1
|
Stejskal S, Rájecká V, Covelo-Molares H, Sinigaglia K, Brožinová K, Kašiarová L, Dohnálková M, Reyes-Gutierrez PE, Cahová H, Keegan LP, O'Connell MA, Vaňáčová Š. Global analysis by LC-MS/MS of N6-methyladenosine and inosine in mRNA reveal complex incidence. RNA (NEW YORK, N.Y.) 2025; 31:514-528. [PMID: 39746750 PMCID: PMC11912911 DOI: 10.1261/rna.080324.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
The precise and unambiguous detection and quantification of internal RNA modifications represents a critical step for understanding their physiological functions. The methods of direct RNA sequencing are quickly developing allowing for the precise location of internal RNA marks. This detection is, however, not quantitative and still presents detection limits. One of the biggest remaining challenges in the field is still the detection and quantification of m6A, m6Am, inosine, and m1A modifications of adenosine. The second intriguing and timely question remaining to be addressed is the extent to which individual marks are coregulated or potentially can affect each other. Here, we present a methodological approach to detect and quantify several key mRNA modifications in human total RNA and in mRNA, which is difficult to purify away from contaminating tRNA. We show that the adenosine demethylase FTO primarily targets m6Am marks in noncoding RNAs in HEK293T cells. Surprisingly, we observe little effect of FTO or ALKBH5 depletion on the m6A mRNA levels. Interestingly, the upregulation of ALKBH5 is accompanied by an increase in inosine level in overall mRNA.
Collapse
Affiliation(s)
- Stanislav Stejskal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Veronika Rájecká
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Helena Covelo-Molares
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Ketty Sinigaglia
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Květoslava Brožinová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Linda Kašiarová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Michaela Dohnálková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | | | - Hana Cahová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Liam P Keegan
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Mary A O'Connell
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
2
|
Peng Y, Jia J, Zhang M, Ma W, Cui Y, Yu M. Transcription Factor TFAP2B Exerts Neuroprotective Effects Targeting BNIP3-Mediated Mitophagy in Ischemia/Reperfusion Injury. Mol Neurobiol 2024; 61:7319-7334. [PMID: 38381297 DOI: 10.1007/s12035-024-04004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) leads to malignant brain edema, blood-brain barrier destruction, and neuronal apoptosis. N6-methyladenosine (m6A) RNA modification in CIRI was still limited explored. In this study, MeRIP- and RNA-sequencing were performed of middle cerebral artery occlusion and reperfusion (MCAO/R) rats to find novel potential molecular targets. Transcription factor TFAP2B stood out of which its m6A abundance decreased associated with a marked reduction of its mRNA based on cojoint interactive bioinformatics analysis of the MeRIP- and RNA-sequencing data. It was suggested TFAP2B could have a role in CIRI. Functionally, overexpression of TFAP2B in cultured primary neurons could effectively improve the cell survival and pro-survival autophagy in parallel with reduced cell apoptosis during OGD/R in vitro. Through the RNA-sequencing of TFAP2B overexpressed primary neurons and subsequent validation experiments, it was found that mitophagy receptor BNIP3 was one of the important targets of TFAP2B in OGD/R neurons through which TFAP2B could bind to its promoter region for transcriptional activation of BNIP3, thereby enhancing BNIP3-mediated mitophagy to protect against OGD/R injury of neurons. Lastly, TFAP2B was demonstrated to alleviate the MCAO/R damage to a certain extent in vivo. Although it failed to confirm TFAP2B dysregulation was m6A dependent in current research, this is the first research of TFAP2B in CIRI field with important guiding significance.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Jiaoying Jia
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Wenjia Ma
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Mengqiang Yu
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
3
|
Ming X, Chen S, Li H, Wang Y, Zhou L, Lv Y. m6A RNA Methylation and Implications for Hepatic Lipid Metabolism. DNA Cell Biol 2024; 43:271-278. [PMID: 38635960 DOI: 10.1089/dna.2023.0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This review presents a summary of recent progress in research on the N6-methyladenosine (m6A) modification and regulatory roles in hepatic lipid metabolism. As the most abundant internal modification of eukaryotic RNA, the m6A modification is a dynamic and reversible process of the m6A enzyme system, which includes writers, erasers, and readers. m6A methylation depressed lipid synthesis and facilitated lipolysis in liver. The depletion of m6A methyltransferase Mettl14/Mettl3 raised fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD1), acetyl-CoA carboxylase (ACC), and elongase of very long chain fatty acids 6 (ELOVL6) in rodent liver, causing increases in liver weight, triglyceride (TG) production, and content in hepatocytes. FTO catalyzed m6A demethylation and the suppression m6A reader YTHDC2 promoted hepatocellular TG generation and hepatic steatosis in C57BL/6 mice through sterol regulatory element-binding protein 1c (SREBP-1c) signaling pathway, which upregulated the lipogenic genes FAS, SCD1, ACC, recombinant acetyl coenzyme a carboxylase alpha, and cell death-inducing DNA fragmentation factor-like effector C (CIDEC). Furthermore, FTO overexpression did not only enhance mitochondrial fusion to impair mitochondrial function and lipid oxidation but also promoted lipid peroxidation, accompanied by excessive TG in hepatocytes and rodent liver. Elevated m6A modification potently suppressed hepatic lipid accumulation, while the shrinkage of m6A modification arose hepatic lipid deposition. These findings have highlighted the beneficial role of m6A RNA methylation in hepatic lipid metabolism, potentially protecting liver from lipid metabolic disorders.
