giles KM. tRNA modification enzyme-dependent redox homeostasis regulates synapse formation and memory. Proc Natl Acad Sci U S A 2024; 121:e2317864121. [PMID: 39495910 PMCID: PMC11572970 DOI: 10.1073/pnas.2317864121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 11/06/2024] Open
Abstract
Post-transcriptional modification of RNA regulates gene expression at multiple levels. ALKBH8 is a tRNA-modifying enzyme that methylates wobble uridines in a subset of tRNAs to modulate translation. Through methylation of tRNA-selenocysteine, ALKBH8 promotes selenoprotein synthesis and regulates redox homeostasis. Pathogenic variants in ALKBH8 have been linked to intellectual disability disorders in the human population, but the role of ALKBH8 in the nervous system is unknown. Through in vivo studies in Drosophila, we show that ALKBH8 controls oxidative stress in the brain to restrain synaptic growth and support learning and memory. ALKBH8 null animals lack wobble uridine methylation and exhibit reduced protein synthesis in the nervous system, including a specific decrease in selenoprotein levels. Either loss of ALKBH8 or independent disruption of selenoprotein synthesis results in ectopic synapse formation. Genetic expression of antioxidant enzymes fully suppresses synaptic overgrowth in ALKBH8 null animals, confirming oxidative stress as the underlying cause of dysregulation. ALKBH8 null animals also exhibit associative memory impairments that are reversed by pharmacological antioxidant treatment. Together, these findings demonstrate the critical role of tRNA wobble uridine modification in redox homeostasis in the developing nervous system and reveal antioxidants as a potential therapy for ALKBH8-associated intellectual disability.
Collapse
Affiliation(s)
| | - Shanzeh Sayied
- Department of Neuroscience, Brown University, Providence, RI02912
| | | | - Caley A. Hogan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI53706
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY14627
| | - Moushami Mallik
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen6525 AJ, The Netherlands
| | | | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen6525 AJ, The Netherlands
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY14627
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI02912
- Carney Institute for Brain Sciences, Brown University, Providence, RI02912
| |
Collapse
|
8
|
Diener C, Thüre K, Engel A, Hart M, Keller A, Meese E, Fischer U. Paving the way to a neural fate - RNA signatures in naive and trans-differentiating mesenchymal stem cells. Eur J Cell Biol 2024; 103:151458. [PMID: 39341198 DOI: 10.1016/j.ejcb.2024.151458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Mesenchymal Stem Cells (MSCs) derived from the embryonic mesoderm persist as a viable source of multipotent cells in adults and have a crucial role in tissue repair. One of the most promising aspects of MSCs is their ability to trans-differentiate into cell types outside of the mesodermal lineage, such as neurons. This characteristic positions MSCs as potential therapeutic tools for neurological disorders. However, the definition of a clear MSC signature is an ongoing topic of debate. Likewise, there is still a significant knowledge gap about functional alterations of MSCs during their transition to a neural fate. In this study, our focus is on the dynamic expression of RNA in MSCs as they undergo trans-differentiation compared to undifferentiated MSCs. To track and correlate changes in cellular signaling, we conducted high-throughput RNA expression profiling during the early time-course of human MSC neurogenic trans-differentiation. The expression of synapse maturation markers, including NLGN2 and NPTX1, increased during the first 24 h. The expression of neuron differentiation markers, such as GAP43 strongly increased during 48 h of trans-differentiation. Neural stem cell marker NES and neuron differentiation marker, including TUBB3 and ENO1, were highly expressed in mesenchymal stem cells and remained so during trans-differentiation. Pathways analyses revealed early changes in MSCs signaling that can be linked to the acquisition of neuronal features. Furthermore, we identified microRNAs (miRNAs) as potential drivers of the cellular trans-differentiation process. We also determined potential risk factors related to the neural trans-differentiation process. These factors include the persistence of stemness features and the expression of factors involved in neurofunctional abnormalities and tumorigenic processes. In conclusion, our findings contribute valuable insights into the intricate landscape of MSCs during neural trans-differentiation. These insights can pave the way for the development of safer treatments of neurological disorders.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Konstantin Thüre
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Annika Engel
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Martin Hart
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Ulrike Fischer
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany.
| |
Collapse
|
9
|
Hayashi S. Variation of tRNA modifications with and without intron dependency. Front Genet 2024; 15:1460902. [PMID: 39296543 PMCID: PMC11408192 DOI: 10.3389/fgene.2024.1460902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
tRNAs have recently gained attention for their novel regulatory roles in translation and for their diverse functions beyond translation. One of the most remarkable aspects of tRNA biogenesis is the incorporation of various chemical modifications, ranging from simple base or ribose methylation to more complex hypermodifications such as formation of queuosine and wybutosine. Some tRNAs are transcribed as intron-containing pre-tRNAs. While the majority of these modifications occur independently of introns, some are catalyzed in an intron-inhibitory manner, and in certain cases, they occur in an intron-dependent manner. This review focuses on pre-tRNA modification, including intron-containing pre-tRNA, in both intron-inhibitory and intron-dependent fashions. Any perturbations in the modification and processing of tRNAs may lead to a range of diseases and disorders, highlighting the importance of understanding these mechanisms in molecular biology and medicine.
Collapse
Affiliation(s)
- Sachiko Hayashi
- Graduate School of Science, University of Hyogo, Ako-gun, Japan
| |
Collapse
|
10
|
Guo W, Russo S, Tuorto F. Lost in translation: How neurons cope with tRNA decoding. Bioessays 2024; 46:e2400107. [PMID: 38990077 DOI: 10.1002/bies.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Post-transcriptional tRNA modifications contribute to the decoding efficiency of tRNAs by supporting codon recognition and tRNA stability. Recent work shows that the molecular and cellular functions of tRNA modifications and tRNA-modifying-enzymes are linked to brain development and neurological disorders. Lack of these modifications affects codon recognition and decoding rate, promoting protein aggregation and translational stress response pathways with toxic consequences to the cell. In this review, we discuss the peculiarity of local translation in neurons, suggesting a role for fine-tuning of translation performed by tRNA modifications. We provide several examples of tRNA modifications involved in physiology and pathology of the nervous system, highlighting their effects on protein translation and discussing underlying mechanisms, like the unfolded protein response (UPR), ribosome quality control (RQC), and no-go mRNA decay (NGD), which could affect neuronal functions. We aim to deepen the understanding of the roles of tRNA modifications and the coordination of these modifications with the protein translation machinery in the nervous system.
Collapse
Affiliation(s)
- Wei Guo
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Stefano Russo
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
11
|
Huang L, Bai D, Su X. Altered expression of transfer RNAs and their possible roles in brain white matter injury. Neuroreport 2024; 35:536-541. [PMID: 38597261 DOI: 10.1097/wnr.0000000000002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Transfer RNAs (tRNAs) can regulate cell behavior and are associated with neurological disorders. Here, we aimed to investigate the expression levels of tRNAs in oligodendrocyte precursor cells (OPCs) and their possible roles in the regulation of brain white matter injury (WMI). Newborn Sprague-Dawley rats (postnatal day 5) were used to establish a model that mimicked neonatal brain WMI. RNA-array analysis was performed to examine the expression of tRNAs in OPCs. psRNAtarget software was used to predict target mRNAs of significantly altered tRNAs. Gene ontology (GO) and KEGG were used to analyze the pathways for target mRNAs. Eighty-nine tRNAs were changed after WMI (fold change absolute ≥1.5, P < 0.01), with 31 downregulated and 58 upregulated. Among them, three significantly changed tRNAs were identified, with two being significantly increased (chr10.trna1314-ProTGG and chr2.trna2771-ProAGG) and one significantly decreased (chr10.trna11264-GlyTCC). Further, target mRNA prediction and GO/KEGG pathway analysis indicated that the target mRNAs of these tRNAs are mainly involved in G-protein coupled receptor signaling pathways and beta-alanine metabolism, which are both related to myelin formation. In summary, the expression of tRNAs in OPCs was significantly altered after brain WMI, suggesting that tRNAs may play important roles in regulating WMI. This improves the knowledge about WMI pathophysiology and may provide novel treatment targets for WMI.
