1
|
Song N, Huang Y, Zhou X, Li D, Liu W, Li X. Potential role of lysine acetylation in the stepwise adaptation of Candida albicans to fluconazole. Microbiol Spectr 2025:e0279724. [PMID: 40231831 DOI: 10.1128/spectrum.02797-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
Candida albicans is an opportunistic fungal pathogen capable of causing superficial mucosal and systemic infections, sometimes leading to life-threatening conditions. The increasing resistance of C. albicans to azole antifungals has become a significant challenge in clinical treatment. Lysine acetylation (KAc) is a well-studied post-translational modification that plays crucial roles in various biological processes. However, its impact on antifungal resistance in C. albicans remains poorly understood. Five strains of C. albicans isolated from the same patient, representing different stages of acquired fluconazole resistance in vivo, were used in this study to investigate the potential regulatory mechanism of KAc on the development of azole resistance in C. albicans. Quantitative proteomic analysis using tandem mass tag (TMT) labeling, acetylation enrichment, and liquid chromatography-mass spectrometry (LC-MS) was conducted on these five strains. We divided all strains into four comparison groups and identified a total of 1,796 lysine acetylation sites across 938 proteins, with quantitative data available for 1,314 acetylation sites in 712 proteins. Analysis of 155 significantly differentially modified sites revealed that the acetylation levels of key proteins involved in the conversion of pyruvate to acetyl-CoA for entry into the tricarboxylic acid (TCA) cycle for energy production were initially decreased and then increased during the acquisition of fluconazole resistance. Additionally, the acetylation levels of proteins involved in ribosome synthesis, translation processes, and amino acid synthesis were found to increase. Therefore, lysine acetylation in C. albicans may contribute to azole resistance by regulating energy metabolism and protein synthesis. I Candida albicans, an opportunistic fungal pathogen, presents significant clinical challenges due to its escalating resistance to azole antifungals, especially fluconazole. This study investigates the role of lysine acetylation in the development of azole resistance using multiple strains isolated from a single patient with varying resistance levels. Through advanced proteomic analysis, we identified numerous lysine acetylation sites on proteins involved in key metabolic pathways. The results revealed a dynamic change in the acetylation of proteins related to energy metabolism - specifically, those connecting pyruvate to the tricarboxylic acid cycle-which correlated with the evolution of resistance. Additionally, increased acetylation was observed in proteins linked to ribosome synthesis and translation processes. These findings suggest that lysine acetylation is crucial for regulating metabolic and protein synthesis pathways, potentially influencing azole resistance in C. albicans.
Collapse
Affiliation(s)
- Nana Song
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Yuying Huang
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Xiaowei Zhou
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Weida Liu
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofang Li
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Cleere MM, Gardner KH. Optogenetic Control of Phosphate-Responsive Genes Using Single-Component Fusion Proteins in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:4085-4098. [PMID: 39531032 DOI: 10.1021/acssynbio.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Blue light illumination can be detected by light-oxygen-voltage (LOV) photosensing proteins and translated into a range of biochemical responses, facilitating the generation of novel optogenetic tools to control cellular function. Here, we develop new variants of our previously described VP-EL222 light-dependent transcription factor and apply them to study the phosphate-responsive signaling (PHO) pathway in the budding yeast Saccharomyces cerevisiae, exemplifying the utilities of these new tools. Focusing first on the VP-EL222 protein itself, we quantified the tunability of gene expression as a function of light intensity and duration and demonstrated that this system can tolerate the addition of substantially larger effector domains without impacting function. We further demonstrated the utility of several EL222-driven transcriptional controllers in both plasmid and genomic settings, using the PHO5 and PHO84 promoters in their native chromosomal contexts as examples. These studies highlight the utility of light-controlled gene activation using EL222 tethered to either artificial transcription domains or yeast activator proteins (Pho4). Similarly, we demonstrate the ability to optogenetically repress gene expression with EL222 fused to the yeast Ume6 protein. We finally investigated the effects of moving EL222 recruitment sites to different locations within the PHO5 and PHO84 promoters, as well as determining how this artificial light-controlled regulation could be integrated with the native controls dependent on inorganic phosphate (Pi) availability. Taken together, our work expands the applicability of these versatile optogenetic tools in the types of functionalities that they can deliver and the biological questions that can be probed.