Collapse
Affiliation(s)
- Xinyue Ming
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Shirui Chen
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Huijuan Li
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Yun Wang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Le Zhou
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Yuncheng Lv
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
4
|
Dumitru CA, Walter N, Siebert CLR, Schäfer FTA, Rashidi A, Neyazi B, Stein KP, Mawrin C, Sandalcioglu IE. The Roles of AGTRAP, ALKBH3, DIVERSIN, NEDD8 and RRM1 in Glioblastoma Pathophysiology and Prognosis. Biomedicines 2024; 12:926. [PMID: 38672281 PMCID: PMC11048029 DOI: 10.3390/biomedicines12040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
This study determined the expression of five novel biomarker candidates in IDH wild-type glioblastoma (GBM) tissues compared to non-malign brain parenchyma, as well as their prognostic relevance for the GBM patients' outcomes. The markers were analysed by immunohistochemistry in tumour tissues (n = 186) and healthy brain tissues (n = 54). The association with the patients' overall survival (OS) and progression-free survival (PFS) was assessed by Kaplan-Meier and log-rank test. The prognostic value of the markers was determined using multivariate Cox proportional hazard models. AGTRAP, DIVERSIN, cytoplasmic NEDD8 (NEDD8c) and RRM1 were significantly overexpressed in tumour tissues compared to the healthy brain, while the opposite was observed for ALKBH3. AGTRAP, ALKBH3, NEDD8c and RRM1 were significantly associated with OS in univariate analysis. AGTRAP and RRM1 were also independent prognostic factors for OS in multivariate analysis. For PFS, only AGTRAP and NEDD8c reached significance in univariate analysis. Additionally, AGTRAP was an independent prognostic factor for PFS in multivariate models. Finally, combined analysis of the markers enhanced their prognostic accuracy. The combination AGTRAP/ALKBH3 had the strongest prognostic value for the OS of GBM patients. These findings contribute to a better understanding of the GBM pathophysiology and may help identify novel therapeutic targets in this type of cancer.
Collapse
Affiliation(s)
| | - Nikolas Walter
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | | | | | - Ali Rashidi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | |
Collapse
|
5
|
Long F, Zheng P, Su Q, Zhang Y, Wang D, Xiao Z, Wu M, Li J. LncRNA SNHG12 regulated by WTAP aggravated the oxygen-glucose deprivation/reperfusion-induced injury in bEnd.3 cell. J Stroke Cerebrovasc Dis 2024; 33:107613. [PMID: 38301749 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVES Previous studies have identified abnormal expression of lncRNA SNHG12 in ischemic stroke, but the underlying molecular mechanism remains unclear. MATERIALS AND METHODS Through database predictions, m6A methylation sites were found on SNHG12, suggesting post-transcriptional modification. To further elucidate the role of SNHG12 and m6A methyltransferase WTAP in oxygen-glucose deprivation/reperfusion (OGD/R)-induced damage in cerebral microvascular endothelial cells, we conducted investigations. Additionally, we examined the impact of m6A methyltransferase WTAP on SNHG12 expression. RESULTS Overexpressing SNHG12 in bEnd.3 cells was found to inhibit cell proliferation and promote apoptosis, as well as activate the production of reactive oxygen species and inflammatory cytokines (E-selectin, IL-6 and MCP-1), along with angiogenic proteins (VEGFA and FGFb). Conversely, SNHG12 knockdown alleviated OGD/R-induced damage to BEnd.3 cells, resulting in improved cell proliferation, reduced apoptosis, decreased ROS and LDH production, as well as diminished expression of inflammatory cytokines (E-selectin, IL-6 and MCP-1) and angiogenic proteins (VEGFA and FGFb). Furthermore, WTAP was found to positively regulate SNHG12 expression, and WTAP knockdown in bEnd.3 cells under the OGD/R conditions inhibited cell proliferation, promoted apoptosis, and increased ROS and LDH production. CONCLUSION These findings suggest that WTAP may play a crucial role in SNHG12-mediated OGD/R-induced damage in bEnd.3 cells. More molecular experiments are needed to further analyze its mechanism. Overall, our study helps to enrich our understanding of the dysregulation of SNHG12 in ischemic stroke.
Collapse
Affiliation(s)
- Faqing Long
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, #368 Yehai Avenue, Longhua District, Haikou 570311, Hainan, China
| | - Pisi Zheng
- Hainan Medical University, Haikou, China
| | - Qingjie Su
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, #368 Yehai Avenue, Longhua District, Haikou 570311, Hainan, China
| | - Yuhui Zhang
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, #368 Yehai Avenue, Longhua District, Haikou 570311, Hainan, China
| | - Desheng Wang
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, #368 Yehai Avenue, Longhua District, Haikou 570311, Hainan, China
| | - Zhixiang Xiao
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, #368 Yehai Avenue, Longhua District, Haikou 570311, Hainan, China
| | - Mingchang Wu
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, #368 Yehai Avenue, Longhua District, Haikou 570311, Hainan, China
| | - Jianhong Li
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, #368 Yehai Avenue, Longhua District, Haikou 570311, Hainan, China.