Collapse
Affiliation(s)
- Lingyi Huang
- Department of Orthodontics, West China College of Stomatology/State Key Laboratory of Oral Diseases, Sichuan University
| | - Ding Bai
- Department of Orthodontics, West China College of Stomatology/State Key Laboratory of Oral Diseases, Sichuan University
| | - Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Ohira T, Suzuki T. Transfer RNA modifications and cellular thermotolerance. Mol Cell 2024; 84:94-106. [PMID: 38181765 DOI: 10.1016/j.molcel.2023.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/07/2024]
Abstract
RNA molecules are modified post-transcriptionally to acquire their diverse functions. Transfer RNA (tRNA) has the widest variety and largest numbers of RNA modifications. tRNA modifications are pivotal for decoding the genetic code and stabilizing the tertiary structure of tRNA molecules. Alternation of tRNA modifications directly modulates the structure and function of tRNAs and regulates gene expression. Notably, thermophilic organisms exhibit characteristic tRNA modifications that are dynamically regulated in response to varying growth temperatures, thereby bolstering fitness in extreme environments. Here, we review the history and latest findings regarding the functions and biogenesis of several tRNA modifications that contribute to the cellular thermotolerance of thermophiles.
Collapse
Affiliation(s)
- Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
13
|
Bowles IE, Jackman JE. Diversity in Biological Function and Mechanism of the tRNA Methyltransferase Trm10. Acc Chem Res 2023; 56:3595-3603. [PMID: 38048440 PMCID: PMC11210281 DOI: 10.1021/acs.accounts.3c00533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Transfer ribonucleic acid (tRNA) is the most highly modified RNA species in the cell, and loss of tRNA modifications can lead to growth defects in yeast as well as metabolic, neurological, and mitochondrial disorders in humans. Significant progress has been made toward identifying the enzymes that are responsible for installing diverse modifications in tRNA, revealing a landscape of fascinating biological and mechanistic diversity that remains to be fully explored. Most early discoveries of tRNA modification enzymes were in model systems, where many enzymes were not strictly required for viability, an observation somewhat at odds with the extreme conservation of many of the same enzymes throughout multiple domains of life. Moreover, many tRNA modification enzymes act on more than one type of tRNA substrate, which is not necessarily surprising given the similar overall secondary and tertiary structures of tRNA, yet biochemical characterization has revealed interesting patterns of substrate specificity that can be challenging to rationalize on a molecular level. Questions about how many enzymes efficiently select a precise set of target tRNAs from among a structurally similar pool of molecules persist.The tRNA methyltransferase Trm10 provides an exciting paradigm to study the biological and mechanistic questions surrounding tRNA modifications. Even though the enzyme was originally characterized in Saccharomyces cerevisiae where its deletion causes no detectable phenotype under standard lab conditions, several more recently identified phenotypes provide insight into the requirement for this modification in the overall quality control of the tRNA pool. Studies of Trm10 in yeast also revealed another characteristic feature that has turned out to be a conserved feature of enzymes throughout the Trm10 family tree. We were initially surprised to see that purified S. cerevisiae Trm10 was capable of modifying tRNA substrates that were not detectably modified by the enzyme in vivo in yeast. This pattern has continued to emerge as we and others have studied Trm10 orthologs from Archaea and Eukarya, with enzymes exhibiting in vitro substrate specificities that can differ significantly from in vivo patterns of modification. While this feature complicates efforts to predict substrate specificities of Trm10 enzymes in the absence of appropriate genetic systems, it also provides an exciting opportunity for studying how enzyme activities can be regulated to achieve dynamic patterns of biological tRNA modification, which have been shown to be increasingly important for stress responses and human disease. Finally, the intriguing diversity in target nucleotide modification that has been revealed among Trm10 orthologs is distinctive among known tRNA modifying enzymes and necessitates unusual and likely novel catalytic strategies for methylation that are being revealed by biochemical and structural studies directed toward various family members. These efforts will no doubt yield more surprising discoveries in terms of tRNA modification enzymology.
Collapse
Affiliation(s)
- Isobel E. Bowles
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Jane E. Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
14
|
Madhwani KR, Sayied S, Ogata CH, Hogan CA, Lentini JM, Mallik M, Dumouchel JL, Storkebaum E, Fu D, O’Connor-Giles KM. tRNA modification enzyme-dependent redox homeostasis regulates synapse formation and memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566895. [PMID: 38014328 PMCID: PMC10680711 DOI: 10.1101/2023.11.14.566895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Post-transcriptional modification of RNA regulates gene expression at multiple levels. ALKBH8 is a tRNA modifying enzyme that methylates wobble uridines in specific tRNAs to modulate translation. Through methylation of tRNA-selenocysteine, ALKBH8 promotes selenoprotein synthesis and regulates redox homeostasis. Pathogenic variants in ALKBH8 have been linked to intellectual disability disorders in the human population, but the role of ALKBH8 in the nervous system is unknown. Through in vivo studies in Drosophila, we show that ALKBH8 controls oxidative stress in the brain to restrain synaptic growth and support learning and memory. ALKBH8 null animals lack wobble uridine methylation and exhibit a global reduction in protein synthesis, including a specific decrease in selenoprotein levels. Loss of ALKBH8 or independent disruption of selenoprotein synthesis results in ectopic synapse formation. Genetic expression of antioxidant enzymes fully suppresses synaptic overgrowth in ALKBH8 null animals, confirming oxidative stress as the underlying cause of dysregulation. ALKBH8 animals also exhibit associative learning and memory impairments that are reversed by pharmacological antioxidant treatment. Together, these findings demonstrate the critical role of tRNA modification in redox homeostasis in the nervous system and reveal antioxidants as a potential therapy for ALKBH8-associated intellectual disability.
Collapse
Affiliation(s)
| | - Shanzeh Sayied
- Department of Neuroscience, Brown University, Providence, RI, USA
| | | | - Caley A. Hogan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Moushami Mallik
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
| | | | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
15
|
Zhang C, Li X, Zhao L, Guo W, Deng W, Wang Q, Hu X, Du X, Sham PC, Luo X, Li T. Brain transcriptome-wide association study implicates novel risk genes underlying schizophrenia risk. Psychol Med 2023; 53:6867-6877. [PMID: 37092861 DOI: 10.1017/s0033291723000417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND To identify risk genes whose expression are regulated by the reported risk variants and to explore the potential regulatory mechanism in schizophrenia (SCZ). METHODS We systematically integrated three independent brain expression quantitative traits (eQTLs) (CommonMind, GTEx, and BrainSeq Phase 2, a total of 1039 individuals) and GWAS data (56 418 cases and 78 818 controls), with the use of transcriptome-wide association study (TWAS). Diffusion magnetic resonance imaging was utilized to quantify the integrity of white matter bundles and determine whether polygenic risk of novel genes linked to brain structure was present in patients with first-episode antipsychotic SCZ. RESULTS TWAS showed that eight risk genes (CORO7, DDAH2, DDHD2, ELAC2, GLT8D1, PCDHA8, THOC7, and TYW5) reached transcriptome-wide significance (TWS) level. These findings were confirmed by an independent integrative approach (i.e. Sherlock). We further conducted conditional analyses and identified the potential risk genes that driven the TWAS association signal in each locus. Gene expression analysis showed that several TWS genes (including CORO7, DDAH2, DDHD2, ELAC2, GLT8D1, THOC7 and TYW5) were dysregulated in the dorsolateral prefrontal cortex of SCZ cases compared with controls. TWS genes were mainly expressed on the surface of glutamatergic neurons, GABAergic neurons, and microglia. Finally, SCZ cases had a substantially greater TWS genes-based polygenic risk (PRS) compared to controls, and we showed that fractional anisotropy of the cingulum-hippocampus mediates the influence of TWS genes PRS on SCZ. CONCLUSIONS Our findings identified novel SCZ risk genes and highlighted the importance of the TWS genes in frontal-limbic dysfunctions in SCZ, indicating possible therapeutic targets.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wanjun Guo
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xun Hu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangdong Du
- Suzhou Psychiatric Hospital, Soochow University's Affiliated Guangji Hospital, Suzhou, Jiangsu, China
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xiongjian Luo
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| |
Collapse
|
16
|
Wang C, Ulryck N, Herzel L, Pythoud N, Kleiber N, Guérineau V, Jactel V, Moritz C, Bohnsack M, Carapito C, Touboul D, Bohnsack K, Graille M. N 2-methylguanosine modifications on human tRNAs and snRNA U6 are important for cell proliferation, protein translation and pre-mRNA splicing. Nucleic Acids Res 2023; 51:7496-7519. [PMID: 37283053 PMCID: PMC10415138 DOI: 10.1093/nar/gkad487] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Modified nucleotides in non-coding RNAs, such as tRNAs and snRNAs, represent an important layer of gene expression regulation through their ability to fine-tune mRNA maturation and translation. Dysregulation of such modifications and the enzymes installing them have been linked to various human pathologies including neurodevelopmental disorders and cancers. Several methyltransferases (MTases) are regulated allosterically by human TRMT112 (Trm112 in Saccharomyces cerevisiae), but the interactome of this regulator and targets of its interacting MTases remain incompletely characterized. Here, we have investigated the interaction network of human TRMT112 in intact cells and identify three poorly characterized putative MTases (TRMT11, THUMPD3 and THUMPD2) as direct partners. We demonstrate that these three proteins are active N2-methylguanosine (m2G) MTases and that TRMT11 and THUMPD3 methylate positions 10 and 6 of tRNAs, respectively. For THUMPD2, we discovered that it directly associates with the U6 snRNA, a core component of the catalytic spliceosome, and is required for the formation of m2G, the last 'orphan' modification in U6 snRNA. Furthermore, our data reveal the combined importance of TRMT11 and THUMPD3 for optimal protein synthesis and cell proliferation as well as a role for THUMPD2 in fine-tuning pre-mRNA splicing.