Collapse
Affiliation(s)
- Matthew M Cleere
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York 10031, United States
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York 10031, United States
- Biochemistry, Chemistry, and Biology Ph.D. Programs, Graduate Center, City University of New York, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, City College of New York, New York, New York 10031, United States
| |
Collapse
|
3
|
Cleere MM, Gardner KH. Optogenetic control of phosphate-responsive genes using single component fusion proteins in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.605841. [PMID: 39131330 PMCID: PMC11312615 DOI: 10.1101/2024.08.02.605841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Blue light illumination can be detected by Light-Oxygen-Voltage (LOV) photosensing proteins and translated into a range of biochemical responses, facilitating the generation of novel optogenetic tools to control cellular function. Here, we develop new variants of our previously described VP-EL222 light-dependent transcription factor and apply them to study the phosphate-responsive signaling (PHO) pathway in the budding yeast Saccharomyces cerevisiae, exemplifying the utilities of these new tools. Focusing first on the VP-EL222 protein itself, we quantified the tunability of gene expression as a function of light intensity and duration, and demonstrated that this system can tolerate the addition of substantially larger effector domains without impacting function. We further demonstrated the utility of several EL222-driven transcriptional controllers in both plasmid and genomic settings, using the PHO5 and PHO84 promoters in their native chromosomal contexts as examples. These studies highlight the utility of light-controlled gene activation using EL222 tethered to either artificial transcription domains or yeast activator proteins (Pho4). Similarly, we demonstrate the ability to optogenetically repress gene expression with EL222 fused to the yeast Ume6 protein. We finally investigated the effects of moving EL222 recruitment sites to different locations within the PHO5 and PHO84 promoters, as well as determining how this artificial light-controlled regulation could be integrated with the native controls dependent on inorganic phosphate (Pi) availability. Taken together, our work expands the applicability of these versatile optogenetic tools in the types of functionalities they can deliver and biological questions that can be probed.
Collapse
Affiliation(s)
- Matthew M. Cleere
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10016
| | - Kevin H. Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Biochemistry, Chemistry, and Biology Ph.D. Programs, Graduate Center, City University of New York, New York, NY 10016
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
| |
Collapse
|
4
|
Dent SYR. KAT tales: Functions of Gcn5 and PCAF lysine acetyltransferases in SAGA and ATAC. J Biol Chem 2024; 300:107744. [PMID: 39222683 PMCID: PMC11439848 DOI: 10.1016/j.jbc.2024.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
The Allis group identified Gcn5 as the first transcription-related lysine acetyltransferase in 1996, providing a molecular "missing link" between chromatin organization and gene regulation. This review will focus on functions subsequently identified for Gcn5 and the closely related PCAF protein, in the context of two major complexes, SAGA and ATAC, and how the study of these enzymes informs long standing questions regarding the importance of lysine acetylation.
Collapse
Affiliation(s)
- Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer, Center for Cancer Epigenetics, University of Texas M.D. Anderson/UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
5
|
Zhang R, An K, Gao Y, Zhang Z, Zhang X, Zhang X, Rossi V, Cao Y, Xiao J, Xin M, Du J, Hu Z, Liu J, Peng H, Ni Z, Sun Q, Yao Y. The transcription factor CAMTA2 interacts with the histone acetyltransferase GCN5 and regulates grain weight in wheat. THE PLANT CELL 2024; 36:koae261. [PMID: 39321218 PMCID: PMC11638106 DOI: 10.1093/plcell/koae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/22/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
Grain weight and size are major traits targeted in breeding to improve wheat (Triticum aestivum L.) yield. Here, we find that the histone acetyltransferase GENERAL CONTROL NONDEREPRESSIBLE 5 (GCN5) physically interacts with the calmodulin-binding transcription factor CAMTA2 and regulates wheat grain size and weight. gcn5 mutant grains were smaller and contained less starch. GCN5 promoted the expression of the starch biosynthesis genes SUCROSE SYNTHASE 2 (Sus2) and STARCH-BRANCHING ENZYME Ic (SBEIc) by regulating H3K9ac and H3K14ac levels in their promoters. Moreover, immunoprecipitation followed by mass spectrometry (IP-MS) revealed that CAMTA2 physically interacts with GCN5. The CAMTA2-GCN5 complex activated Sus2 and SBEIc by directly binding to their promoters and depositing H3K9ac and H3K14ac marks during wheat endosperm development. camta2 knockout mutants exhibited similar phenotypes to gcn5 mutants, including smaller grains that contained less starch. In gcn5 mutants, transcripts of high molecular weight (HMW) Glutenin (Glu) genes were downregulated, leading to reduced HMW glutenin protein levels, gluten content, and sodium dodecyl sulfate (SDS) sedimentation volume. However, the association of GCN5 with Glu genes was independent of CAMTA2, since GCN5 enrichment on Glu promoters was unchanged in camta2 knockouts. Finally, we identified a CAMTA2-AH3 elite allele that corresponded with enhanced grain size and weight, serving as a candidate gene for breeding wheat varieties with improved grain weight.
