1
|
Chowdhury SR, Shilpi A, Felsenfeld G. RNA Pol-II transcripts in nucleolar associated domains of cancer cell nucleoli. Nucleus 2025; 16:2468597. [PMID: 39987497 PMCID: PMC11849958 DOI: 10.1080/19491034.2025.2468597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/03/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
We performed a comparative study of the non-ribosomal gene content of nucleoli from seven cancer cell lines, using identical methods of purification and analysis. We identified unique chromosomal domains associated with the nucleolus (NADs) and genes within these domains (NAGs). Four cell lines have relatively few NAGs, which appears mostly transcriptionally inactive, consistent with literature. The remaining three lines formed a separate group with nucleoli with unique features and NADS. They constitute larger number of common NAGs, marked by ATAC-seq and having accessible promoters, with histone markers for transcriptional activity and detectable RNA Pol II bound at their promoters. The transcripts of these genes are almost entirely exported from the nucleolus. These results indicate that RNA Pol II dependent transcription in NADs can vary widely in different cell types, presumably dependent on the cell's developmental stage. Nucleolus-associated genes are likely to be distinguished marks reflecting the cell's metabolism.
Collapse
Affiliation(s)
- Soumya Roy Chowdhury
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Arunima Shilpi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
| | | |
Collapse
|
2
|
Qiu GH, Fu M, Zheng X, Huang C. Protection of the genome and the central exome by peripheral non-coding DNA against DNA damage in health, ageing and age-related diseases. Biol Rev Camb Philos Soc 2025; 100:508-529. [PMID: 39327815 DOI: 10.1111/brv.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
DNA in eukaryotic genomes is under constant assault from both exogenous and endogenous sources, leading to DNA damage, which is considered a major molecular driver of ageing. Fortunately, the genome and the central exome are safeguarded against these attacks by abundant peripheral non-coding DNA. Non-coding DNA codes for small non-coding RNAs that inactivate foreign nucleic acids in the cytoplasm and physically blocks these attacks in the nucleus. Damage to non-coding DNA produced during such blockage is removed in the form of extrachromosomal circular DNA (eccDNA) through nucleic pore complexes. Consequently, non-coding DNA serves as a line of defence for the exome against DNA damage. The total amount of non-coding DNA/heterochromatin declines with age, resulting in a decrease in both physical blockage and eccDNA exclusion, and thus an increase in the accumulation of DNA damage in the nucleus during ageing and in age-related diseases. Here, we summarize recent evidence supporting a protective role of non-coding DNA in healthy and pathological states and argue that DNA damage is the proximate cause of ageing and age-related genetic diseases. Strategies aimed at strengthening the protective role of non-coding DNA/heterochromatin could potentially offer better systematic protection for the dynamic genome and the exome against diverse assaults, reduce the burden of DNA damage to the exome, and thus slow ageing, counteract age-related genetic diseases and promote a healthier life for individuals.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Mingjun Fu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| |
Collapse
|
3
|
Bhat A, Bhan S, Kabiraj A, Pandita RK, Ramos KS, Nandi S, Sopori S, Sarkar PS, Dhar A, Pandita S, Kumar R, Das C, Tainer JA, Pandita TK. A predictive chromatin architecture nexus regulates transcription and DNA damage repair. J Biol Chem 2025; 301:108300. [PMID: 39947477 PMCID: PMC11931391 DOI: 10.1016/j.jbc.2025.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 03/28/2025] Open
Abstract
Genomes are blueprints of life essential for an organism's survival, propagation, and evolutionary adaptation. Eukaryotic genomes comprise of DNA, core histones, and several other nonhistone proteins, packaged into chromatin in the tiny confines of nucleus. Chromatin structural organization restricts transcription factors to access DNA, permitting binding only after specific chromatin remodeling events. The fundamental processes in living cells, including transcription, replication, repair, and recombination, are thus regulated by chromatin structure through ATP-dependent remodeling, histone variant incorporation, and various covalent histone modifications including phosphorylation, acetylation, and ubiquitination. These modifications, particularly involving histone variant H2AX, furthermore play crucial roles in DNA damage responses by enabling repair protein's access to damaged DNA. Chromatin also stabilizes the genome by regulating DNA repair mechanisms while suppressing damage from endogenous and exogenous sources. Environmental factors such as ionizing radiations induce DNA damage, and if repair is compromised, can lead to chromosomal abnormalities and gene amplifications as observed in several tumor types. Consequently, chromatin architecture controls the genome fidelity and activity: it orchestrates correct gene expression, genomic integrity, DNA repair, transcription, replication, and recombination. This review considers connecting chromatin organization to functional outcomes impacting transcription, DNA repair and genomic integrity as an emerging grand challenge for predictive molecular cell biology.