Collapse
Affiliation(s)
- Can Wang
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Nathalie Ulryck
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Lydia Herzel
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Nicolas Pythoud
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI, FR2048 Strasbourg, France
| | - Nicole Kleiber
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Vincent Jactel
- Laboratoire de Synthèse Organique (LSO), CNRS, École polytechnique, ENSTA, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Chloé Moritz
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI, FR2048 Strasbourg, France
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI, FR2048 Strasbourg, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
17
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
18
|
Chen AY, Owens MC, Liu KF. Coordination of RNA modifications in the brain and beyond. Mol Psychiatry 2023; 28:2737-2749. [PMID: 37138184 PMCID: PMC11758487 DOI: 10.1038/s41380-023-02083-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Gene expression regulation is a critical process throughout the body, especially in the nervous system. One mechanism by which biological systems regulate gene expression is via enzyme-mediated RNA modifications, also known as epitranscriptomic regulation. RNA modifications, which have been found on nearly all RNA species across all domains of life, are chemically diverse covalent modifications of RNA nucleotides and represent a robust and rapid mechanism for the regulation of gene expression. Although numerous studies have been conducted regarding the impact that single modifications in single RNA molecules have on gene expression, emerging evidence highlights potential crosstalk between and coordination of modifications across RNA species. These potential coordination axes of RNA modifications have emerged as a new direction in the field of epitranscriptomic research. In this review, we will highlight several examples of gene regulation via RNA modification in the nervous system, followed by a summary of the current state of the field of RNA modification coordination axes. In doing so, we aim to inspire the field to gain a deeper understanding of the roles of RNA modifications and coordination of these modifications in the nervous system.
Collapse
Affiliation(s)
- Anthony Yulin Chen
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, 19081, USA
| | - Michael C Owens
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Chillar K, Eriyagama AMDN, Yin Y, Shahsavari S, Halami B, Apostle A, Fang S. Oligonucleotide synthesis under mild deprotection conditions. NEW J CHEM 2023; 47:8714-8722. [PMID: 37915883 PMCID: PMC10617641 DOI: 10.1039/d2nj03845e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Over a hundred non-canonical nucleotides have been found in DNA and RNA. Many of them are sensitive toward nucleophiles. Because known oligonucleotide synthesis technologies require nucleophilic conditions for deprotection, currently there is no suitable technology for their synthesis. The recently disclosed method regarding the use of 1,3-dithian-2-yl-methyl (Dim) for phosphate protection and 1,3-dithian-2-yl-methoxycarbonyl (Dmoc) for amino protection can solve the problem. With Dim-Dmoc protection, oligodeoxynucleotide (ODN) deprotection can be achieved with NaIO4 followed by aniline. Some sensitive groups have been determined to be stable under these conditions. Besides serving as a base, aniline also serves as a nucleophilic scavenger, which prevents deprotection side products from reacting with ODN. For this reason, excess aniline is needed. Here, we report the use of alkyl Dim (aDim) and alkyl Dmoc (aDmoc) for ODN synthesis. With aDim-aDmoc protection, deprotection is achieved with NaIO4 followed by K2CO3. No nucleophilic scavenger such as aniline is needed. Over 10 ODNs including one containing the highly sensitive N4-acetylcytidine were synthesized. Work on extending the method for sensitive RNA synthesis is in progress.
Collapse
Affiliation(s)
- Komal Chillar
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Adikari M D N Eriyagama
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Yipeng Yin
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Shahien Shahsavari
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Bhaskar Halami
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Alexander Apostle
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Shiyue Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
20
|
Boyer O, Mollet G, Dorval G. [Neurological disorders and hereditary podocytopathies: Some fascinating pathophysiological overlaps]. Med Sci (Paris) 2023; 39:246-252. [PMID: 36943121 DOI: 10.1051/medsci/2023029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Genetic studies of hereditary steroid resistant nephrotic syndrome (SRNS) have identified more than 60 genes involved in the development of single-gene, isolated or syndromic forms of hereditary podocytoapthies. Sometimes, syndromic SRNS is associated with neurological disorders. Over the past decades, various studies have established links between the podocyte, an epithelial glomerular cell involved in the renal filtration barrier, and neuronal cells, both morphologically (slit diaphragm and synapse) and functionally (signaling platforms). Variants of genes encoding proteins expressed in different compartments of the podocyte and neurons are responsible for phenotypes associating renal lesions with proteinuria to central and/or peripheral neurological disorders. In this review, we aim to focus on genetic syndromes associating proteinuria and neurological disease and to present the latest advances in the description of these neuro-renal disorders.
Collapse
Affiliation(s)
- Olivia Boyer
- Service de néphrologie pédiatrique, AP-HP, Centre de référence de maladies rénales rares de l'enfant et de l'adulte (MARHEA), hôpital Necker - Enfants Malades, Paris, France - Université Paris Cité, institut Imagine, laboratoire des maladies rénales héréditaires, Inserm UMR1163, Paris, France
| | - Géraldine Mollet
- Université Paris Cité, institut Imagine, laboratoire des maladies rénales héréditaires, Inserm UMR1163, Paris, France
| | - Guillaume Dorval
- Université Paris Cité, institut Imagine, laboratoire des maladies rénales héréditaires, Inserm UMR1163, Paris, France - Service de génétique moléculaire, AP-HP, hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
21
|
Patel A, Clark KD. Characterizing RNA modifications in the central nervous system and single cells by RNA sequencing and liquid chromatography-tandem mass spectrometry techniques. Anal Bioanal Chem 2023:10.1007/s00216-023-04604-y. [PMID: 36840809 DOI: 10.1007/s00216-023-04604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023]
Abstract
Post-transcriptional modifications to RNA constitute a newly appreciated layer of translation regulation in the central nervous system (CNS). The identity, stoichiometric quantity, and sequence position of these unusual epitranscriptomic marks are central to their function, making analytical methods that are capable of accurate and reproducible measurements paramount to the characterization of the neuro-epitranscriptome. RNA sequencing-based methods and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques have been leveraged to provide an early glimpse of the landscape of RNA modifications in bulk CNS tissues. However, recent advances in sample preparation, separations, and detection methods have revealed that individual cells display remarkable heterogeneity in their RNA modification profiles, raising questions about the prevalence and function of cell-specific distributions of post-transcriptionally modified nucleosides in the brain. In this Trends article, we present an overview of RNA sequencing and LC-MS/MS methodologies for the analysis of RNA modifications in the CNS with special emphasis on recent advancements in techniques that facilitate single-cell and subcellular detection.
Collapse
Affiliation(s)
- Arya Patel
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA
| | - Kevin D Clark
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
22
|
Longan ER, Ramos J, Fu D. ADATscan - A flexible tool for scanning exomes for wobble inosine-dependent codons reveals a neurological bias for genes enriched in such codons in humans and mice. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000675. [PMID: 36733466 PMCID: PMC9887483 DOI: 10.17912/micropub.biology.000675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
The conversion of adenosine to inosine at the wobble position of select tRNAs is essential for decoding specific codons in bacteria and eukarya. In eukarya, wobble inosine modification is catalyzed by the heterodimeric ADAT complex containing ADAT2 and ADAT3. Human individuals homozygous for loss of function variants in ADAT3 exhibit intellectual disability disorders. We created a flexible computational tool to scan the human, mouse, nematode, fruit fly, and yeast exomes for genes either enriched or depleted in ADAT-dependent codons as compared to background models of codon bias derived from the exomes themselves. We find that many genes are enriched or depleted for ADAT-dependent codons as compared to the genomic background in all five species. Among those genes enriched for ADAT-dependent codons in humans, we find there is significant Gene Ontology (GO) enrichment for genes involved in diverse neurological processes. This pattern persists in the mouse exome but not the fruit fly or nematode exome. In the nematode exome, genes enriched in ADAT-dependent codons are GO enriched for translation associated genes, and in yeast there is GO enrichment for genes involved in metabolic functions. There is also GO-term overlap between yeast and fruit flies. Importantly, in its generalized form, ADATscan can also be used to scan any exome for genes enriched in any subset of codons specified by the user.