Collapse
Affiliation(s)
- Ruijie Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Kexin An
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yujiao Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaobang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xue Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, I-24126, Bergamo, Italy
| | - Yuan Cao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Xian J, Ni L, Liu C, Li J, Cao Y, Qin J, Liu D, Wang X. Genome-Scale Screening of Saccharomyces cerevisiae Deletion Mutants to Gain Molecular Insight into Tolerance to Mercury Ions. J Fungi (Basel) 2024; 10:492. [PMID: 39057376 PMCID: PMC11277898 DOI: 10.3390/jof10070492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Mercury (Hg) is a global pollutant and a bioaccumulative toxin that seriously affects the environment. Though increasing information has been obtained on the mechanisms involved in mercury toxicity, there is still a knowledge gap between the adverse effects and action mechanisms, especially at the molecular level. In the current study, we screened a diploid library of Saccharomyces cerevisiae single-gene deletion mutants to identify the nonessential genes associated with increased sensitivity to mercury ions. By genome-scale screening, we identified 64 yeast single-gene deletion mutants. These genes are involved in metabolism, transcription, antioxidant activity, cellular transport, transport facilitation, transport routes, and the cell cycle, as well as in protein synthesis, folding, modification, and protein destination. The concentration of mercury ions was different in the cells of yeast deletion mutants. Moreover, the disruption of antioxidant systems may play a key role in the mercurial toxic effects. The related functions of sensitive genes and signal pathways were further analyzed using bioinformatics-related technologies. Among 64 sensitive genes, 37 genes have human homologous analogs. Our results may provide a meaningful reference for understanding the action mode, cellular detoxification, and molecular regulation mechanisms of mercury toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xue Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (J.X.); (L.N.); (C.L.); (J.L.); (Y.C.); (J.Q.); (D.L.)
| |
Collapse
|
7
|
Li S, Chen F, Wei X, Yuan L, Qin J, Li R, Chen B. CpSmt3, an ortholog of small ubiquitin-like modifier, is essential for growth, organelle function, virulence, and antiviral defense in Cryphonectria parasitica. Front Microbiol 2024; 15:1391855. [PMID: 38784801 PMCID: PMC11111931 DOI: 10.3389/fmicb.2024.1391855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction SUMOylation is an important post-translational modification that regulates the expression, localization, and activity of substrate proteins, thereby participating in various important cellular processes such as the cell cycle, cell metabolism, gene transcription, and antiviral activity. However, the function of SUMOylation in phytopathogenic fungi has not yet been adequately explored. Methods A comprehensive analysis composed of proteomics, affinity pull-down, molecular and cellular approaches was performed to explore the roles of SUMOylation in Cryphonectria parasitica, the fungal pathogen responsible for chestnut blight. Results and discussion CpSmt3, the gene encoding the SUMO protein CpSmt3 in C. parasitica was identified and characterized. Deletion of the CpSmt3 gene resulted in defects in mycelial growth and hyphal morphology, suppression of sporulation, attenuation of virulence, weakening of stress tolerance, and elevated accumulation of hypovirus dsRNA. The ΔCpSmt3 deletion mutant exhibited an increase in mitochondrial ROS, swollen mitochondria, excess autophagy, and thickened cell walls. About 500 putative SUMO substrate proteins were identified by affinity pull-down, among which many were implicated in the cell cycle, ribosome, translation, and virulence. Proteomics and SUMO substrate analyses further revealed that deletion of CpSmt3 reduced the accumulation of CpRho1, an important protein that is involved in TOR signal transduction. Silencing of CpRho1 resulted in a phenotype similar to that of ΔCpSmt3, while overexpression of CpRho1 could partly rescue some of the prominent defects in ΔCpSmt3. Together, these findings demonstrate that SUMOylation by CpSmt3 is vitally important and provide new insights into the SUMOylation-related regulatory mechanisms in C. parasitica.