Collapse
Affiliation(s)
- Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India.
| | - Sonali Bhan
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Aindrila Kabiraj
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Raj K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Keneth S Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Shreya Sopori
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Parthas S Sarkar
- Department of Neurobiology and Neurology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Telangana, India
| | | | - Rakesh Kumar
- Department of Biotechnology, Shri Mata Vaishnav Devi University, Katra, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India.
| | - John A Tainer
- Department of Molecular & Cellular Oncology and Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA.
| |
Collapse
|
4
|
Ataei L, Zhang J, Monis S, Giemza K, Mittal K, Yang J, Shimomura M, McStay B, Wilson MD, Ramalho-Santos M. LINE1 elements at distal junctions of rDNA repeats regulate nucleolar organization in human embryonic stem cells. Genes Dev 2025; 39:280-298. [PMID: 39797762 PMCID: PMC11795452 DOI: 10.1101/gad.351979.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes. Distal junctions (DJs) are ∼400 kb sequences adjacent to rDNA arrays that are thought to anchor them at the nucleolus, although the underlying regulatory elements remain unclear. Here we show that DJs display a dynamic chromosome conformation profile in human embryonic stem cells (hESCs). We identified a primate-specific, full-length insertion of the retrotransposon long interspersed nuclear element 1 (LINE1) in a conserved position across all human DJs. This DJ-LINE1 locus interacts with specific regions of the DJ and is upregulated in naïve hESCs. CRISPR-based deletion and interference approaches revealed that DJ-LINE1 contributes to nucleolar positioning of the DJs. Moreover, we found that the expression of DJ-LINE1 is required for maintenance of the structure and transcriptional output of the nucleolus in hESCs. Silencing of DJ-LINE1 leads to loss of self-renewal, disruption of the landscape of chromatin accessibility, and derepression of earlier developmental programs in naïve hESCs. This work uncovers specific LINE1 elements with a fundamental role in nucleolar organization in hESCs and provides new insights into how the nucleolus functions as a key genome-organizing hub.
Collapse
Affiliation(s)
- Lamisa Ataei
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Juan Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada
| | - Simon Monis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Genetics and Genome Biology Program, the Hospital for Sick Children (SickKids) Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Krystyna Giemza
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Kirti Mittal
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada
| | - Joshua Yang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mayu Shimomura
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Brian McStay
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Genetics and Genome Biology Program, the Hospital for Sick Children (SickKids) Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada;
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
5
|
Tran TTQ, Do TH, Pham TT, Luu PTT, Pham OM, Nguyen UQ, Vuong LD, Nguyen QN, Mai TV, Ho SV, Nguyen TT, Vo LTT. Hypermethylation at 45S rDNA promoter in cancers. PLoS One 2025; 20:e0311085. [PMID: 39775079 PMCID: PMC11706406 DOI: 10.1371/journal.pone.0311085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 01/11/2025] Open
Abstract
The ribosomal genes (rDNA genes) encode 47S rRNA which accounts for up to 80% of all cellular RNA. At any given time, no more than 50% of rDNA genes are actively transcribed, and the other half is silent by forming heterochromatin structures through DNA methylation. In cancer cells, upregulation of ribosome biogenesis has been recognized as a hallmark feature, thus, the reduced methylation of rDNA promoter has been thought to support conformational changes of chromatin accessibility and the subsequent increase in rDNA transcription. However, an increase in the heterochromatin state through rDNA hypermethylation can be a protective mechanism teetering on the brink of a threshold where cancer cells rarely successfully proliferate. Hence, clarifying hypo- or hypermethylation of rDNA will unravel its additional cellular functions, including organization of genome architecture and regulation of gene expression, in response to growth signaling, cellular stressors, and carcinogenesis. Using the bisulfite-based quantitative real-time methylation-specific PCR (qMSP) method after ensuring unbiased amplification and complete bisulfite conversion of the minuscule DNA amount of 1 ng, we established that the rDNA promoter was significantly hypermethylated in 107 breast, 65 lung, and 135 colon tumour tissue samples (46.81%, 51.02% and 96.60%, respectively) as compared with their corresponding adjacent normal samples (26.84%, 38.26% and 77.52%, respectively; p < 0.0001). An excessive DNA input of 1 μg resulted in double-stranded rDNA remaining unconverted even after bisulfite conversion, hence the dramatic drop in the single-stranded DNA that strictly required for bisulfite conversion, and leading to an underestimation of rDNA promoter methylation, in other words, a faulty hypomethylation status of the rDNA promoter. Our results are in line with the hypothesis that an increase in rDNA methylation is a natural pathway protecting rDNA repeats that are extremely sensitive to DNA damage in cancer cells.