Collapse
Affiliation(s)
- Emery R. Longan
- University of Rochester, Department of Biology, Rochester, NY 14620
| | - Jillian Ramos
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045
| | - Dragony Fu
- University of Rochester, Department of Biology, Rochester, NY 14620
| |
Collapse
|
23
|
Herrera-Rivero M, Hofer E, Maceski A, Leppert D, Benkert P, Kuhle J, Schmidt R, Khalil M, Wiendl H, Stoll M, Berger K. Evidence of polygenic regulation of the physiological presence of neurofilament light chain in human serum. Front Neurol 2023; 14:1145737. [PMID: 36970523 PMCID: PMC10030935 DOI: 10.3389/fneur.2023.1145737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction The measurement of neurofilament light chain (NfL) in blood is a promising biomarker of neurological injury and disease. We investigated the genetic factors that underlie serum NfL levels (sNfL) of individuals without neurological conditions. Methods We performed a discovery genome-wide association study (GWAS) of sNfL in participants of the German BiDirect Study (N = 1,899). A secondary GWAS for meta-analysis was performed in a small Austrian cohort (N = 287). Results from the meta-analysis were investigated in relation with several clinical variables in BiDirect. Results Our discovery GWAS identified 12 genomic loci at the suggestive threshold ((p < 1 × 10-5). After meta-analysis, 7 loci were suggestive of an association with sNfL. Genotype-specific differences in sNfL were observed for the lead variants of meta-analysis loci (rs34523114, rs114956339, rs529938, rs73198093, rs34372929, rs10982883, and rs1842909) in BiDirect participants. We identified potential associations in meta-analysis loci with markers of inflammation and renal function. At least 6 protein-coding genes (ACTG2, TPRKB, DMXL1, COL23A1, NAT1, and RIMS2) were suggested as genetic factors contributing to baseline sNfL levels. Discussion Our findings suggest that polygenic regulation of neuronal processes, inflammation, metabolism and clearance modulate the variability of NfL in the circulation. These could aid in the interpretation of sNfL measurements in a personalized manner.
Collapse
Affiliation(s)
- Marisol Herrera-Rivero
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
- *Correspondence: Marisol Herrera-Rivero
| | - Edith Hofer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Aleksandra Maceski
- Neurologic Clinic and Polyclinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Polyclinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel, Basel, Switzerland
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Polyclinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel, Basel, Switzerland
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
- Department of Biochemistry, Genetic Epidemiology and Statistical Genetics, Maastricht University, Maastricht, Netherlands
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| |
Collapse
|
24
|
Dai F, Tang T, Lu R, Li P, Feng D, Hu M, Wang Y, Gan P. Systematic Analysis of tRNA-Derived Small RNAs Reveals the Effects of Xuefu-Zhuyu Decoction on the Hippocampi of Rats after Traumatic Brain Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5748719. [PMID: 36164400 PMCID: PMC9509243 DOI: 10.1155/2022/5748719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/14/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022]
Abstract
Background Traumatic brain injury (TBI) is one of the most common neurosurgical diseases and refers to brain function impairment or brain pathological changes induced by external causes. A traditional Chinese medicine, Xuefu-Zhuyu Decoction (XFZYD), has been indicated to harbor therapeutic properties against TBI. Transfer RNA (tRNA)-derived small RNAs, that is, tsRNAs (a group of small RNAs derived from tRNAs), are multifunctional regulatory noncoding RNAs generated under pressure and implicated in the progression of TBI. Methods A TBI model was successfully constructed using rats. We further performed sequencing and omics analyses to identify novel tsRNAs as drug targets for XFZYD therapy against TBI in the rat hippocampus. qPCR assays were used to further verify the experimental results. Gene Ontology (GO) was used to analyze the signaling pathways of downstream target genes of tsRNAs in the XFZYD-regulated TBI model. qPCR was used to detect the influence of overexpressed tsRNA mimics/inhibitors on their target genes in PC12 cells. Results Our RNA-Seq data illustrate that 11 tsRNAs were mediated by XFZYD. The experimental data revealed AS-tDR-002004 and AS-tDR-002583 as potential targets for XFZYD therapy and showed that they influenced TBI via the cadherin signaling pathway, cocaine addiction, circadian entrainment, and the nicotine pharmacodynamics pathway. We also confirmed that Pi4kb, Mlh3, Pcdh9, and Ppp1cb were target genes of 2 XFZYD-regulated tsRNAs in the hippocampus of a rat model and PC12 cells. Furthermore, biological function analysis revealed the potential therapeutic effects of tsRNAs, and the results showed that Mapk1 and Gnai1 were related genes for XFZYD therapy against TBI. Conclusion Our work successfully illuminates the efficiency of XFZYD in the treatment of TBI. The experimental data revealed AS-tDR-002004 and AS-tDR-002583 as potential targets for XFZYD therapy and showed that they influenced TBI via the cadherin signaling pathway, cocaine addiction, circadian entrainment, and the nicotine pharmacodynamics pathway in a TBI rat model.
Collapse
Affiliation(s)
- Feng Dai
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
- Department of Emergency, Xiangya Hospital of Central South University, 410008 Changsha, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Ruohuang Lu
- Department of Stomatology, The Third Xiangya Hospital, Central South University, 410013 Changsha, China
| | - Pengfei Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Dandan Feng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Mingrui Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Pingping Gan
- Department of Oncology, Xiangya Hospital, Central South University, 410008 Changsha, China
| |
Collapse
|
25
|
Mutual regulation of noncoding RNAs and RNA modifications in psychopathology: Potential therapeutic targets for psychiatric disorders? Pharmacol Ther 2022; 237:108254. [DOI: 10.1016/j.pharmthera.2022.108254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022]
|
26
|
Tasak M, Phizicky EM. Initiator tRNA lacking 1-methyladenosine is targeted by the rapid tRNA decay pathway in evolutionarily distant yeast species. PLoS Genet 2022; 18:e1010215. [PMID: 35901126 PMCID: PMC9362929 DOI: 10.1371/journal.pgen.1010215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/09/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
All tRNAs have numerous modifications, lack of which often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of tRNA body modifications can lead to impaired tRNA stability and decay of a subset of the hypomodified tRNAs. Mutants lacking 7-methylguanosine at G46 (m7G46), N2,N2-dimethylguanosine (m2,2G26), or 4-acetylcytidine (ac4C12), in combination with other body modification mutants, target certain mature hypomodified tRNAs to the rapid tRNA decay (RTD) pathway, catalyzed by 5’-3’ exonucleases Xrn1 and Rat1, and regulated by Met22. The RTD pathway is conserved in the phylogenetically distant fission yeast Schizosaccharomyces pombe for mutants lacking m7G46. In contrast, S. cerevisiae trm6/gcd10 mutants with reduced 1-methyladenosine (m1A58) specifically target pre-tRNAiMet(CAU) to the nuclear surveillance pathway for 3’-5’ exonucleolytic decay by the TRAMP complex and nuclear exosome. We show here that the RTD pathway has an unexpected major role in the biology of m1A58 and tRNAiMet(CAU) in both S. pombe and S. cerevisiae. We find that S. pombe trm6Δ mutants lacking m1A58 are temperature sensitive due to decay of tRNAiMet(CAU) by the RTD pathway. Thus, trm6Δ mutants had reduced levels of tRNAiMet(CAU) and not of eight other tested tRNAs, overexpression of tRNAiMet(CAU) restored growth, and spontaneous suppressors that restored tRNAiMet(CAU) levels had mutations in dhp1/RAT1 or tol1/MET22. In addition, deletion of cid14/TRF4 in the nuclear surveillance pathway did not restore growth. Furthermore, re-examination of S. cerevisiae trm6 mutants revealed a major role of the RTD pathway in maintaining tRNAiMet(CAU) levels, in addition to the known role of the nuclear surveillance pathway. These findings provide evidence for the importance of m1A58 in the biology of tRNAiMet(CAU) throughout eukaryotes, and fuel speculation that the RTD pathway has a major role in quality control of body modification mutants throughout fungi and other eukaryotes.