| |
Collapse
|
6
|
Cerav EN, Wu N, Akkaya MS. Transcriptome-Wide N6-Methyladenosine (m 6A) Methylation Analyses in a Compatible Wheat- Puccinia striiformis f. sp. tritici Interaction. PLANTS (BASEL, SWITZERLAND) 2024; 13:982. [PMID: 38611510 PMCID: PMC11013425 DOI: 10.3390/plants13070982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
N6-methyladenosine (m6A) is a prevalent internal modification in eukaryotic mRNA, tRNA, miRNA, and long non-coding RNA. It is also known for its role in plant responses to biotic and abiotic stresses. However, a comprehensive m6A transcriptome-wide map for Puccinia striiformis f. sp. tritici (Pst) infections in wheat (Triticum aestivum) is currently unavailable. Our study is the first to profile m6A modifications in wheat infected with a virulent Pst race. Analysis of RNA-seq and MeRIP-seq data revealed that the majority of differentially expressed genes are up-regulated and hyper-methylated. Some of these genes are enriched in the plant-pathogen interaction pathway. Notably, genes related to photosynthesis showed significant down-regulation and hypo-methylation, suggesting a potential mechanism facilitating successful Pst invasion by impairing photosynthetic function. The crucial genes, epitomizing the core molecular constituents that fortify plants against pathogenic assaults, were detected with varying expression and methylation levels, together with a newly identified methylation motif. Additionally, m6A regulator genes were also influenced by m6A modification, and their expression patterns varied at different time points of post-inoculation, with lower expression at early stages of infection. This study provides insights into the role of m6A modification regulation in wheat's response to Pst infection, establishing a foundation for understanding the potential function of m6A RNA methylation in plant resistance or susceptibility to pathogens.
Collapse
Affiliation(s)
| | | | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (E.N.C.); (N.W.)
| |
Collapse
|
7
|
Chen Y, Wang W, Zhang W, He M, Li Y, Qu G, Tong J. Emerging roles of biological m 6A proteins in regulating virus infection: A review. Int J Biol Macromol 2023; 253:126934. [PMID: 37722640 DOI: 10.1016/j.ijbiomac.2023.126934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent chemical modifications of intracellular RNA, which recently emerging as a multifaceted effector of viral genomic RNA. As a dynamic process, three groups of biological proteins control the levels of m6A modification in eukaryocyte, designed as m6A writers, erasers, and readers. The m6A writers comprising of methyltransferases complex initiate the modification process. On the contrary, the m6A erasers ALKBH5 or FTO abolish the modification through three-step demethylation: m6A to N6-hydroxymethyl adenosine (hm6A), then hm6A to N6-methyladenosine (f6A), and finally f6A to adenosine. The known m6A readers include the YTH family and the hnRNP family. As m6A modification regulates RNA nuclear exportation, stability, and translation, m6A proteins commonly participate in virus infection by regulating viral genomic RNA synthesis. Moreover, m6A proteins establish molecular linkages between virus genome/viral encode proteins and host cells proteins via their multifunctional roles in cellular RNA metabolism. The m6A writers and erasers directly impact interferon expression and macrophage innate immune responses, facilitating them to act as anti-/pro-viral factors. The m6A readers enable to alter cell metabolism and stress granules (SGs) production to regulate virus-host interactions. Here, the latest progress of m6A proteins in regulating viral infection is reviewed. Demonstrating the roles of m6A proteins will enhance the understanding of epigenetic regulation of virus infection and stimulate the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Yuran Chen
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wenjing Wang
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Mei He
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yuming Li
- School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences, Ji'nan 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an 271000, China.
| | - Guosheng Qu
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Jie Tong
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
8
|
Guo C, Liu Z, Zhang H. DNA 6mA demethylase ALKBH1 regulates DDX18 expression to promote proliferation of human head and neck squamous cell carcinoma. Cell Oncol (Dordr) 2023; 46:1097-1111. [PMID: 36976498 DOI: 10.1007/s13402-023-00800-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 03/29/2023] Open
Abstract
PURPOSE Human head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. Currently, surgical resection plus a combination of chemotherapy and radiotherapy is the standard treatment for HNSCC, and the 5-year survival rate of patients with HNSCC remains very low because of the higher incidence of metastasis with consequent recurrence. Here, we aimed to investigate the potential role of DNA N6-methyladenine (6mA) demethylase ALKBH1 in tumor cell proliferation in HNSCC. METHODS The expression of ALKBH1 in 10 pairs of HNSCC/normal tissues and 3 HNSCC cell lines were measured by qRT‒PCR and western blotting. Colony formation, flow cytometry, patient-derived HNSCC organoid assays were used to assess the role of ALKBH1 in HNSCC cell proliferation in cell lines and human HNSCC patients. MeDIP-seq, RNA sequencing, Dot blotting and western blotting were used to evaluate the regulatory effect of ALKBH1 on the expression of DEAD-box RNA helicase DDX18. A dual-luciferase reporter assay was used to assess the putative effect of DNA 6mA levels on DDX18 transcription. RESULTS ALKBH1 was highly expressed in HNSCC cells and patient tissues. Functional experiments revealed that ALKBH1 knockdown in SCC9, SCC25, and CAL27 cells inhibited their proliferation in vitro. Using patient-derived HNSCC organoid assay, we found that knockdown of ALKBH1 inhibited the proliferation and colony formation of HNSCC patients-derived organoids. Moreover, we found that ALKBH1 can enhance DDX18 expression by erasing DNA 6mA level and regulating its promoter activity. ALKBH1 deficiency blocked tumor cell proliferation by inhibiting DDX18 expression. Exogenous overexpression of DDX18 rescued the cell proliferation arrest caused by ALKBH1 knockdown. CONCLUSION Our data reveal the important role of ALKBH1 in regulating proliferation of HNSCC.