Collapse
Affiliation(s)
- Trang Thi Quynh Tran
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- VNU Institute of Microbiology and Biotechnology
| | - Trang Hien Do
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Tung The Pham
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Phương Thi Thu Luu
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Oanh Minh Pham
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | | | | | | | | | - Son Van Ho
- Department of Chemistry, 175 Hospital, Ho Chi Minh City, Vietnam
| | - Than Thi Nguyen
- Department of Chemistry, 175 Hospital, Ho Chi Minh City, Vietnam
| | - Lan Thi Thuong Vo
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- VNU Institute of Microbiology and Biotechnology
| |
Collapse
|
6
|
Lazarchuk P, Nguyen MM, Curca CM, Pavlova MN, Oshima J, Sidorova JM. Werner syndrome RECQ helicase participates in and directs maintenance of the protein complexes of constitutive heterochromatin in proliferating human cells. Aging (Albany NY) 2024; 16:12977-13011. [PMID: 39422615 PMCID: PMC11552638 DOI: 10.18632/aging.206132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Werner syndrome of premature aging is caused by mutations in the WRN RECQ helicase/exonuclease, which functions in DNA replication, repair, transcription, and telomere maintenance. How the loss of WRN accelerates aging is not understood in full. Here we show that WRN is necessary for optimal constitutive heterochromatin levels in proliferating human fibroblasts. Locally, WRN deficiency derepresses SATII pericentromeric satellite repeats but does not reduce replication fork progression on SATII repeats. Globally, WRN loss reduces a subset of protein-protein interactions responsible for the organization of constitutive heterochromatin in the nucleus, namely, the interactions involving Lamin B1 and Lamin B receptor, LBR. Both the mRNA level and subcellular distribution of LBR are affected by WRN deficiency, and unlike the former, the latter phenotype does not require WRN catalytic activities. The phenotypes of heterochromatin disruption seen in WRN-deficient proliferating fibroblasts are also observed in WRN-proficient fibroblasts undergoing replicative or oncogene-induced senescence. WRN interacts with histone deacetylase 2, HDAC2; WRN/HDAC2 association is mediated by heterochromatin protein alpha, HP1α, and WRN complexes with HP1α and HDAC2 are downregulated in senescing cells. The data suggest that the effect of WRN loss on heterochromatin is separable from senescence program, but mimics at least some of the heterochromatin changes associated with it.
Collapse
Affiliation(s)
- Pavlo Lazarchuk
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matthew Manh Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Crina M. Curca
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Parse Biosciences, Seattle, WA 98109, USA
| | - Maria N. Pavlova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Junko Oshima
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Julia M. Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Rajshekar S, Adame-Arana O, Bajpai G, Colmenares S, Lin K, Safran S, Karpen GH. Affinity hierarchies and amphiphilic proteins underlie the co-assembly of nucleolar and heterochromatin condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.06.547894. [PMID: 37808710 PMCID: PMC10557603 DOI: 10.1101/2023.07.06.547894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Nucleoli are surrounded by Pericentromeric Heterochromatin (PCH), reflecting a close spatial association between the two largest biomolecular condensates in eukaryotic nuclei. Nucleoli are the sites of ribosome synthesis, while the repeat-rich PCH is essential for chromosome segregation, genome stability, and transcriptional silencing. How and why these two distinct condensates co-assemble is unclear. Here, using high-resolution live imaging of Drosophila embryogenesis, we find that de novo establishment of PCH around the nucleolus is highly dynamic, transitioning from the nuclear edge to surrounding the nucleolus. Eliminating the nucleolus by removing the ribosomal RNA genes (rDNA) resulted in increased PCH compaction and subsequent reorganization into a toroidal structure. In addition, in embryos lacking rDNA, some nucleolar proteins were redistributed into new bodies or 'neocondensates', including enrichment in the PCH toroidal hole. Combining these observations with physical modeling revealed that nucleolar-PCH associations can be mediated by a hierarchy of interaction strengths between PCH, nucleoli, and 'amphiphilic' protein(s) that have affinities for both nucleolar and PCH components. We validated this model by identifying a candidate amphiphile, a DEAD-Box RNA Helicase called Pitchoune, whose depletion or mutation of its PCH interaction motif disrupted PCH-nucleolar associations. Together, this study unveils a dynamic program for establishing nucleolar-PCH associations during animal development, demonstrates that nucleoli are required for normal PCH organization, and identifies Pitchoune as an amphiphilic molecular link required for PCH-nucleolar associations.