Collapse
Affiliation(s)
- Monika Tasak
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
Zhang C, Li X, Zhao L, Liang R, Deng W, Guo W, Wang Q, Hu X, Du X, Sham PC, Luo X, Li T. Comprehensive and integrative analyses identify TYW5 as a schizophrenia risk gene. BMC Med 2022; 20:169. [PMID: 35527273 PMCID: PMC9082878 DOI: 10.1186/s12916-022-02363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying the causal genes at the risk loci and elucidating their roles in schizophrenia (SCZ) pathogenesis remain significant challenges. To explore risk variants associated with gene expression in the human brain and to identify genes whose expression change may contribute to the susceptibility of SCZ, here we report a comprehensive integrative study on SCZ. METHODS We systematically integrated the genetic associations from a large-scale SCZ GWAS (N = 56,418) and brain expression quantitative trait loci (eQTL) data (N = 175) using a Bayesian statistical framework (Sherlock) and Summary data-based Mendelian Randomization (SMR). We also measured brain structure of 86 first-episode antipsychotic-naive schizophrenia patients and 152 healthy controls with the structural MRI. RESULTS Both Sherlock (P = 3. 38 × 10-6) and SMR (P = 1. 90 × 10-8) analyses showed that TYW5 mRNA expression was significantly associated with risk of SCZ. Brain-based studies also identified a significant association between TYW5 protein abundance and SCZ. The single-nucleotide polymorphism rs203772 showed significant association with SCZ and the risk allele is associated with higher transcriptional level of TYW5 in the prefrontal cortex. We further found that TYW5 was significantly upregulated in the brain tissues of SCZ cases compared with controls. In addition, TYW5 expression was also significantly higher in neurons induced from pluripotent stem cells of schizophrenia cases compared with controls. Finally, combining analysis of genotyping and MRI data showed that rs203772 was significantly associated with gray matter volume of the right middle frontal gyrus and left precuneus. CONCLUSIONS We confirmed that TYW5 is a risk gene for SCZ. Our results provide useful information toward a better understanding of the genetic mechanism of TYW5 in risk of SCZ.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rong Liang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Wanjun Guo
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xun Hu
- The Clinical Research Center and Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangdong Du
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Xiongjian Luo
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, People's Republic of China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
28
|
Broly M, Polevoda BV, Awayda KM, Tong N, Lentini J, Besnard T, Deb W, O'Rourke D, Baptista J, Ellard S, Almannai M, Hashem M, Abdulwahab F, Shamseldin H, Al-Tala S, Alkuraya FS, Leon A, van Loon RLE, Ferlini A, Sanchini M, Bigoni S, Ciorba A, van Bokhoven H, Iqbal Z, Al-Maawali A, Al-Murshedi F, Ganesh A, Al-Mamari W, Lim SC, Pais LS, Brown N, Riazuddin S, Bézieau S, Fu D, Isidor B, Cogné B, O'Connell MR. THUMPD1 bi-allelic variants cause loss of tRNA acetylation and a syndromic neurodevelopmental disorder. Am J Hum Genet 2022; 109:587-600. [PMID: 35196516 PMCID: PMC9069073 DOI: 10.1016/j.ajhg.2022.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022] Open
Abstract
Covalent tRNA modifications play multi-faceted roles in tRNA stability, folding, and recognition, as well as the rate and fidelity of translation, and other cellular processes such as growth, development, and stress responses. Mutations in genes that are known to regulate tRNA modifications lead to a wide array of phenotypes and diseases including numerous cognitive and neurodevelopmental disorders, highlighting the critical role of tRNA modification in human disease. One such gene, THUMPD1, is involved in regulating tRNA N4-acetylcytidine modification (ac4C), and recently was proposed as a candidate gene for autosomal-recessive intellectual disability. Here, we present 13 individuals from 8 families who harbor rare loss-of-function variants in THUMPD1. Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism, and ophthalmological abnormalities. We demonstrate that the bi-allelic variants identified cause loss of function of THUMPD1 and that this defect results in a loss of ac4C modification in small RNAs, and of individually purified tRNA-Ser-CGA. We further corroborate this effect by showing a loss of tRNA acetylation in two CRISPR-Cas9-generated THUMPD1 KO cell lines. In addition, we also show the resultant amino acid substitution that occurs in a missense THUMPD1 allele identified in an individual with compound heterozygous variants results in a marked decrease in THUMPD1 stability and RNA-binding capacity. Taken together, these results suggest that the lack of tRNA acetylation due to THUMPD1 loss of function results in a syndromic form of intellectual disability associated with developmental delay, behavioral abnormalities, hearing loss, and facial dysmorphism.
Collapse
Affiliation(s)
- Martin Broly
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France
| | - Bogdan V Polevoda
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Kamel M Awayda
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Ning Tong
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Jenna Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Thomas Besnard
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44093 Nantes, France
| | - Wallid Deb
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44093 Nantes, France
| | - Declan O'Rourke
- Department of Neurology, Children's Health Ireland at Temple Street, Dublin, D01 XD99, Ireland
| | - Julia Baptista
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK; Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK; Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Mohammed Almannai
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Ferdous Abdulwahab
- Department of Translational Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanan Shamseldin
- Department of Translational Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Saeed Al-Tala
- Pediatrics Department, Armed Forces Hospital, Khamis Mushait 62413, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Alberta Leon
- Research & Innovation (R&I Genetics) Srl, Genetic Laboratory, 35127 Padua, Italy
| | - Rosa L E van Loon
- Department of Genetics, University of Utrecht, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Mariabeatrice Sanchini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Stefania Bigoni
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Andrea Ciorba
- ENT & Audiology Unit, Department of Neurosciences, University Hospital of Ferrara, 44124 Cona FE, Italy
| | - Hans van Bokhoven
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6525 HR Nijmegen, the Netherlands
| | - Zafar Iqbal
- Department of Neurology, Oslo University Hospital, 0188 Oslo, Norway
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Fathiya Al-Murshedi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Anuradha Ganesh
- Department of Ophthalmology, Pediatric Ophthalmology and Ocular Genetics Unit, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Watfa Al-Mamari
- Department of Child Health, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Sze Chern Lim
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Lynn S Pais
- Broad Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Natasha Brown
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Saima Riazuddin
- Laboratory of Molecular Genetics, Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Pakistan Institute of Medical Sciences, Shaheed Zulfiqar Ali Bhutto Medical University, Sector G-8/3, Islamabad, Pakistan
| | - Stéphane Bézieau
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44093 Nantes, France
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44093 Nantes, France
| | - Benjamin Cogné
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44093 Nantes, France.
| | - Mitchell R O'Connell
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
29
|
Xi Y, Wang Y. Insight Into the Roles of Non-coding RNA in Bronchopulmonary Dysplasia. Front Med (Lausanne) 2021; 8:761724. [PMID: 34805228 PMCID: PMC8602187 DOI: 10.3389/fmed.2021.761724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease most commonly occurring in premature infants, and its pathological manifestations are alveolar hypoplasia and dysregulation of pulmonary vasculature development. The effective treatment for BPD has not yet been established. Non-coding RNAs, including microRNAs and long non-coding RNAs do not encode proteins, but can perform its biological functions at the RNA level. Non-coding RNAs play an important role in the incidence and development of BPD by regulating the expression of genes related to proliferation, apoptosis, angiogenesis, inflammation and other cell activities of alveolar epithelial cells and vascular endothelial cells. Here we summarize the role of non-coding RNAs in BPD, which provides possible molecular marker and therapeutic target for the diagnosis and treatment of BPD.
Collapse
Affiliation(s)
- Yufeng Xi
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujia Wang
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Boyer O, Mollet G, Dorval G. Neurological involvement in monogenic podocytopathies. Pediatr Nephrol 2021; 36:3571-3583. [PMID: 33791874 DOI: 10.1007/s00467-020-04903-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 01/22/2023]
Abstract
Genetic studies of hereditary nephrotic syndrome (NS) have identified more than 50 genes that, if mutated, are responsible for monogenic forms of steroid-resistant NS (SRNS), either isolated or syndromic. Most of these genes encode proteins expressed in the podocyte with various functions such as transcription factors, mitochondrial proteins, or enzymes, but mainly structural proteins of the slit diaphragm (SD) as well as cytoskeletal binding and regulator proteins. Syndromic NS is sometimes associated with neurological features. Over recent decades, various studies have established links between the physiology of podocytes and neurons, both morphologically (slit diaphragm and synapse) and functionally (signaling platforms). Variants in genes expressed in different compartments of the podocyte and neurons are responsible for phenotypes associating kidney lesions with proteinuria (mainly Focal and Segmental Glomerulosclerosis (FSGS) or Diffuse Mesangial Sclerosis (DMS)) and central and/or peripheral neurological disorders. The Galloway-Mowat syndrome (GAMOS, OMIM#251300) associates neurological defects, microcephaly, and proteinuria and is caused by variants in genes encoding proteins of various functions (microtubule cytoskeleton regulation (WDR73), regulation of protein synthesis via transfer RNAs (KEOPS and WDR4 complexes)). Pierson syndrome (OMIM#609049) associating congenital nephrotic syndrome and central neurological and ophthalmological anomalies is secondary to variants in LAMB2, involved in glomerular and ocular basement membranes. Finally, Charcot-Marie-Tooth-FSGS (OMIM#614455) combines peripheral sensory-motor neuropathy and proteinuria and arises from INF2 variants, resulting in cytoskeletal polymerization defects. This review focuses on genetic syndromes associating nephrotic range proteinuria and neurological involvement and provides the latest advances in the description of these neuro-renal disorders.