Collapse
Affiliation(s)
- Shuangcai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Fengyue Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiangyu Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Luying Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jiayao Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Yu Y, Zhao F, Yue Y, Zhao Y, Zhou DX. Lysine acetylation of histone acetyltransferase adaptor protein ADA2 is a mechanism of metabolic control of chromatin modification in plants. NATURE PLANTS 2024; 10:439-452. [PMID: 38326652 DOI: 10.1038/s41477-024-01623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Histone acetylation is a predominant active chromatin mark deposited by histone acetyltransferases (HATs) that transfer the acetyl group from acetyl coenzyme A (acetyl-CoA) to lysine ε-amino groups in histones. GENERAL CONTROL NON-REPRESSED PROTEIN 5 (GCN5) is one of the best-characterized HATs and functions in association with several adaptor proteins such as ADA2 within multiprotein HAT complexes. ADA2-GCN5 interaction increases GCN5 binding to acetyl-CoA and stimulates its HAT activity. It remains unclear whether the HAT activity of GCN5 (which acetylates not only histones but also cellular proteins) is regulated by acetyl-CoA levels, which vary greatly in cells under different metabolic and nutrition conditions. Here we show that the ADA2 protein itself is acetylated by GCN5 in rice cells. Lysine acetylation exposes ADA2 to a specific E3 ubiquitin ligase and reduces its protein stability. In rice plants, ADA2 protein accumulation reversely parallels its lysine acetylation and acetyl-CoA levels, both of which are dynamically regulated under varying growth conditions. Stress-induced ADA2 accumulation could stimulate GCN5 HAT activity to compensate for the reduced acetyl-CoA levels for histone acetylation. These results indicate that ADA2 lysine acetylation that senses cellular acetyl-CoA variations is a mechanism to regulate HAT activity and histone acetylation homeostasis in plants under changing environments.
Collapse
Affiliation(s)
- Yue Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Feng Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, France.
| |
Collapse
|
9
|
Barbosa K, Deshpande A, Perales M, Xiang P, Murad R, Pramod AB, Minkina A, Robertson N, Schischlik F, Lei X, Sun Y, Brown A, Amend D, Jeremias I, Doench JG, Humphries RK, Ruppin E, Shendure J, Mali P, Adams PD, Deshpande AJ. Transcriptional control of leukemogenesis by the chromatin reader SGF29. Blood 2024; 143:697-712. [PMID: 38048593 PMCID: PMC10900139 DOI: 10.1182/blood.2023021234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
ABSTRACT Aberrant expression of stem cell-associated genes is a common feature in acute myeloid leukemia (AML) and is linked to leukemic self-renewal and therapy resistance. Using AF10-rearranged leukemia as a prototypical example of the recurrently activated "stemness" network in AML, we screened for chromatin regulators that sustain its expression. We deployed a CRISPR-Cas9 screen with a bespoke domain-focused library and identified several novel chromatin-modifying complexes as regulators of the TALE domain transcription factor MEIS1, a key leukemia stem cell (LSC)-associated gene. CRISPR droplet sequencing revealed that many of these MEIS1 regulators coordinately controlled the transcription of several AML oncogenes. In particular, we identified a novel role for the Tudor-domain-containing chromatin reader protein SGF29 in the transcription of AML oncogenes. Furthermore, SGF29 deletion impaired leukemogenesis in models representative of multiple AML subtypes in multiple AML subtype models. Our studies reveal a novel role for SGF29 as a nononcogenic dependency in AML and identify the SGF29 Tudor domain as an attractive target for drug discovery.