Collapse
Affiliation(s)
- Srivarsha Rajshekar
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
| | - Omar Adame-Arana
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Gaurav Bajpai
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
- Department of Physics, Northeastern University, Boston, USA
| | - Serafin Colmenares
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
| | - Kyle Lin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
| | - Samuel Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Gary H Karpen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
- Division of Biological Sciences and the Environment, Lawrence Berkeley National Laboratory, Berkeley, USA
| |
Collapse
|
8
|
Strom AR, Kim Y, Zhao H, Chang YC, Orlovsky ND, Košmrlj A, Storm C, Brangwynne CP. Condensate interfacial forces reposition DNA loci and probe chromatin viscoelasticity. Cell 2024; 187:5282-5297.e20. [PMID: 39168125 DOI: 10.1016/j.cell.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
Biomolecular condensates assemble in living cells through phase separation and related phase transitions. An underappreciated feature of these dynamic molecular assemblies is that they form interfaces with other cellular structures, including membranes, cytoskeleton, DNA and RNA, and other membraneless compartments. These interfaces are expected to give rise to capillary forces, but there are few ways of quantifying and harnessing these forces in living cells. Here, we introduce viscoelastic chromatin tethering and organization (VECTOR), which uses light-inducible biomolecular condensates to generate capillary forces at targeted DNA loci. VECTOR can be utilized to programmably reposition genomic loci on a timescale of seconds to minutes, quantitatively revealing local heterogeneity in the viscoelastic material properties of chromatin. These synthetic condensates are built from components that naturally form liquid-like structures in living cells, highlighting the potential role for native condensates to generate forces and do work to reorganize the genome and impact chromatin architecture.
Collapse
Affiliation(s)
- Amy R Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Yoonji Kim
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Hongbo Zhao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Mechanical and Aerospace Engineering, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Yi-Che Chang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Natalia D Orlovsky
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Princeton Materials Institute, Princeton University, Princeton, NJ 08544, USA
| | - Cornelis Storm
- Eindhoven University of Technology, Department of Applied Physics and Science Education, Eindhoven, the Netherlands
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Princeton Materials Institute, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Chevy Chase, MD 21044, USA.
| |
Collapse
|
9
|
Schooley A, Venev SV, Aksenova V, Navarrete E, Dasso M, Dekker J. Interphase chromosome conformation is specified by distinct folding programs inherited via mitotic chromosomes or through the cytoplasm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613305. [PMID: 39345587 PMCID: PMC11429855 DOI: 10.1101/2024.09.16.613305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Identity-specific interphase chromosome conformation must be re-established each time a cell divides. To understand how interphase folding is inherited, we developed an experimental approach that physically segregates mediators of G1 folding that are intrinsic to mitotic chromosomes from cytoplasmic factors. Proteins essential for nuclear transport, RanGAP1 and Nup93, were degraded in pro-metaphase arrested DLD-1 cells to prevent the establishment of nucleo-cytoplasmic transport during mitotic exit and isolate the decondensing mitotic chromatin of G1 daughter cells from the cytoplasm. Using this approach, we discover a transient folding intermediate entirely driven by chromosome-intrinsic factors. In addition to conventional compartmental segregation, this chromosome-intrinsic folding program leads to prominent genome-scale microcompartmentalization of mitotically bookmarked and cell type-specific cis-regulatory elements. This microcompartment conformation is formed during telophase and subsequently modulated by a second folding program driven by factors inherited through the cytoplasm in G1. This nuclear import-dependent folding program includes cohesin and factors involved in transcription and RNA processing. The combined and inter-dependent action of chromosome-intrinsic and cytoplasmic inherited folding programs determines the interphase chromatin conformation as cells exit mitosis.
Collapse
Affiliation(s)
- Allana Schooley
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
| | - Sergey V. Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4480, USA
| | - Emily Navarrete
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4480, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| |
Collapse
|
10
|
Kumar P, Gholamalamdari O, Zhang Y, Zhang L, Vertii A, van Schaik T, Peric-Hupkes D, Sasaki T, Gilbert DM, van Steensel B, Ma J, Kaufman PD, Belmont AS. Nucleolus and centromere Tyramide Signal Amplification-Seq reveals variable localization of heterochromatin in different cell types. Commun Biol 2024; 7:1135. [PMID: 39271748 PMCID: PMC11399238 DOI: 10.1038/s42003-024-06838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Genome differential positioning within interphase nuclei remains poorly explored. We extended and validated Tyramide Signal Amplification (TSA)-seq to map genomic regions near nucleoli and pericentric heterochromatin in four human cell lines. Our study confirmed that smaller chromosomes localize closer to nucleoli but further deconvolved this by revealing a preference for chromosome arms below 36-46 Mbp in length. We identified two lamina associated domain subsets through their differential nuclear lamina versus nucleolar positioning in different cell lines which showed distinctive patterns of DNA replication timing and gene expression across all cell lines. Unexpectedly, active, nuclear speckle-associated genomic regions were found near typically repressive nuclear compartments, which is attributable to the close proximity of nuclear speckles and nucleoli in some cell types, and association of centromeres with nuclear speckles in human embryonic stem cells (hESCs). Our study points to a more complex and variable nuclear genome organization than suggested by current models, as revealed by our TSA-seq methodology.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Omid Gholamalamdari