Collapse
Affiliation(s)
- Olivia Boyer
- Service de Néphrologie Pédiatrique, AP-HP, Centre de Référence de maladies rénales rares de l'enfant et de l'adulte (MARHEA), Hôpital Necker - Enfants Malades, 149 Rue de Sèvres, 75015, Paris, France.
- Institut Imagine, Laboratoire des maladies rénales héréditaires, INSERM UMR 1163, Université de Paris, Paris, France.
| | - Géraldine Mollet
- Institut Imagine, Laboratoire des maladies rénales héréditaires, INSERM UMR 1163, Université de Paris, Paris, France
| | - Guillaume Dorval
- Institut Imagine, Laboratoire des maladies rénales héréditaires, INSERM UMR 1163, Université de Paris, Paris, France
- Service de Génétique Moléculaire, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
31
|
Li J, Zhu WY, Yang WQ, Li CT, Liu RJ. The occurrence order and cross-talk of different tRNA modifications. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1423-1436. [PMID: 33881742 DOI: 10.1007/s11427-020-1906-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Chemical modifications expand the composition of RNA molecules from four standard nucleosides to over 160 modified nucleosides, which greatly increase the complexity and utility of RNAs. Transfer RNAs (tRNAs) are the most heavily modified cellular RNA molecules and contain the largest variety of modifications. Modification of tRNAs is pivotal for protein synthesis and also precisely regulates the noncanonical functions of tRNAs. Defects in tRNA modifications lead to numerous human diseases. Up to now, more than 100 types of modifications have been found in tRNAs. Intriguingly, some modifications occur widely on all tRNAs, while others only occur on a subgroup of tRNAs or even only a specific tRNA. The modification frequency of each tRNA is approximately 7% to 25%, with 5-20 modification sites present on each tRNA. The occurrence and modulation of tRNA modifications are specifically noticeable as plenty of interplays among different sites and modifications have been discovered. In particular, tRNA modifications are responsive to environmental changes, indicating their dynamic and highly organized nature. In this review, we summarized the known occurrence order, cross-talk, and cooperativity of tRNA modifications.
Collapse
Affiliation(s)
- Jing Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Yu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
32
|
Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA Polymerase III Subunit Mutations in Genetic Diseases. Front Mol Biosci 2021; 8:696438. [PMID: 34395528 PMCID: PMC8362101 DOI: 10.3389/fmolb.2021.696438] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
Collapse
Affiliation(s)
- Elisabeth Lata
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Francis Sagliocco
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Martin Teichmann
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| |
Collapse
|
33
|
The expanding world of tRNA modifications and their disease relevance. Nat Rev Mol Cell Biol 2021; 22:375-392. [PMID: 33658722 DOI: 10.1038/s41580-021-00342-0] [Citation(s) in RCA: 397] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Transfer RNA (tRNA) is an adapter molecule that links a specific codon in mRNA with its corresponding amino acid during protein synthesis. tRNAs are enzymatically modified post-transcriptionally. A wide variety of tRNA modifications are found in the tRNA anticodon, which are crucial for precise codon recognition and reading frame maintenance, thereby ensuring accurate and efficient protein synthesis. In addition, tRNA-body regions are also frequently modified and thus stabilized in the cell. Over the past two decades, 16 novel tRNA modifications were discovered in various organisms, and the chemical space of tRNA modification continues to expand. Recent studies have revealed that tRNA modifications can be dynamically altered in response to levels of cellular metabolites and environmental stresses. Importantly, we now understand that deficiencies in tRNA modification can have pathological consequences, which are termed 'RNA modopathies'. Dysregulation of tRNA modification is involved in mitochondrial diseases, neurological disorders and cancer.
Collapse
|
34
|
Nagayoshi Y, Chujo T, Hirata S, Nakatsuka H, Chen CW, Takakura M, Miyauchi K, Ikeuchi Y, Carlyle BC, Kitchen RR, Suzuki T, Katsuoka F, Yamamoto M, Goto Y, Tanaka M, Natsume K, Nairn AC, Suzuki T, Tomizawa K, Wei FY. Loss of Ftsj1 perturbs codon-specific translation efficiency in the brain and is associated with X-linked intellectual disability. SCIENCE ADVANCES 2021; 7:7/13/eabf3072. [PMID: 33771871 PMCID: PMC7997516 DOI: 10.1126/sciadv.abf3072] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/09/2021] [Indexed: 05/06/2023]
Abstract
FtsJ RNA 2'-O-methyltransferase 1 (FTSJ1) gene has been implicated in X-linked intellectual disability (XLID), but the molecular pathogenesis is unknown. We show that Ftsj1 is responsible for 2'-O-methylation of 11 species of cytosolic transfer RNAs (tRNAs) at the anticodon region, and these modifications are abolished in Ftsj1 knockout (KO) mice and XLID patient-derived cells. Loss of 2'-O-methylation in Ftsj1 KO mouse selectively reduced the steady-state level of tRNAPhe in the brain, resulting in a slow decoding at Phe codons. Ribosome profiling showed that translation efficiency is significantly reduced in a subset of genes that need to be efficiently translated to support synaptic organization and functions. Ftsj1 KO mice display immature synaptic morphology and aberrant synaptic plasticity, which are associated with anxiety-like and memory deficits. The data illuminate a fundamental role of tRNA modification in the brain through regulation of translation efficiency and provide mechanistic insights into FTSJ1-related XLID.
Collapse
Affiliation(s)
- Y Nagayoshi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - T Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - S Hirata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - H Nakatsuka
- Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan
| | - C-W Chen
- Laboratory for Protein Conformation Diseases, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - M Takakura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - K Miyauchi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Y Ikeuchi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - B C Carlyle
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - R R Kitchen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - T Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - F Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - M Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Y Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neurology, NCNP, Tokyo 187-8551, Japan
| | - M Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - K Natsume
- Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan
| | - A C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - T Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - K Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - F-Y Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
35
|
Zhang S, Chen Y, Wang Y, Zhang P, Chen G, Zhou Y. Insights Into Translatomics in the Nervous System. Front Genet 2021; 11:599548. [PMID: 33408739 PMCID: PMC7779767 DOI: 10.3389/fgene.2020.599548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Most neurological disorders are caused by abnormal gene translation. Generally, dysregulation of elements involved in the translational process disrupts homeostasis in neurons and neuroglia. Better understanding of how the gene translation process occurs requires detailed analysis of transcriptomic and proteomic profile data. However, a lack of strictly direct correlations between mRNA and protein levels limits translational investigation by combining transcriptomic and proteomic profiling. The much better correlation between proteins and translated mRNAs than total mRNAs in abundance and insufficiently sensitive proteomics approach promote the requirement of advances in translatomics technology. Translatomics which capture and sequence the mRNAs associated with ribosomes has been effective in identifying translational changes by genetics or projections, ribosome stalling, local translation, and transcript isoforms in the nervous system. Here, we place emphasis on the main three translatomics methods currently used to profile mRNAs attached to ribosome-nascent chain complex (RNC-mRNA). Their prominent applications in neurological diseases including glioma, neuropathic pain, depression, fragile X syndrome (FXS), neurodegenerative disorders are outlined. The content reviewed here expands our understanding on the contributions of aberrant translation to neurological disease development.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Ramos J, Proven M, Halvardson J, Hagelskamp F, Kuchinskaya E, Phelan B, Bell R, Kellner SM, Feuk L, Thuresson AC, Fu D. Identification and rescue of a tRNA wobble inosine deficiency causing intellectual disability disorder. RNA (NEW YORK, N.Y.) 2020; 26:1654-1666. [PMID: 32763916 PMCID: PMC7566568 DOI: 10.1261/rna.076380.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The deamination of adenosine to inosine at the wobble position of tRNA is an essential post-transcriptional RNA modification required for wobble decoding in bacteria and eukaryotes. In humans, the wobble inosine modification is catalyzed by the heterodimeric ADAT2/3 complex. Here, we describe novel pathogenic ADAT3 variants impairing adenosine deaminase activity through a distinct mechanism that can be corrected through expression of the heterodimeric ADAT2 subunit. The variants were identified in a family in which all three siblings exhibit intellectual disability linked to biallelic variants in the ADAT3 locus. The biallelic ADAT3 variants result in a missense variant converting alanine to valine at a conserved residue or the introduction of a premature stop codon in the deaminase domain. Fibroblast cells derived from two ID-affected individuals exhibit a reduction in tRNA wobble inosine levels and severely diminished adenosine tRNA deaminase activity. Notably, the ADAT3 variants exhibit impaired interaction with the ADAT2 subunit and alterations in ADAT2-dependent nuclear localization. Based upon these findings, we find that tRNA adenosine deaminase activity and wobble inosine modification can be rescued in patient cells by overexpression of the ADAT2 catalytic subunit. These results uncover a key role for the inactive ADAT3 deaminase domain in proper assembly with ADAT2 and demonstrate that ADAT2/3 nuclear import is required for maintaining proper levels of the wobble inosine modification in tRNA.