Collapse
Affiliation(s)
- Karina Barbosa
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Anagha Deshpande
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Marlenne Perales
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Ping Xiang
- British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Rabi Murad
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Akula Bala Pramod
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Anna Minkina
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Neil Robertson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Fiorella Schischlik
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Xue Lei
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Younguk Sun
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Adam Brown
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Munich, Germany
| | - Diana Amend
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Munich, Germany
| | | | | | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, San Diego, CA
| | - Peter D. Adams
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Aniruddha J. Deshpande
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| |
Collapse
|
10
|
Barman P, Chakraborty P, Bhaumik R, Bhaumik SR. UPS writes a new saga of SAGA. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194981. [PMID: 37657588 PMCID: PMC10843445 DOI: 10.1016/j.bbagrm.2023.194981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
SAGA (Spt-Ada-Gcn5-Acetyltransferase), an evolutionarily conserved transcriptional co-activator among eukaryotes, is a large multi-subunit protein complex with two distinct enzymatic activities, namely HAT (Histone acetyltransferase) and DUB (De-ubiquitinase), and is targeted to the promoter by the gene-specific activator proteins for histone covalent modifications and PIC (Pre-initiation complex) formation in enhancing transcription (or gene activation). Targeting of SAGA to the gene promoter is further facilitated by the 19S RP (Regulatory particle) of the 26S proteasome (that is involved in targeted degradation of protein via ubiquitylation) in a proteolysis-independent manner. Moreover, SAGA is also recently found to be regulated by the 26S proteasome in a proteolysis-dependent manner via the ubiquitylation of its Sgf73/ataxin-7 component that is required for SAGA's integrity and DUB activity (and hence transcription), and is linked to various diseases including neurodegenerative disorders and cancer. Thus, SAGA itself and its targeting to the active gene are regulated by the UPS (Ubiquitin-proteasome system) with implications in diseases.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA.
| |
Collapse
|
11
|
Yan K, Ji Q, Zhao D, Li M, Sun X, Wang Z, Liu X, Liu Z, Li H, Ding Y, Wang S, Belmonte JCI, Qu J, Zhang W, Liu GH. SGF29 nuclear condensates reinforce cellular aging. Cell Discov 2023; 9:110. [PMID: 37935676 PMCID: PMC10630320 DOI: 10.1038/s41421-023-00602-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/07/2023] [Indexed: 11/09/2023] Open
Abstract
Phase separation, a biophysical segregation of subcellular milieus referred as condensates, is known to regulate transcription, but its impacts on physiological processes are less clear. Here, we demonstrate the formation of liquid-like nuclear condensates by SGF29, a component of the SAGA transcriptional coactivator complex, during cellular senescence in human mesenchymal progenitor cells (hMPCs) and fibroblasts. The Arg 207 within the intrinsically disordered region is identified as the key amino acid residue for SGF29 to form phase separation. Through epigenomic and transcriptomic analysis, our data indicated that both condensate formation and H3K4me3 binding of SGF29 are essential for establishing its precise chromatin location, recruiting transcriptional factors and co-activators to target specific genomic loci, and initiating the expression of genes associated with senescence, such as CDKN1A. The formation of SGF29 condensates alone, however, may not be sufficient to drive H3K4me3 binding or achieve transactivation functions. Our study establishes a link between phase separation and aging regulation, highlighting nuclear condensates as a functional unit that facilitate shaping transcriptional landscapes in aging.
Collapse
Affiliation(s)
- Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongxin Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingheng Li
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Sun
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Zehua Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoqian Liu
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zunpeng Liu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongyu Li
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingjie Ding
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Li K, Mocciaro G, Griffin JL, Zhang N. The Saccharomyces cerevisiae acetyltransferase Gcn5 exerts antagonistic pleiotropic effects on chronological ageing. Aging (Albany NY) 2023; 15:10915-10937. [PMID: 37874684 PMCID: PMC10637828 DOI: 10.18632/aging.205109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023]
Abstract
Compared to replicative lifespan, epigenetic regulation of chronological lifespan (CLS) is less well understood in yeast. Here, by screening all the viable mutants of histone acetyltransferase (HAT) and histone deacetylase (HDAC), we demonstrate that Gcn5, functioning in the HAT module of the SAGA/SLIK complex, exhibits an epistatic relationship with the HDAC Hda1 to control the expression of starvation-induced stress response and respiratory cell growth. Surprisingly, the gcn5Δ mutants lose their colony-forming potential early in the stationary phase but display a longer maximum CLS than their WT counterparts, suggesting the contradictory roles of Gcn5 in lifespan regulation. Integrative analyses of the transcriptome, metabolome and ChIP assays reveal that Gcn5 is necessary for the activation of two regulons upon glucose starvation: the Msn2/4-/Gis1-dependent stress response and the Cat8-/Adr1-mediated metabolic reprogramming, to enable pro-longevity characteristics, including redox homeostasis, stress resistance and maximal storage of carbohydrates. The activation of Cat8-/Adr1-dependent regulon also promotes the pyruvate dehydrogenase (PDH) bypass, leading to acetyl-CoA synthesis, global and targeted H3K9 acetylation. Global H3K9 acetylation levels mediated by Gcn5 and Hda1 during the transition into stationary phase are positively correlated with senescent cell populations accumulated in the aged cell cultures. These data suggest that Gcn5 lies in the centre of a feed-forward loop between histone acetylation and starvation-induced gene expression, enabling stress resistance and homeostasis but also promoting chronological ageing concomitantly.