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yang Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anastassiia Vertii
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tom van Schaik
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daan Peric-Hupkes
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | | | - Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Paul D Kaufman
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
11
|
Engbrecht M, Grundei D, Dilger A, Wiedemann H, Aust AK, Baumgärtner S, Helfrich S, Kergl-Räpple F, Bürkle A, Mangerich A. Monitoring nucleolar-nucleoplasmic protein shuttling in living cells by high-content microscopy and automated image analysis. Nucleic Acids Res 2024; 52:e72. [PMID: 39036969 PMCID: PMC11347172 DOI: 10.1093/nar/gkae598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/25/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
The nucleolus has core functions in ribosome biosynthesis, but also acts as a regulatory hub in a plethora of non-canonical processes, including cellular stress. Upon DNA damage, several DNA repair factors shuttle between the nucleolus and the nucleoplasm. Yet, the molecular mechanisms underlying such spatio-temporal protein dynamics remain to be deciphered. Here, we present a novel imaging platform to investigate nucleolar-nucleoplasmic protein shuttling in living cells. For image acquisition, we used a commercially available automated fluorescence microscope and for image analysis, we developed a KNIME workflow with implementation of machine learning-based tools. We validated the method with different nucleolar proteins, i.e., PARP1, TARG1 and APE1, by monitoring their shuttling dynamics upon oxidative stress. As a paradigm, we analyzed PARP1 shuttling upon H2O2 treatment in combination with a range of pharmacological inhibitors in a novel reporter cell line. These experiments revealed that inhibition of SIRT7 results in a loss of nucleolar PARP1 localization. Finally, we unraveled specific differences in PARP1 shuttling dynamics after co-treatment with H2O2 and different clinical PARP inhibitors. Collectively, this work delineates a highly sensitive and versatile bioimaging platform to investigate swift nucleolar-nucleoplasmic protein shuttling in living cells, which can be employed for pharmacological screening and in-depth mechanistic analyses.
Collapse
Affiliation(s)
- Marina Engbrecht
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - David Grundei
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Asisa M Dilger
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Hannah Wiedemann
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Ann-Kristin Aust
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Sarah Baumgärtner
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | - Alexander Bürkle
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| |
Collapse
|
12
|
Zhang W, Cheng L, Li K, Xie L, Ji J, Lei X, Jiang A, Chen C, Li H, Li P, Sun Q. Evolutional heterochromatin condensation delineates chromocenter formation and retrotransposon silencing in plants. NATURE PLANTS 2024; 10:1215-1230. [PMID: 39014153 DOI: 10.1038/s41477-024-01746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Heterochromatic condensates (chromocenters) are critical for maintaining the silencing of heterochromatin. It is therefore puzzling that the presence of chromocenters is variable across plant species. Here we reveal that variations in the plant heterochromatin protein ADCP1 confer a diversity in chromocenter formation via phase separation. ADCP1 physically interacts with the high mobility group protein HMGA to form a complex and mediates heterochromatin condensation by multivalent interactions. The loss of intrinsically disordered regions (IDRs) in ADCP1 homologues during evolution has led to the absence of prominent chromocenter formation in various plant species, and introduction of IDR-containing ADCP1 with HMGA promotes heterochromatin condensation and retrotransposon silencing. Moreover, plants in the Cucurbitaceae group have evolved an IDR-containing chimaera of ADCP1 and HMGA, which remarkably enables formation of chromocenters. Together, our work uncovers a coevolved mechanism of phase separation in packing heterochromatin and silencing retrotransposons.
Collapse
Affiliation(s)
- Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lingling Cheng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Leiming Xie
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinyao Ji
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Lei
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Anjie Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chunlai Chen
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haitao Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Pilong Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
13
|
Boukoura S, Larsen DH. Nucleolar organization and ribosomal DNA stability in response to DNA damage. Curr Opin Cell Biol 2024; 89:102380. [PMID: 38861757 DOI: 10.1016/j.ceb.2024.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Eukaryotic nuclei are structured into sub-compartments orchestrating various cellular functions. The nucleolus is the largest nuclear organelle: a biomolecular condensate with an architecture composed of immiscible fluids facilitating ribosome biogenesis. The nucleolus forms upon the transcription of the repetitive ribosomal RNA genes (rDNA) that cluster in this compartment. rDNA is intrinsically unstable and prone to rearrangements and copy number variation. Upon DNA damage, a specialized nucleolar-DNA Damage Response (n-DDR) is activated: nucleolar transcription is inhibited, the architecture is rearranged, and rDNA is relocated to the nucleolar periphery. Recent data have highlighted how the composition of nucleoli, its structure, chemical and physical properties, contribute to rDNA stability. In this mini-review we focus on recent data that start to reveal how nucleolar composition and the n-DDR work together to ensure rDNA integrity.