Collapse
Affiliation(s)
- Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Melissa Proven
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Jonatan Halvardson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 08 Uppsala, Sweden
| | | | - Ekaterina Kuchinskaya
- Department of Clinical Genetics, and Department of Clinical Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Benjamin Phelan
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Ryan Bell
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | | | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 08 Uppsala, Sweden
| | - Ann-Charlotte Thuresson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 08 Uppsala, Sweden
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
37
|
Naseer MI, Abdulkareem AA, Jan MM, Chaudhary AG, Alharazy S, AlQahtani MH. Next generation sequencing reveals novel homozygous frameshift in PUS7 and splice acceptor variants in AASS gene leading to intellectual disability, developmental delay, dysmorphic feature and microcephaly. Saudi J Biol Sci 2020; 27:3125-3131. [PMID: 33100873 PMCID: PMC7569139 DOI: 10.1016/j.sjbs.2020.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Intellectual developmental disorder with abnormal behavior, microcephaly and short stature (IDDABS), (OMIM# 618342) is an autosomal recessive condition described as developmental delay, poor or absent speech, intellectual disability, short stature, mild to progressive microcephaly, delayed psychomotor development, hyperactivity, seizure, along with mild to swear aggressive behavior. Homozygous frameshift mutation in Pseudouridine Synthase 7, Putative; (PUS7) OMIM# 616,261 NM_019042.3 and splice acceptor variants in Alpha-Aminoadipic Semialdehyde Synthase; (AASS) OMIM# 605,113 NM_005763.3 was funded. Whole exome sequencing (WES) technique was used as tool to identify the molecular diagnostic test. Different bioinformatics analysis done for WES data and we identified two novel mutations one as frameshift mutation c.606_607delGA, p.Ser282CysfsTer9 in the PUS7 gene and splice acceptor variants c.1767–1 G > A in the AASS gene has been reported. The pattern of family segregation maintained the pathogenicity of this variation associated with abnormal behavior, intellectual developmental disorder, microcephaly along with short stature IDDABS. Further, the WES data was validated in the family having other affected individuals and healthy controls (n = 100) was done using Sanger sequencing. Finally, our results further explained the role of WES in the disease diagnosis and elucidated that the mutation in PUS7 and AASS genes may lead an important role for the development of IDDABS in Saudi family.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | | | - Mohammed M Jan
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Box 80215, Jeddah 21589, Saudi Arabia
| | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Genetics, King Fahad General Hospital, 21589 Jeddah, Saudi Arabia.,Center for Innovation in Personalized Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Shatha Alharazy
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad H AlQahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
38
|
De Zoysa T, Phizicky EM. Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences. PLoS Genet 2020; 16:e1008893. [PMID: 32841241 PMCID: PMC7473580 DOI: 10.1371/journal.pgen.1008893] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/04/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
All tRNAs are extensively modified, and modification deficiency often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of any of several tRNA body modifications results in rapid tRNA decay (RTD) of certain mature tRNAs by the 5'-3' exonucleases Rat1 and Xrn1. As tRNA quality control decay mechanisms are not extensively studied in other eukaryotes, we studied trm8Δ mutants in the evolutionarily distant fission yeast Schizosaccharomyces pombe, which lack 7-methylguanosine at G46 (m7G46) of their tRNAs. We report here that S. pombe trm8Δ mutants are temperature sensitive primarily due to decay of tRNATyr(GUA) and that spontaneous mutations in the RAT1 ortholog dhp1+ restored temperature resistance and prevented tRNA decay, demonstrating conservation of the RTD pathway. We also report for the first time evidence linking the RTD and the general amino acid control (GAAC) pathways, which we show in both S. pombe and S. cerevisiae. In S. pombe trm8Δ mutants, spontaneous GAAC mutations restored temperature resistance and tRNA levels, and the trm8Δ temperature sensitivity was precisely linked to GAAC activation due to tRNATyr(GUA) decay. Similarly, in the well-studied S. cerevisiae trm8Δ trm4Δ RTD mutant, temperature sensitivity was closely linked to GAAC activation due to tRNAVal(AAC) decay; however, in S. cerevisiae, GAAC mutations increased tRNA loss and exacerbated temperature sensitivity. A similar exacerbated growth defect occurred upon GAAC mutation in S. cerevisiae trm8Δ and other single modification mutants that triggered RTD. Thus, these results demonstrate a conserved GAAC activation coincident with RTD in S. pombe and S. cerevisiae, but an opposite impact of the GAAC response in the two organisms. We speculate that the RTD pathway and its regulation of the GAAC pathway is widely conserved in eukaryotes, extending to other mutants affecting tRNA body modifications.
Collapse
Affiliation(s)
- Thareendra De Zoysa
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
39
|
Lentini JM, Alsaif HS, Faqeih E, Alkuraya FS, Fu D. DALRD3 encodes a protein mutated in epileptic encephalopathy that targets arginine tRNAs for 3-methylcytosine modification. Nat Commun 2020; 11:2510. [PMID: 32427860 PMCID: PMC7237682 DOI: 10.1038/s41467-020-16321-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
In mammals, a subset of arginine tRNA isoacceptors are methylated in the anticodon loop by the METTL2 methyltransferase to form the 3-methylcytosine (m3C) modification. However, the mechanism by which METTL2 identifies specific tRNA arginine species for m3C formation as well as the biological role of m3C in mammals is unknown. Here, we show that human METTL2 forms a complex with DALR anticodon binding domain containing 3 (DALRD3) protein to recognize particular arginine tRNAs destined for m3C modification. DALRD3-deficient human cells exhibit nearly complete loss of the m3C modification in tRNA-Arg species. Notably, we identify a homozygous nonsense mutation in the DALRD3 gene that impairs m3C formation in human patients exhibiting developmental delay and early-onset epileptic encephalopathy. These findings uncover an unexpected function for the DALRD3 protein in the targeting of distinct arginine tRNAs for m3C modification and suggest a crucial biological role for DALRD3-dependent tRNA modification in proper neurological development.
Collapse
Affiliation(s)
- Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
40
|
Meyer B, Immer C, Kaiser S, Sharma S, Yang J, Watzinger P, Weiß L, Kotter A, Helm M, Seitz HM, Kötter P, Kellner S, Entian KD, Wöhnert J. Identification of the 3-amino-3-carboxypropyl (acp) transferase enzyme responsible for acp3U formation at position 47 in Escherichia coli tRNAs. Nucleic Acids Res 2020; 48:1435-1450. [PMID: 31863583 PMCID: PMC7026641 DOI: 10.1093/nar/gkz1191] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
tRNAs from all domains of life contain modified nucleotides. However, even for the experimentally most thoroughly characterized model organism Escherichia coli not all tRNA modification enzymes are known. In particular, no enzyme has been found yet for introducing the acp3U modification at position 47 in the variable loop of eight E. coli tRNAs. Here we identify the so far functionally uncharacterized YfiP protein as the SAM-dependent 3-amino-3-carboxypropyl transferase catalyzing this modification and thereby extend the list of known tRNA modification enzymes in E. coli. Similar to the Tsr3 enzymes that introduce acp modifications at U or m1Ψ nucleotides in rRNAs this protein contains a DTW domain suggesting that acp transfer reactions to RNA nucleotides are a general function of DTW domain containing proteins. The introduction of the acp3U-47 modification in E. coli tRNAs is promoted by the presence of the m7G-46 modification as well as by growth in rich medium. However, a deletion of the enzymes responsible for the modifications at position 46 and 47 in the variable loop of E. coli tRNAs did not lead to a clearly discernible phenotype suggesting that these two modifications play only a minor role in ensuring the proper function of tRNAs in E. coli.