Collapse
Affiliation(s)
- Chengli Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital, Wuhan University, No.185, East Lake Road, Wuhan, Hubei, 430071, China.
| | - Haojian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, No.185, East Lake Road, Wuhan, Hubei, 430071, China.
| |
Collapse
|
9
|
Wang QS, Xiao RJ, Peng J, Yu ZT, Fu JQ, Xia Y. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal KLF4 Alleviated Ischemic Stroke Through Inhibiting N6-Methyladenosine Modification Level of Drp1 by Targeting lncRNA-ZFAS1. Mol Neurobiol 2023; 60:3945-3962. [DOI: 10.1007/s12035-023-03301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
|
10
|
Petri BJ, Klinge CM. m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer. J Mol Endocrinol 2023; 70:JME-22-0110. [PMID: 36367225 PMCID: PMC9790079 DOI: 10.1530/jme-22-0110] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
Epitranscriptomic modification of RNA regulates human development, health, and disease. The true diversity of the transcriptome in breast cancer including chemical modification of transcribed RNA (epitranscriptomics) is not well understood due to limitations of technology and bioinformatic analysis. N-6-methyladenosine (m6A) is the most abundant epitranscriptomic modification of mRNA and regulates splicing, stability, translation, and intracellular localization of transcripts depending on m6A association with reader RNA-binding proteins. m6A methylation is catalyzed by the METTL3 complex and removed by specific m6A demethylase ALKBH5, with the role of FTO as an 'eraser' uncertain. In this review, we provide an overview of epitranscriptomics related to mRNA and focus on m6A in mRNA and its detection. We summarize current knowledge on altered levels of writers, readers, and erasers of m6A and their roles in breast cancer and their association with prognosis. We summarize studies identifying m6A peaks and sites in genes in breast cancer cells.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS)
| |
Collapse
|
11
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
12
|
Feng S, Xu Z, Peng J, Zhang M. The AlkB Family: Potential Prognostic Biomarkers and Therapeutic Targets in Glioblastoma. Front Oncol 2022; 12:847821. [PMID: 35371987 PMCID: PMC8965608 DOI: 10.3389/fonc.2022.847821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
The AlkB family of Fe (II) and α-ketoglutarate-dependent dioxygenases works by removing alkyl substituents from alkylation-damaged nucleic acid bases through oxidative dealkylation, subsequently affecting tumor progression and patient prognosis. However, the specific roles of the AlkB family in Glioblastoma remain to be elucidated. By taking advantage of the abundant bioinformatics databases, such as GEPIA2, cBioPortal and TIMER, we performed a comprehensive analysis of the AlkB family in GBM, and managed to identify the significant prognostic hallmarks and therapeutic targets within this family. We found that the expression levels of ALKBH2 and ALKBH8 were significantly up-regulated in GBM compared with normal tissues. Meanwhile, the patients with high levels of ALKBH2 and ALKBH8 possessed significant poor overall survival (OS). In addition, the results suggested that the biological function of the AlkB family was closely related to DNA damage repair, cell metabolism, cell proliferation and tumor immune infiltration in GBM. Furthermore, the high expression of ALKBH8 in GBM was verified by immunohistochemistry. Taken together, this study could provide meaningful information about the aberrant AlkB family associated with GBM initiation and progression, and help clinicians precisely predict patient survival and select alternative therapeutic drugs.
Collapse
Affiliation(s)
- Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Chen K, Shen D, Tan L, Lai D, Han Y, Gu Y, Lu C, Gu X. A Pan-Cancer Analysis Reveals the Prognostic and Immunotherapeutic Value of ALKBH7. Front Genet 2022; 13:822261. [PMID: 35222541 PMCID: PMC8873580 DOI: 10.3389/fgene.2022.822261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Recent studies have identified a role for ALKBH7 in the occurrence and progression of cancer, and this protein is related to cellular immunity and immune cell infiltration. However, the prognostic and immunotherapeutic value of ALKBH7 in different cancers have not been explored. In this study, we observed high ALKBH7 expression in 17 cancers and low expression in 5 cancers compared to paired normal tissues. Although ALKBH7 expression did not correlate relatively significantly with the clinical parameters of age (6/33), sex (3/33) and stage (3/27) in the cancers studied, the results of the survival analysis reflect the pan-cancer prognostic value of ALKBH7. In addition, ALKBH7 expression was significantly correlated with the TMB (7/33), MSI (13/33), mDNAsi (12/33) and mRNAsi (13/33) in human cancers. Moreover, ALKBH7 expression was associated and predominantly negatively correlated with the expression of immune checkpoint (ICP) genes in many cancers. Furthermore, ALKBH7 correlated with infiltrating immune cells and ESTIMATE scores, especially in PAAD, PRAD and THCA. Finally, the ALKBH7 gene coexpression network is involved in the regulation of cellular immune, oxidative, phosphorylation, and metabolic pathways. In conclusion, ALKBH7 may serve as a potential prognostic pan-cancer biomarker and is involved in the immune response. Our pan-cancer analysis provides insight into the role of ALKBH7 in different cancers.
Collapse
Affiliation(s)
- Kaijie Chen
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dongjie Shen
- Department of General Surgery, Ruijin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Tan
- Xiangya School of Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Central South University, Changsha, China
| | - Donglin Lai
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuru Han
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yonggang Gu
- Department of TCM, Shanghai Pudong Hospital, Shanghai, China
- *Correspondence: Xuefeng Gu, ; Changlian Lu, ; Yonggang Gu,
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Xuefeng Gu, ; Changlian Lu, ; Yonggang Gu,
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Xuefeng Gu, ; Changlian Lu, ; Yonggang Gu,
| |
Collapse
|
14
|
Schmidl D, Jonasson NSW, Menke A, Schneider S, Daumann L. Spectroscopic and in vitro investigations of Fe2+/α-Ketoglutarate-dependent enzymes involved in nucleic acid repair and modification. Chembiochem 2022; 23:e202100605. [PMID: 35040547 PMCID: PMC9401043 DOI: 10.1002/cbic.202100605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Indexed: 11/08/2022]
Abstract
The activation of molecular oxygen for the highly selective functionalization and repair of DNA and RNA nucleobases is achieved by α-ketoglutarate (α-KG)/iron-dependent dioxygenases. Enzymes of special interest are the human homologs AlkBH of Escherichia coli EcAlkB and ten-eleven translocation (TET) enzymes. These enzymes are involved in demethylation or dealkylation of DNA and RNA, although additional physiological functions are continuously being revealed. Given their importance, studying enzyme-substrate interactions, turnover and kinetic parameters is pivotal for the understanding of the mode of action of these enzymes. Diverse analytical methods, including X-ray crystallography, UV/Vis absorption, electron paramagnetic resonance (EPR), circular dichroism (CD) and NMR spectroscopy have been employed to study the changes in the active site and the overall enzyme structure upon substrate, cofactor and inhibitor addition. Several methods are now available to assess activity of these enzymes. By discussing limitations and possibilities of these techniques for EcAlkB, AlkBH and TET we aim to give a comprehensive synopsis from a bioinorganic point of view, addressing researchers from different disciplines working in the highly interdisciplinary and rapidly evolving field of epigenetic processes and DNA/RNA repair and modification.