Collapse
Affiliation(s)
- Stavroula Boukoura
- Nucleolar Stress and Disease Group, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Dorthe Helena Larsen
- Nucleolar Stress and Disease Group, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark.
| |
Collapse
|
14
|
Mance L, Bigot N, Zhamungui Sánchez E, Coste F, Martín-González N, Zentout S, Biliškov M, Pukało Z, Mishra A, Chapuis C, Arteni AA, Lateur A, Goffinont S, Gaudon V, Talhaoui I, Casuso I, Beaufour M, Garnier N, Artzner F, Cadene M, Huet S, Castaing B, Suskiewicz MJ. Dynamic BTB-domain filaments promote clustering of ZBTB proteins. Mol Cell 2024; 84:2490-2510.e9. [PMID: 38996459 DOI: 10.1016/j.molcel.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/11/2024] [Accepted: 05/31/2024] [Indexed: 07/14/2024]
Abstract
The formation of dynamic protein filaments contributes to various biological functions by clustering individual molecules together and enhancing their binding to ligands. We report such a propensity for the BTB domains of certain proteins from the ZBTB family, a large eukaryotic transcription factor family implicated in differentiation and cancer. Working with Xenopus laevis and human proteins, we solved the crystal structures of filaments formed by dimers of the BTB domains of ZBTB8A and ZBTB18 and demonstrated concentration-dependent higher-order assemblies of these dimers in solution. In cells, the BTB-domain filamentation supports clustering of full-length human ZBTB8A and ZBTB18 into dynamic nuclear foci and contributes to the ZBTB18-mediated repression of a reporter gene. The BTB domains of up to 21 human ZBTB family members and two related proteins, NACC1 and NACC2, are predicted to behave in a similar manner. Our results suggest that filamentation is a more common feature of transcription factors than is currently appreciated.
Collapse
Affiliation(s)
- Lucija Mance
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Nicolas Bigot
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France
| | - Edison Zhamungui Sánchez
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Franck Coste
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France.
| | - Natalia Martín-González
- Aix-Marseille Université, INSERM, DyNaMo, Turing Centre for Living Systems (CENTURI), 13288 Marseille Cedex 09, France; Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille Cedex 09, France
| | - Siham Zentout
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France
| | - Marin Biliškov
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Zofia Pukało
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Aanchal Mishra
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Catherine Chapuis
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France
| | - Ana-Andreea Arteni
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Cryo-Electron Microscopy Facility, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Axelle Lateur
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Stéphane Goffinont
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Ibtissam Talhaoui
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Ignacio Casuso
- Aix-Marseille Université, INSERM, DyNaMo, Turing Centre for Living Systems (CENTURI), 13288 Marseille Cedex 09, France
| | - Martine Beaufour
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Franck Artzner
- Université Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000 Rennes, France
| | - Martine Cadene
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Sébastien Huet
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France; Institut Universitaire de France, 75005 Paris, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Marcin Józef Suskiewicz
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France.
| |
Collapse
|
15
|
Correll CC, Rudloff U, Schmit JD, Ball DA, Karpova TS, Balzer E, Dundr M. Crossing boundaries of light microscopy resolution discerns novel assemblies in the nucleolus. Histochem Cell Biol 2024; 162:161-183. [PMID: 38758429 PMCID: PMC11330670 DOI: 10.1007/s00418-024-02297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
The nucleolus is the largest membraneless organelle and nuclear body in mammalian cells. It is primarily involved in the biogenesis of ribosomes, essential macromolecular machines responsible for synthesizing all proteins required by the cell. The assembly of ribosomes is evolutionarily conserved and accounts for the most energy-consuming cellular process needed for cell growth, proliferation, and homeostasis. Despite the significance of this process, the substructural mechanistic principles of the nucleolar function in preribosome biogenesis have only recently begun to emerge. Here, we provide a new perspective using advanced super-resolution microscopy and single-molecule MINFLUX nanoscopy on the mechanistic principles governing ribosomal RNA-seeded nucleolar formation and the resulting tripartite suborganization of the nucleolus driven, in part, by liquid-liquid phase separation. With recent advances in the cryogenic electron microscopy (cryoEM) structural analysis of ribosome biogenesis intermediates, we highlight the current understanding of the step-wise assembly of preribosomal subunits in the nucleolus. Finally, we address how novel anticancer drug candidates target early steps in ribosome biogenesis to exploit these essential dependencies for growth arrest and tumor control.