Collapse
Affiliation(s)
- Kaiqiang Li
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Gabriele Mocciaro
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Jules L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Rowett Institute, University of Aberdeen, Foresterhill Campus, Aberdeen AB25 2ZD, UK
| | - Nianshu Zhang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
13
|
Ji K, Li L, Liu H, Shen Y, Jiang J, Zhang M, Teng H, Yan X, Zhang Y, Cai Y, Zhou H. Unveiling the role of GAS41 in cancer progression. Cancer Cell Int 2023; 23:245. [PMID: 37853482 PMCID: PMC10583379 DOI: 10.1186/s12935-023-03098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
GAS41, a member of the human YEATS domain family, plays a pivotal role in human cancer development. It serves as a highly promising epigenetic reader, facilitating precise regulation of cell growth and development by recognizing essential histone modifications, including histone acetylation, benzoylation, succinylation, and crotonylation. Functional readouts of these histone modifications often coincide with cancer progression. In addition, GAS41 functions as a novel oncogene, participating in numerous signaling pathways. Here, we summarize the epigenetic functions of GAS41 and its role in the carcinoma progression. Moving forward, elucidating the downstream target oncogenes regulated by GAS41 and the developing small molecule inhibitors based on the distinctive YEATS recognition properties will be pivotal in advancing this research field.
Collapse
Affiliation(s)
- Kangkang Ji
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Li Li
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hui Liu
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yucheng Shen
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Jian Jiang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Minglei Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hongwei Teng
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Xun Yan
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yanhua Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yong Cai
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hai Zhou
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China.
| |
Collapse
|
14
|
Barman P, Kaja A, Chakraborty P, Guha S, Roy A, Ferdoush J, Bhaumik SR. A novel ubiquitin-proteasome system regulation of Sgf73/ataxin-7 that maintains the integrity of the coactivator SAGA in orchestrating transcription. Genetics 2023; 224:iyad071. [PMID: 37075097 PMCID: PMC10324951 DOI: 10.1093/genetics/iyad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/20/2023] Open
Abstract
Ataxin-7 maintains the integrity of Spt-Ada-Gcn5-Acetyltransferase (SAGA), an evolutionarily conserved coactivator in stimulating preinitiation complex (PIC) formation for transcription initiation, and thus, its upregulation or downregulation is associated with various diseases. However, it remains unknown how ataxin-7 is regulated that could provide new insights into disease pathogenesis and therapeutic interventions. Here, we show that ataxin-7's yeast homologue, Sgf73, undergoes ubiquitylation and proteasomal degradation. Impairment of such regulation increases Sgf73's abundance, which enhances recruitment of TATA box-binding protein (TBP) (that nucleates PIC formation) to the promoter but impairs transcription elongation. Further, decreased Sgf73 level reduces PIC formation and transcription. Thus, Sgf73 is fine-tuned by ubiquitin-proteasome system (UPS) in orchestrating transcription. Likewise, ataxin-7 undergoes ubiquitylation and proteasomal degradation, alteration of which changes ataxin-7's abundance that is associated with altered transcription and cellular pathologies/diseases. Collectively, our results unveil a novel UPS regulation of Sgf73/ataxin-7 for normal cellular health and implicate alteration of such regulation in diseases.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX-77030, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Arpan Roy
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Jannatul Ferdoush
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
15
|
Haile ST, Rahman S, Fields JK, Orsburn BC, Bumpus NN, Wolberger C. The SAGA HAT module is tethered by its SWIRM domain and modulates activity of the SAGA DUB module. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194929. [PMID: 36965704 PMCID: PMC10226619 DOI: 10.1016/j.bbagrm.2023.194929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/12/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is a transcriptional co-activator that both acetylates and deubiquitinates histones. The histone acetyltransferase (HAT) subunit, Gcn5, is part of a subcomplex of SAGA called the HAT module. A minimal HAT module complex containing Gcn5 bound to Ada2 and Ada3 is required for full Gcn5 activity on nucleosomes. Deletion studies have suggested that the Ada2 SWIRM domain plays a role in tethering the HAT module to the remainder of SAGA. While recent cryo-EM studies have resolved the structure of the core of the SAGA complex, the HAT module subunits and molecular details of its interactions with the SAGA core could not be resolved. Here we show that the SWIRM domain is required for incorporation of the HAT module into the yeast SAGA complex, but not the ADA complex, a distinct six-protein acetyltransferase complex that includes the SAGA HAT module proteins. In the isolated Gcn5/Ada2/Ada3 HAT module, deletion of the SWIRM domain modestly increased activity but had negligible effect on nucleosome binding. Loss of the HAT module due to deletion of the SWIRM domain decreases the H2B deubiquitinating activity of SAGA, indicating a role for the HAT module in regulating SAGA DUB module activity. A model of the HAT module created with Alphafold Multimer provides insights into the structural basis for our biochemical data, as well as prior deletion studies.