Collapse
Affiliation(s)
- Britta Meyer
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Carina Immer
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Steffen Kaiser
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Sunny Sharma
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany.,Department of Cell Biology and Neurosciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Jun Yang
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany.,Department of Cell Biology and Neurosciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Peter Watzinger
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Lena Weiß
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry, Johannes-Gutenberg-Universität Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes-Gutenberg-Universität Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Hans-Michael Seitz
- Institute for Geosciences, Research Unit Mineralogy, and Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt/M., Germany
| | - Peter Kötter
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany.,Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| |
Collapse
|
41
|
Zhang K, Lentini JM, Prevost CT, Hashem MO, Alkuraya FS, Fu D. An intellectual disability-associated missense variant in TRMT1 impairs tRNA modification and reconstitution of enzymatic activity. Hum Mutat 2020; 41:600-607. [PMID: 31898845 PMCID: PMC7981843 DOI: 10.1002/humu.23976] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/22/2019] [Accepted: 12/24/2019] [Indexed: 12/27/2022]
Abstract
The human TRMT1 gene encodes an RNA methyltransferase enzyme responsible for catalyzing dimethylguanosine (m2,2G) formation in transfer RNAs (tRNAs). Frameshift mutations in TRMT1 have been shown to cause autosomal-recessive intellectual disability (ID) in the human population but additional TRMT1 variants remain to be characterized. Here, we describe a homozygous TRMT1 missense variant in a patient displaying developmental delay, ID, and epilepsy. The missense variant changes an arginine residue to a cysteine (R323C) within the methyltransferase domain and is expected to perturb protein folding. Patient cells expressing TRMT1-R323C exhibit a deficiency in m2,2G modifications within tRNAs, indicating that the mutation causes loss of function. Notably, the TRMT1 R323C mutant retains tRNA binding but is unable to rescue m2,2G formation in TRMT1-deficient human cells. Our results identify a pathogenic point mutation in TRMT1 that perturbs tRNA modification activity and demonstrate that m2,2G modifications are disrupted in the cells of patients with TRMT1-associated ID disorders.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14627
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14627
| | - Christopher T Prevost
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14627
| | - Mais O Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14627
| |
Collapse
|
42
|
Zhu C, Sun B, Nie A, Zhou Z. The tRNA-associated dysregulation in immune responses and immune diseases. Acta Physiol (Oxf) 2020; 228:e13391. [PMID: 31529760 DOI: 10.1111/apha.13391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/31/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
Transfer RNA (tRNA), often considered as a housekeeping molecule, mainly participates in protein translation by transporting amino acids to the ribosome. Nevertheless, accumulating evidence has shown that tRNAs are closely related to various physiological and pathological processes. The proper functioning of the immune system is the key to human health. The aim of this review is to investigate the relationships between tRNAs and the immune system. We detail the biogenesis and structure of tRNAs and summarize the pathogen tRNA-mediated infection and host responses. In addition, we address recent advances in different aspects of tRNA-associated dysregulation in immune responses and immune diseases, such as tRNA molecules, tRNA modifications, tRNA derivatives and tRNA aminoacylation. Therefore, tRNAs play an important role in immune regulation. Although our knowledge of tRNAs in the context of immunity remains, for the most part, unknown, this field deserves in-depth research to provide new ideas for the treatment of immune diseases.
Collapse
Affiliation(s)
- Chunsheng Zhu
- Department of Chinese Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Bao Sun
- Department of Clinical Pharmacology Xiangya Hospital Central South University Changsha China
- Hunan Key Laboratory of Pharmacogenetics Institute of Clinical Pharmacology Central South University Changsha China
| | - Anzheng Nie
- Department of Chinese Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Zheng Zhou
- Department of Chinese Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
43
|
Takakura M, Ishiguro K, Akichika S, Miyauchi K, Suzuki T. Biogenesis and functions of aminocarboxypropyluridine in tRNA. Nat Commun 2019; 10:5542. [PMID: 31804502 PMCID: PMC6895100 DOI: 10.1038/s41467-019-13525-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Transfer (t)RNAs contain a wide variety of post-transcriptional modifications, which play critical roles in tRNA stability and functions. 3-(3-amino-3-carboxypropyl)uridine (acp3U) is a highly conserved modification found in variable- and D-loops of tRNAs. Biogenesis and functions of acp3U have not been extensively investigated. Using a reverse-genetic approach supported by comparative genomics, we find here that the Escherichia coli yfiP gene, which we rename tapT (tRNA aminocarboxypropyltransferase), is responsible for acp3U formation in tRNA. Recombinant TapT synthesizes acp3U at position 47 of tRNAs in the presence of S-adenosylmethionine. Biochemical experiments reveal that acp3U47 confers thermal stability on tRNA. Curiously, the ΔtapT strain exhibits genome instability under continuous heat stress. We also find that the human homologs of tapT, DTWD1 and DTWD2, are responsible for acp3U formation at positions 20 and 20a of tRNAs, respectively. Double knockout cells of DTWD1 and DTWD2 exhibit growth retardation, indicating that acp3U is physiologically important in mammals.
Collapse
Affiliation(s)
- Mayuko Takakura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kensuke Ishiguro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shinichiro Akichika
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
44
|
Defects in t 6A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. Nat Commun 2019; 10:3967. [PMID: 31481669 PMCID: PMC6722078 DOI: 10.1038/s41467-019-11951-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/09/2019] [Indexed: 11/18/2022] Open
Abstract
N6-threonyl-carbamoylation of adenosine 37 of ANN-type tRNAs (t6A) is a universal modification essential for translational accuracy and efficiency. The t6A pathway uses two sequentially acting enzymes, YRDC and OSGEP, the latter being a subunit of the multiprotein KEOPS complex. We recently identified mutations in genes encoding four out of the five KEOPS subunits in children with Galloway-Mowat syndrome (GAMOS), a clinically heterogeneous autosomal recessive disease characterized by early-onset steroid-resistant nephrotic syndrome and microcephaly. Here we show that mutations in YRDC cause an extremely severe form of GAMOS whereas mutations in GON7, encoding the fifth KEOPS subunit, lead to a milder form of the disease. The crystal structure of the GON7/LAGE3/OSGEP subcomplex shows that the intrinsically disordered GON7 protein becomes partially structured upon binding to LAGE3. The structure and cellular characterization of GON7 suggest its involvement in the cellular stability and quaternary arrangement of the KEOPS complex. The biosynthesis of N6-threonylcarbamoylated adenosine 37 in tRNA (t6A) involves the YRDC enzyme and the KEOPS complex. Here, the authors report mutations in YRDC and the KEOPS component GON7 in Galloway-Mowat syndrome and determine the crystal structure of a GON7-containg subcomplex that suggests a role in KEOPS complex stability.
Collapse
|
45
|
Shaheen R, Tasak M, Maddirevula S, Abdel-Salam GMH, Sayed ISM, Alazami AM, Al-Sheddi T, Alobeid E, Phizicky EM, Alkuraya FS. PUS7 mutations impair pseudouridylation in humans and cause intellectual disability and microcephaly. Hum Genet 2019; 138:231-239. [PMID: 30778726 DOI: 10.1007/s00439-019-01980-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
Pseudouridylation is the most common post-transcriptional modification, wherein uridine is isomerized into 5-ribosyluracil (pseudouridine, Ψ). The resulting increase in base stacking and creation of additional hydrogen bonds are thought to enhance RNA stability. Pseudouridine synthases are encoded in humans by 13 genes, two of which are linked to Mendelian diseases: PUS1 and PUS3. Very recently, PUS7 mutations were reported to cause intellectual disability with growth retardation. We describe two families in which two different homozygous PUS7 mutations (missense and frameshift deletion) segregate with a phenotype comprising intellectual disability and progressive microcephaly. Short stature and hearing loss were variable in these patients. Functional characterization of the two mutations confirmed that both result in decreased levels of Ψ13 in tRNAs. Furthermore, the missense variant of the S. cerevisiae ortholog failed to complement the growth defect of S. cerevisiae pus7Δ trm8Δ mutants. Our results confirm that PUS7 is a bona fide Mendelian disease gene and expand the list of human diseases caused by impaired pseudouridylation.
Collapse
Affiliation(s)
- Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Monika Tasak
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ghada M H Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Inas S M Sayed
- Oro-dental Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Al-Sheddi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eman Alobeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|