Collapse
Affiliation(s)
- Carl C Correll
- Center for Proteomics and Molecular Therapeutics and Biochemistry and Molecular Biology, Chicago Medical School, Rosalind Franklin University of Medicine & Science, North Chicago, IL, 60064, USA
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, KS, 66506, USA
| | - David A Ball
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eric Balzer
- Nikon Instruments Inc., Melville, NY, 11747, USA
| | - Miroslav Dundr
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Center for Cancer Cell Biology, Chicago Medical School, Rosalind Franklin University of Medicine & Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
16
|
Shan L, Li P, Yu H, Chen LL. Emerging roles of nuclear bodies in genome spatial organization. Trends Cell Biol 2024; 34:595-605. [PMID: 37993310 DOI: 10.1016/j.tcb.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Nuclear bodies (NBs) are biomolecular condensates that participate in various cellular processes and respond to cellular stimuli in the nucleus. The assembly and function of these protein- and RNA-rich bodies, such as nucleoli, nuclear speckles, and promyelocytic leukemia (PML) NBs, contribute to the spatial organization of the nucleus, regulating chromatin activities locally and globally. Recent technological advancements, including spatial multiomics approaches, have revealed novel roles of nucleoli in modulating ribosomal DNA (rDNA) and adjacent non-rDNA chromatin activity, nuclear speckles in scaffolding active genome architecture, and PML NBs in maintaining genome stability during stress conditions. In this review, we summarize emerging functions of these important NBs in the spatial organization of the genome, aided by recently developed spatial multiomics approaches toward this direction.
Collapse
Affiliation(s)
- Lin Shan
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pan Li
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Cardiology, Changhai Hospital, Shanghai 200433, China
| | - Hongtao Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; New Cornerstone Science Laboratory, Shenzhen, China.
| | - Ling-Ling Chen
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; New Cornerstone Science Laboratory, Shenzhen, China.
| |
Collapse
|
17
|
Zhuang Y, Guo X, Razorenova OV, Miles CE, Zhao W, Shi X. Coaching ribosome biogenesis from the nuclear periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.597078. [PMID: 38948754 PMCID: PMC11212990 DOI: 10.1101/2024.06.21.597078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Severe invagination of the nuclear envelope is a hallmark of cancers, aging, neurodegeneration, and infections. However, the outcomes of nuclear invagination remain unclear. This work identified a new function of nuclear invagination: regulating ribosome biogenesis. With expansion microscopy, we observed frequent physical contact between nuclear invaginations and nucleoli. Surprisingly, the higher the invagination curvature, the more ribosomal RNA and pre-ribosomes are made in the contacted nucleolus. By growing cells on nanopillars that generate nuclear invaginations with desired curvatures, we can increase and decrease ribosome biogenesis. Based on this causation, we repressed the ribosome levels in breast cancer and progeria cells by growing cells on low-curvature nanopillars, indicating that overactivated ribosome biogenesis can be rescued by reshaping nuclei. Mechanistically, high-curvature nuclear invaginations reduce heterochromatin and enrich nuclear pore complexes, which promote ribosome biogenesis. We anticipate that our findings will serve as a foundation for further studies on nuclear deformation.
Collapse
Affiliation(s)
- Yinyin Zhuang
- Department of Developmental and Cell Biology, University of California, Irvine; Irvine, CA 92697, United States
| | - Xiangfu Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University; Singapore 637459, Singapore
| | - Olga V. Razorenova
- Department of Molecular Biology and Biochemistry, University of California, Irvine; Irvine, CA 92697, United States
| | - Christopher E. Miles
- Department of Mathematics, University of California, Irvine; Irvine, CA 92697, United States
| | - Wenting Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University; Singapore 637459, Singapore
| | - Xiaoyu Shi
- Department of Developmental and Cell Biology, University of California, Irvine; Irvine, CA 92697, United States
- Department of Chemistry, University of California, Irvine; Irvine, CA 92697, United States
- Department of Biomedical Engineering, University of California, Irvine; Irvine, CA 92697, United States
- Lead contact
| |
Collapse
|
18
|
Taylor A, Prasad A, Mueller RL. Amphibian Segmentation Clock Models Suggest How Large Genome and Cell Sizes Slow Developmental Rate. Integr Org Biol 2024; 6:obae021. [PMID: 39006893 PMCID: PMC11245677 DOI: 10.1093/iob/obae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Evolutionary increases in genome size, cell volume, and nuclear volume have been observed across the tree of life, with positive correlations documented between all three traits. Developmental tempo slows as genomes, nuclei, and cells increase in size, yet the driving mechanisms are poorly understood. To bridge this gap, we use a mathematical model of the somitogenesis clock to link slowed developmental tempo with changes in intra-cellular gene expression kinetics induced by increasing genome size and nuclear volume. We adapt a well-known somitogenesis clock model to two model amphibian species that vary 10-fold in genome size: Xenopus laevis (3.1 Gb) and Ambystoma mexicanum (32 Gb). Based on simulations and backed by analytical derivations, we identify parameter changes originating from increased genome and nuclear size that slow gene expression kinetics. We simulate biological scenarios for which these parameter changes mathematically recapitulate slowed gene expression in A. mexicanum relative to X. laevis, and we consider scenarios for which additional alterations in gene product stability and chromatin packing are necessary. Results suggest that slowed degradation rates as well as changes induced by increasing nuclear volume and intron length, which remain relatively unexplored, are significant drivers of slowed developmental tempo.