Collapse
Affiliation(s)
- Sara T Haile
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America
| | - Sanim Rahman
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America
| | - James K Fields
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America.
| |
Collapse
|
16
|
Gao J, Song C, Zhang J, Hu Y, Shao Y. Mrada3 is required for sexual reproduction and secondary metabolite production in industrial fungi Monascus strain. J Appl Microbiol 2022; 133:591-606. [PMID: 35451171 DOI: 10.1111/jam.15586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/23/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022]
Abstract
AIMS Monascus spp. are valuable industrial fungi for producing beneficial compounds. Since sporulation is often coupled with the production of secondary metabolites, the current study was performed to investigate how Mrada3 regulated asexual and sexual development and the production of edible pigments and mycotoxin. METHODS AND RESULTS The functional characteristics of Mrada3 were identified by gene deletion and overexpression in Monascus ruber M7 (the wild-type, WT). The results revealed that the ΔMrada3 strain aborted sexual development, but it produced many more conidia than WT. RNA-Seq data showed the deletion of Mrada3 altered the expression levels of partial genes involved in sexual and asexual development. In addition, the deletion of Mrada3 also resulted in slower growth, lower pigment production, and increased citrinin yield at the late period. For the Mrada3-overexpressed strain, the number of ascospores and pigment content were significantly higher than those of WT, but citrinin was slightly lower than that of WT. CONCLUSIONS The Mrada3 gene plays a vital role in the sporulation development and secondary metabolism of Monascus species. SIGNIFICANCE AND IMPACT OF THE STUDY Mrada3 is first identified as an essential regulator for sexual development in Monascus species, enriching the regulatory knowledge of sexual development in filamentous fungi.
Collapse
Affiliation(s)
- Jing Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Cuina Song
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei International Scientific and Technological Cooperation Base of Traditionally Fermented Foods, Wuhan, Hubei, China
| | - Yifan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei International Scientific and Technological Cooperation Base of Traditionally Fermented Foods, Wuhan, Hubei, China
| |
Collapse
|
17
|
Geng Q, Li H, Wang D, Sheng RC, Zhu H, Klosterman SJ, Subbarao KV, Chen JY, Chen FM, Zhang DD. The Verticillium dahliae Spt-Ada-Gcn5 Acetyltransferase Complex Subunit Ada1 Is Essential for Conidia and Microsclerotia Production and Contributes to Virulence. Front Microbiol 2022; 13:852571. [PMID: 35283850 PMCID: PMC8905346 DOI: 10.3389/fmicb.2022.852571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Verticillium dahliae is a destructive soil-borne pathogen of many economically important dicots. The genetics of pathogenesis in V. dahliae has been extensively studied. Spt-Ada-Gcn5 acetyltransferase complex (SAGA) is an ATP-independent multifunctional chromatin remodeling complex that contributes to diverse transcriptional regulatory functions. As members of the core module in the SAGA complex in Saccharomyces cerevisiae, Ada1, together with Spt7 and Spt20, play an important role in maintaining the integrity of the complex. In this study, we identified homologs of the SAGA complex in V. dahliae and found that deletion of the Ada1 subunit (VdAda1) causes severe defects in the formation of conidia and microsclerotia, and in melanin biosynthesis and virulence. The effect of VdAda1 on histone acetylation in V. dahliae was confirmed by western blot analysis. The deletion of VdAda1 resulted in genome-wide alteration of the V. dahliae transcriptome, including genes encoding transcription factors and secreted proteins, suggesting its prominent role in the regulation of transcription and virulence. Overall, we demonstrated that VdAda1, a member of the SAGA complex, modulates multiple physiological processes by regulating global gene expression that impinge on virulence and survival in V. dahliae.