Collapse
Affiliation(s)
- David Schmidl
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Niko S W Jonasson
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Annika Menke
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Sabine Schneider
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Lena Daumann
- Ludwig-Maximilians-Universität München, Department of Chemistry, Butenandtstr. 5-13, 81377, München, GERMANY
| |
Collapse
|
15
|
Yang Z, Yu GL, Zhu X, Peng TH, Lv YC. Critical roles of FTO-mediated mRNA m6A demethylation in regulating adipogenesis and lipid metabolism: Implications in lipid metabolic disorders. Genes Dis 2022; 9:51-61. [PMID: 35005107 PMCID: PMC8720706 DOI: 10.1016/j.gendis.2021.01.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
The goal this review is to clarify the effects of the fat mass and obesity-associated protein (FTO) in lipid metabolism regulation and related underlying mechanisms through the FTO-mediated demethylation of m6A modification. FTO catalyzes the demethylation of m6A to alter the processing, maturation and translation of the mRNAs of lipid-related genes. FTO overexpression in the liver promotes lipogenesis and lipid droplet (LD) enlargement and suppresses CPT-1–mediated fatty acid oxidation via the SREBP1c pathway, promoting excessive lipid storage and nonalcoholic fatty liver diseases (NAFLD). FTO enhances preadipocyte differentiation through the C/EBPβ pathway, and facilitates adipogenesis and fat deposition by altering the alternative splicing of RUNX1T1, the expression of PPARγ and ANGPTL4, and the phosphorylation of PLIN1, whereas it inhibits lipolysis by inhibiting IRX3 expression and the leptin pathway, causing the occurrence and development of obesity. Suppression of the PPARβ/δ and AMPK pathways by FTO-mediated m6A demethylation damages lipid utilization in skeletal muscles, leading to the occurrence of diabetic hyperlipidemia. m6A demethylation by FTO inhibits macrophage lipid influx by downregulating PPARγ protein expression and accelerates cholesterol efflux by phosphorylating AMPK, thereby impeding foam cell formation and atherosclerosis development. In summary, FTO-mediated m6A demethylation modulates the expression of lipid-related genes to regulate lipid metabolism and lipid disorder diseases.
Collapse
Affiliation(s)
- Zhou Yang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Guang-Li Yu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Tian-Hong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Yun-Cheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| |
Collapse
|
16
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
17
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
18
|
Novikov DA, Beletsky AP, Kolosov PM. The Putative Role of m6A-RNA Methylation in Memory Consolidation. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Wu G, Yan Y, Cai Y, Peng B, Li J, Huang J, Xu Z, Zhou J. ALKBH1-8 and FTO: Potential Therapeutic Targets and Prognostic Biomarkers in Lung Adenocarcinoma Pathogenesis. Front Cell Dev Biol 2021; 9:633927. [PMID: 34150745 PMCID: PMC8209387 DOI: 10.3389/fcell.2021.633927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/03/2021] [Indexed: 02/05/2023] Open
Abstract
The AlkB family consists of Fe(II)- and α-ketoglutarate-dependent dioxygenases that can catalyze demethylation on a variety of substrates, such as RNA and DNA, subsequently affecting tumor progression and prognosis. However, their detailed functional roles in lung adenocarcinoma (LUAD) have not been clarified in a comprehensive manner. In this study, several bioinformatics databases, such as ONCOMINE, TIMER, and DiseaseMeth, were used to evaluate the expression profiles and prognostic significance of the AlkB family (ALKBH1-8 and FTO) in LUAD. The expression levels of ALKBH1/2/4/5/7/8 were significantly increased in LUAD tissues, while the expression levels of ALKBH3/6 and FTO were decreased. The main functions of differentially expressed AlkB homologs are related to the hematopoietic system and cell adhesion molecules. We also found that the expression profiles of the AlkB family are highly correlated with infiltrating immune cells (i.e., B cells, CD8 + T cells, CD4 + T cells, macrophages, neutrophils and dendritic cells). In addition, DNA methylation analysis indicated that the global methylation levels of ALKBH1/2/4/5/6/8 and FTO were decreased, while the global methylation levels of ALKBH3/7 were increased. In addition, the patients with upregulated ALKBH2 have significantly poor overall survival (OS) and post-progressive survival (PPS). Taken together, our work could provide insightful information about aberrant AlkB family members as potential biomarkers for the diagnostic and prognostic evaluation of LUAD. Especially, ALKBH2 could be served as a therapeutic candidate for treating LUAD.