Collapse
Affiliation(s)
- Qi Geng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Huan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dan Wang
- Team of Crop Verticillium Wilt, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruo-Cheng Sheng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - He Zhu
- National Cotton Industry Technology System Liaohe Comprehensive Experimental Station, The Cotton Research Center of Liaoning Academy of Agricultural Sciences, Liaoning Provincial Institute of Economic Crops, Liaoyang, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, United States
| | - Krishna V Subbarao
- Department of Plant Pathology, c/o U.S. Agricultural Research Station, University of California, Davis, Salinas, CA, United States
| | - Jie-Yin Chen
- Team of Crop Verticillium Wilt, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng-Mao Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dan-Dan Zhang
- Team of Crop Verticillium Wilt, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Faulkner S, Maksimovic I, David Y. A chemical field guide to histone nonenzymatic modifications. Curr Opin Chem Biol 2021; 63:180-187. [PMID: 34157651 DOI: 10.1016/j.cbpa.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022]
Abstract
Histone nonenzymatic covalent modifications (NECMs) have recently emerged as an understudied class of posttranslational modifications that regulate chromatin structure and function. These NECMs alter the surface topology of histone proteins, their interactions with DNA and chromatin regulators, as well as compete for modification sites with enzymatic posttranslational modifications. NECM formation depends on the chemical compatibility between a reactive molecule and its target site, in addition to their relative stoichiometries. Here we survey the chemical reactions and conditions that govern the addition of NECMs onto histones as a manual to guide the identification of new physiologically relevant chemical adducts. Characterizing NECMs on chromatin is critical to attain a comprehensive understanding of this new chapter of the so-called "histone code".
Collapse
Affiliation(s)
- Sarah Faulkner
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Igor Maksimovic
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States; Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, United States
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States; Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, United States; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10065, United States.
| |
Collapse
|
19
|
Nuño-Cabanes C, García-Molinero V, Martín-Expósito M, Gas ME, Oliete-Calvo P, García-Oliver E, de la Iglesia-Vayá M, Rodríguez-Navarro S. SAGA-CORE subunit Spt7 is required for correct Ubp8 localization, chromatin association and deubiquitinase activity. Epigenetics Chromatin 2020; 13:46. [PMID: 33115507 PMCID: PMC7594455 DOI: 10.1186/s13072-020-00367-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Histone H2B deubiquitination is performed by numerous deubiquitinases in eukaryotic cells including Ubp8, the catalytic subunit of the tetrameric deubiquitination module (DUBm: Ubp8; Sus1; Sgf11; Sgf73) of the Spt-Ada-Gcn5 acetyltransferase (SAGA). Ubp8 is linked to the rest of SAGA through Sgf73 and is activated by the adaptors Sus1 and Sgf11. It is unknown if DUBm/Ubp8 might also work in a SAGA-independent manner. Results Here we report that a tetrameric DUBm is assembled independently of the SAGA–CORE components SPT7, ADA1 and SPT20. In the absence of SPT7, i.e., independent of the SAGA complex, Ubp8 and Sus1 are poorly recruited to SAGA-dependent genes and to chromatin. Notably, cells lacking Spt7 or Ada1, but not Spt20, show lower levels of nuclear Ubp8 than wild-type cells, suggesting a possible role for SAGA–CORE subunits in Ubp8 localization. Last, deletion of SPT7 leads to defects in Ubp8 deubiquitinase activity in in vivo and in vitro assays. Conclusions Collectively, our studies show that the DUBm tetrameric structure can form without a complete intact SAGA–CORE complex and that it includes full-length Sgf73. However, subunits of this SAGA–CORE influence DUBm association with chromatin, its localization and its activity.
Collapse
Affiliation(s)
- Carme Nuño-Cabanes
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), C/Jaume Roig 11, 46010, Valencia, Spain.,Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - Varinia García-Molinero
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - Manuel Martín-Expósito
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), C/Jaume Roig 11, 46010, Valencia, Spain.,Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - María-Eugenia Gas
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - Paula Oliete-Calvo
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - Encar García-Oliver
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - María de la Iglesia-Vayá
- Brain Connectivity Lab. Joint Unit FISABIO & Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), C/Jaume Roig 11, 46010, Valencia, Spain. .,Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain.
| |
Collapse
|