Collapse
Affiliation(s)
- Geting Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Zhao S, Devega R, Francois A, Kidane D. Human ALKBH6 Is Required for Maintenance of Genomic Stability and Promoting Cell Survival During Exposure of Alkylating Agents in Pancreatic Cancer. Front Genet 2021; 12:635808. [PMID: 33897761 PMCID: PMC8058185 DOI: 10.3389/fgene.2021.635808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Alpha-ketoglutarate-dependent dioxygenase (ALKBH) is a DNA repair gene involved in the repair of alkylating DNA damage. There are nine types of ALKBH (ALKBH1-8 and FTO) identified in humans. In particular, certain types of ALKBH enzymes are dioxygenases that directly reverse DNA methylation damage via transfer of a methyl group from the DNA adduct onto α-ketoglutarate and release of metabolic products including succinate and formaldehyde. Here, we tested whether ALKBH6 plays a significant role in preventing alkylating DNA damage and decreasing genomic instability in pancreatic cancer cells. Using an E. coli strain deficient with ALKB, we found that ALKBH6 complements ALKB deficiency and increases resistance after alkylating agent treatment. In particular, the loss of ALKBH6 in human pancreatic cancer cells increases alkylating agent-induced DNA damage and significantly decreases cell survival. Furthermore, in silico analysis from The Cancer Genome Atlas (TCGA) database suggests that overexpression of ALKBH6 provides better survival outcomes in patients with pancreatic cancer. Overall, our data suggest that ALKBH6 is required to maintain the integrity of the genome and promote cell survival of pancreatic cancer cells.
Collapse
Affiliation(s)
- Shengyuan Zhao
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, United States
| | - Rodan Devega
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, United States
| | - Aaliyah Francois
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, United States
| | - Dawit Kidane
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
21
|
Yi D, Wang Q, Zhao Y, Song Y, You H, Wang J, Liu R, Shi Z, Chen X, Luo Q. Alteration of N 6 -Methyladenosine mRNA Methylation in a Rat Model of Cerebral Ischemia-Reperfusion Injury. Front Neurosci 2021; 15:605654. [PMID: 33796004 PMCID: PMC8009187 DOI: 10.3389/fnins.2021.605654] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/03/2021] [Indexed: 01/11/2023] Open
Abstract
Aim This study was conducted in order to reveal the alterations in the N6-methyladenosine (m6A) modification profile of cerebral ischemia–reperfusion injury model rats. Materials and Methods Rats were used to establish the middle cerebral artery occlusion and reperfusion (MCAO/R) model. MeRIP-seq and RNA-seq were performed to identify differences in m6A methylation and gene expression. The expression of m6A methylation regulators was analyzed in three datasets and detected by quantitative real-time polymerase chain reaction, western blot, and immunofluorescence. Results We identified 1,160 differentially expressed genes with hypermethylated or hypomethylated m6A modifications. The differentially expressed genes with hypermethylated m6A modifications were involved in the pathways associated with inflammation, while hypomethylated differentially expressed genes were related to neurons and nerve synapses. Among the m6A regulators, FTO was specifically localized in neurons and significantly downregulated after MCAO/R. Conclusion Our study provided an m6A transcriptome-wide map of the MACO/R rat samples, which might provide new insights into the mechanisms of cerebral ischemia–reperfusion injury.
Collapse
Affiliation(s)
- Dazhuang Yi
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Qunhui Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yu Song
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong You
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Jian Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Renjie Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Zhongqiang Shi
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xuan Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Qi Luo
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Bayoumi M, Munir M. Structural Insights Into m6A-Erasers: A Step Toward Understanding Molecule Specificity and Potential Antiviral Targeting. Front Cell Dev Biol 2021; 8:587108. [PMID: 33511112 PMCID: PMC7835257 DOI: 10.3389/fcell.2020.587108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
The cellular RNA can acquire a variety of chemical modifications during the cell cycle, and compelling pieces of evidence highlight the importance of these modifications in determining the metabolism of RNA and, subsequently, cell physiology. Among myriads of modifications, methylation at the N6-position of adenosine (m6A) is the most important and abundant internal modification in the messenger RNA. The m6A marks are installed by methyltransferase complex proteins (writers) in the majority of eukaryotes and dynamically reversed by demethylases such as FTO and ALKBH5 (erasers). The incorporated m6A marks on the RNA transcripts are recognized by m6A-binding proteins collectively called readers. Recent epigenetic studies have unequivocally highlighted the association of m6A demethylases with a range of biomedical aspects, including human diseases, cancers, and metabolic disorders. Moreover, the mechanisms of demethylation by m6A erasers represent a new frontier in the future basic research on RNA biology. In this review, we focused on recent advances describing various physiological, pathological, and viral regulatory roles of m6A erasers. Additionally, we aim to analyze structural insights into well-known m6A-demethylases in assessing their substrate binding-specificity, efficiency, and selectivity. Knowledge on cellular and viral RNA metabolism will shed light on m6A-specific recognition by demethylases and will provide foundations for the future development of efficacious therapeutic agents to various cancerous conditions and open new avenues for the development of antivirals.
Collapse
Affiliation(s)
- Mahmoud Bayoumi
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom.,Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
23
|
Jones JD, Monroe J, Koutmou KS. A molecular-level perspective on the frequency, distribution, and consequences of messenger RNA modifications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1586. [PMID: 31960607 PMCID: PMC8243748 DOI: 10.1002/wrna.1586] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/21/2019] [Accepted: 01/04/2020] [Indexed: 01/16/2023]
Abstract
Cells use chemical modifications to alter the sterics, charge, and conformations of large biomolecules, modulating their biogenesis, function, and stability. Until recently post-transcriptional RNA modifications were thought to be largely limited to nonprotein coding RNA species. However, this dogma has rapidly transformed with the discovery of a host of modifications in protein coding messenger RNAs (mRNAs). Recent advancements in genome-wide sequencing technologies have enabled the identification of mRNA modifications as a potential new frontier in gene regulation-leading to the development of the epitranscriptome field. As a result, there has been a flurry of multiple groundbreaking discoveries, including new modifications, nucleoside modifying enzymes ("writers" and "erasers"), and RNA binding proteins that recognize chemical modifications ("readers"). These discoveries opened the door to understanding how post-transcriptional mRNA modifications can modulate the mRNA lifecycle, and established a link between the epitranscriptome and human health and disease. Despite a rapidly growing recognition of their importance, fundamental questions regarding the identity, prevalence, and functional consequences of mRNA modifications remain to be answered. Here, we highlight quantitative studies that characterize mRNA modification abundance, frequency, and interactions with cellular machinery. As the field progresses, we see a need for the further integration of quantitative and reductionist approaches to complement transcriptome wide studies in order to establish a molecular-level framework for understanding the consequences of mRNA chemical modifications on biological processes. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Joshua D. Jones
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Jeremy Monroe
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Kristin S. Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
24
|
Xu K, Mo Y, Li D, Yu Q, Wang L, Lin F, Kong C, Balelang MF, Zhang A, Chen S, Dai Q, Wang J. N 6-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia-reperfusion injury. Ther Adv Chronic Dis 2020; 11:2040622320916024. [PMID: 32426101 PMCID: PMC7222229 DOI: 10.1177/2040622320916024] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Background Although N6-methyladenosine (m6A) plays a very important role in different biological processes, its function in the brain has not been fully explored. Thus, we investigated the roles of the RNA demethylases Alkbh5/Fto in cerebral ischemia-reperfusion injury. Methods We used a rat model and primary neuronal cell culture to study the role of m6A and Alkbh5/Fto in the cerebral cortex ischemic penumbra after cerebral ischemia-reperfusion injury. We used Alkbh5-shRNA and Lv-Fto (in vitro) to regulate the expression of Alkbh5/Fto to study their regulation of m6A in the cerebral cortex and to study brain function after ischemia-reperfusion injury. Results We found that RNA m6A levels increased consecutive to the increase of Alkbh5 expression in both the cerebral cortex of rats after middle cerebral artery occlusion, and in primary neurons after oxygen deprivation/reoxygenation. In contrast, Fto expression decreased after these perturbations. Our results suggest that knocking down Alkbh5 can aggravate neuronal damage. This is due to the demethylation of Alkbh5 and Fto, which selectively demethylate the Bcl2 transcript, preventing Bcl2 transcript degradation and enhancing Bcl2 protein expression. Conclusion Collectively, our results demonstrate that the demethylases Alkbh5/Fto co-regulate m6A demethylation, which plays a crucial role in cerebral ischemia-reperfusion injury. The results provide novel insights into potential therapeutic mechanisms for stroke.
Collapse
Affiliation(s)
- Kaiwei Xu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dan Li
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qimin Yu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feihong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chang Kong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meita Felicia Balelang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Anqi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sijia Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinxue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China Wencheng County People's Hospital, Wenzhou, Zhejiang, China
| |
Collapse
|
25
|
Wu J, Gan Z, Zhuo R, Zhang L, Wang T, Zhong X. Resveratrol Attenuates Aflatoxin B 1-Induced ROS Formation and Increase of m 6A RNA Methylation. Animals (Basel) 2020; 10:ani10040677. [PMID: 32294948 PMCID: PMC7222704 DOI: 10.3390/ani10040677] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Aflatoxin B1 (AFB1) is highly hepatotoxic in both animals and humans. Resveratrol, a naturally-occurring polyphenolic compound, has antioxidative, anti-inflammatory, antiapoptotic, and immunomodulatory functions and plays a critical role in preventing liver damage. However, whether N6-methyladenosine (m6A) mRNA methylation, which plays critical roles in regulating gene expression for fundamental cellular processes, is associated with the protective effects of resveratrol in attenuating aflatoxin B1 induced toxicity is unclear. Here, we found that AFB1-induced reactive oxygen species (ROS) accumulation changed m6A modification, and the role of resveratrol in alleviating the effect on hepatic disorder induced by aflatoxin B1 may be due to the removal of ROS, followed by the decreased abundance of m6A modification, and ultimately exerting its protective role in the liver. Together, this work provides key insights into the potential avenues for the treatment of AFB1-induced hepatotoxicity and other relevant liver diseases. Abstract Aflatoxin B1 (AFB1) is one of the most dangerous mycotoxins in both humans and animals. Regulation of resveratrol is essential for the inhibition of AFB1-induced oxidative stress and liver injury. Whether N6-methyladenosine (m6A) mRNA methylation participates in the crosstalk between resveratrol and AFB1 is unclear. The objective of this study was to investigate the effects of AFB1 and resveratrol in m6A RNA methylation and their crosstalk in the regulation of hepatic function in mice. Thirty-two C57BL/6J male mice were randomly assigned to a CON (basal diet), RES (basal diet + 500 mg/kg resveratrol), AFB1 (basal diet + 600 μg/kg aflatoxin B1), and ARE (basal diet + 500 mg/kg resveratrol and 600 μg/kg aflatoxin B1) group for 4 weeks of feeding (n = 8/group). Briefly, redox status, apoptosis, and m6A modification in the liver were assessed. Compared to the CON group, the AFB1 group showed increased activities of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), prevalent vacuolization and cell edema, abnormal redox status, imbalance apoptosis, and especially, the higher expression of cleaved-caspase-3 protein. On the contrary, resveratrol ameliorated adverse hepatic function, via increasing hepatic antioxidative capacity and inhibiting the expression of cleaved-caspase-3 protein. Importantly, we noted that reactive oxygen species (ROS) content could be responsible for the alterations of m6A modification. Compared to the CON group, the AFB1 group elevated the ROS accumulation, which led to the augment in m6A modification, whereas dietary resveratrol supplementation decreased ROS, followed by the reduction of m6A levels. In conclusion, our findings indicated that resveratrol decreased AFB1-induced ROS accumulation, consequently contributing to the alterations of m6A modification, and eventually impacting on the hepatic function.
Collapse
|
26
|
Malacrida A, Rivara M, Di Domizio A, Cislaghi G, Miloso M, Zuliani V, Nicolini G. 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line. Bioorg Med Chem 2020; 28:115300. [PMID: 31937477 DOI: 10.1016/j.bmc.2019.115300] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
Abstract
The imidazobenzoxazin-5-thione MV1035, synthesized as a new sodium channel blocker, has been tested on tumoral cells that differ for origin and for expressed NaV pool (U87-MG, H460 and A549). In this paper we focus on the effect of MV1035 in reducing U87 glioblastoma cell line migration and invasiveness. Since the effect of this compound on U87-MG cells seemed not dependent on its sodium channel blocking capability, alternative off-target interaction for MV1035 have been identified using SPILLO-PBSS software. This software performs a structure-based in silico screening on a proteome-wide scale, that allows to identify off-target interactions. Among the top-ranked off-targets of MV1035, we focused on the RNA demethylase ALKBH5 enzyme, known for playing a key role in cancer. In order to prove the effect of MV1035 on ALKBH5 in vitro coincubation of MV1035 and ALKBH5 has been performed demonstrating a consequent increase of N6-methyladenosine (m6A) RNA. To further validate the pathway involving ALKBH5 inhibition by MV1035 in U87-MG reduced migration and invasiveness, we evaluated CD73 as possible downstream protein. CD73 is an extrinsic protein involved in the generation of adenosine and is overexpressed in several tumors including glioblastoma. We have demonstrated that treating U87-MG with MV1035, CD73 protein expression was reduced without altering CD73 transcription. Our results show that MV1035 is able to significantly reduce U87 cell line migration and invasiveness inhibiting ALKBH5, an RNA demethylase that can be considered an interesting target in fighting glioblastoma aggressiveness. Our data encourage to further investigate the MV1035 inhibitory effect on glioblastoma.
Collapse
Affiliation(s)
- Alessio Malacrida
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| | - Mirko Rivara
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, PR, Italy.
| | - Alessandro Di Domizio
- Department of Pharmacological and Biomolecular Sciences, University of Milano, via Balzaretti 9, 20133 Milano, Italy; SPILLOproject, via Stradivari 17, 20037 Paderno Dugnano, Milano, Italy(2)
| | - Giacomo Cislaghi
- SPILLOproject, via Stradivari 17, 20037 Paderno Dugnano, Milano, Italy(2)
| | - Mariarosaria Miloso
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| | - Valentina Zuliani
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, PR, Italy
| | - Gabriella Nicolini
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| |
Collapse
|
27
|
Pilžys T, Marcinkowski M, Kukwa W, Garbicz D, Dylewska M, Ferenc K, Mieczkowski A, Kukwa A, Migacz E, Wołosz D, Mielecki D, Klungland A, Piwowarski J, Poznański J, Grzesiuk E. ALKBH overexpression in head and neck cancer: potential target for novel anticancer therapy. Sci Rep 2019; 9:13249. [PMID: 31519943 PMCID: PMC6744417 DOI: 10.1038/s41598-019-49550-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023] Open
Abstract
The nine identified human homologues of E. coli AlkB 2-oxoglutarate (2OG) and Fe(II)-dependent dioxygenase, ALKBH1-8 and FTO, display different substrate specificities and diverse biological functions. Here we discovered the combined overexpression of members of the ALKBH family in head and neck squamous cell carcinomas (HNSCC). We found direct correlation of ALKBH3 and FTO expression with primary HNSCC tumor size. We observed unidentified thus far cytoplasmic localization of ALKBH2 and 5 in HNSCC, suggesting abnormal role(s) of ALKBH proteins in cancer. Further, high expression of ALKBHs was observed not only in HNSCC, but also in several cancerous cell lines and silencing ALKBH expression in HeLa cancer cells resulted in dramatically decreased survival. Considering the discovered impact of high expression of ALKBH proteins on HNSCC development, we screened for ALKBH blockers among newly synthetized anthraquinone derivatives and demonstrated their potential to support standard anticancer therapy.
Collapse
Affiliation(s)
- Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Kukwa
- Department of Otolaryngology, Medical University of Warsaw, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Dylewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Ferenc
- Veterinary Research Centre and Center for Biomedical Research, Department of Large Animal Diseases with the Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Kukwa
- Department of Otolaryngology, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Migacz
- Department of Otolaryngology, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Wołosz
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Jan Piwowarski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
28
|
Li Z, Zhao P, Xia Q. Epigenetic Methylations on N6-Adenine and N6-Adenosine with the same Input but Different Output. Int J Mol Sci 2019; 20:ijms20122931. [PMID: 31208067 PMCID: PMC6627651 DOI: 10.3390/ijms20122931] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
Epigenetic modifications on individual bases in DNA and RNA can encode inheritable genetic information beyond the canonical bases. Among the nucleic acid modifications, DNA N6-methadenine (6mA) and RNA N6-methyladenosine (m6A) have recently been well-studied due to the technological development of detection strategies and the functional identification of modification enzymes. The current findings demonstrate a wide spectrum of 6mA and m6A distributions from prokaryotes to eukaryotes and critical roles in multiple cellular processes. It is interesting that the processes of modification in which the methyl group is added to adenine and adenosine are the same, but the outcomes of these modifications in terms of their physiological impacts in organisms are quite different. In this review, we summarize the latest progress in the study of enzymes involved in the 6mA and m6A methylation machinery, including methyltransferases and demethylases, and their functions in various biological pathways. In particular, we focus on the mechanisms by which 6mA and m6A regulate the expression of target genes, and we highlight the future challenges in epigenetic regulation.
Collapse
Affiliation(s)
- Zhiqing Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| |
Collapse
|