Collapse
Affiliation(s)
- A Taylor
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - A Prasad
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - R Lockridge Mueller
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
19
|
Deshpande P, Prentice E, Vidal Ceballos A, Casaccia P, Elbaum-Garfinkle S. Epigenetic marks uniquely tune the material properties of HP1α condensates. Biophys J 2024; 123:1508-1518. [PMID: 38664966 PMCID: PMC11163287 DOI: 10.1016/j.bpj.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Biomolecular condensates have emerged as a powerful new paradigm in cell biology with broad implications to human health and disease, particularly in the nucleus where phase separation is thought to underly elements of chromatin organization and regulation. Specifically, it has been recently reported that phase separation of heterochromatin protein 1alpha (HP1α) with DNA contributes to the formation of condensed chromatin states. HP1α localization to heterochromatic regions is mediated by its binding to specific repressive marks on the tail of histone H3, such as trimethylated lysine 9 on histone H3 (H3K9me3). However, whether epigenetic marks play an active role in modulating the material properties of HP1α and dictating emergent functions of its condensates remains to be understood. Here, we leverage a reductionist system, composed of modified and unmodified histone H3 peptides, HP1α, and DNA, to examine the contribution of specific epigenetic marks to phase behavior of HP1α. We show that the presence of histone peptides bearing the repressive H3K9me3 is compatible with HP1α condensates, whereas peptides containing unmodified residues or bearing the transcriptional activation mark H3K4me3 are incompatible with HP1α phase separation. Using fluorescence microscopy and rheological approaches, we further demonstrate that H3K9me3 histone peptides modulate the dynamics and viscoelastic network properties of HP1α condensates in a concentration-dependent manner. Additionally, in cells exposed to uniaxial strain, we find there to be a decreased ratio of nuclear H3K9me3 to HP1α. These data suggest that HP1α-DNA condensates are viscoelastic materials, whose properties may provide an explanation for the dynamic behavior of heterochromatin in cells and in response to mechanostimulation.
Collapse
Affiliation(s)
- Priyasha Deshpande
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York; Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, New York
| | - Emily Prentice
- Ph.D. Program in Biology, Graduate Center of the City University of New York, New York, New York; Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, New York
| | - Alfredo Vidal Ceballos
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, New York
| | - Patrizia Casaccia
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York; Ph.D. Program in Biology, Graduate Center of the City University of New York, New York, New York; Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, New York.
| | - Shana Elbaum-Garfinkle
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York; Ph.D. Program in Biology, Graduate Center of the City University of New York, New York, New York; Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, New York; Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York.
| |
Collapse
|
20
|
Daugird TA, Shi Y, Holland KL, Rostamian H, Liu Z, Lavis LD, Rodriguez J, Strahl BD, Legant WR. Correlative single molecule lattice light sheet imaging reveals the dynamic relationship between nucleosomes and the local chromatin environment. Nat Commun 2024; 15:4178. [PMID: 38755200 PMCID: PMC11099156 DOI: 10.1038/s41467-024-48562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
In the nucleus, biological processes are driven by proteins that diffuse through and bind to a meshwork of nucleic acid polymers. To better understand this interplay, we present an imaging platform to simultaneously visualize single protein dynamics together with the local chromatin environment in live cells. Together with super-resolution imaging, new fluorescent probes, and biophysical modeling, we demonstrate that nucleosomes display differential diffusion and packing arrangements as chromatin density increases whereas the viscoelastic properties and accessibility of the interchromatin space remain constant. Perturbing nuclear functions impacts nucleosome diffusive properties in a manner that is dependent both on local chromatin density and on relative location within the nucleus. Our results support a model wherein transcription locally stabilizes nucleosomes while simultaneously allowing for the free exchange of nuclear proteins. Additionally, they reveal that nuclear heterogeneity arises from both active and passive processes and highlight the need to account for different organizational principles when modeling different chromatin environments.
Collapse
Affiliation(s)
- Timothy A Daugird
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yu Shi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, USA
| | - Katie L Holland
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Hosein Rostamian
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Joseph Rodriguez
- National Institute of Environmental Health Sciences, Durham, NC, 27709, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wesley R Legant
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Fu B, Ma H, Liu D. Essential roles of the nucleolus during early embryonic development: a regulatory hub for chromatin organization. Open Biol 2024; 14:230358. [PMID: 38689555 PMCID: PMC11065130 DOI: 10.1098/rsob.230358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
The nucleolus is the most prominent liquid droplet-like membrane-less organelle in mammalian cells. Unlike the nucleolus in terminally differentiated somatic cells, those in totipotent cells, such as murine zygotes or two-cell embryos, have a unique nucleolar structure known as nucleolus precursor bodies (NPBs). Previously, it was widely accepted that NPBs in zygotes are simply passive repositories of materials that will be gradually used to construct a fully functional nucleolus after zygotic genome activation (ZGA). However, recent research studies have challenged this simplistic view and demonstrated that functions of the NPBs go beyond ribosome biogenesis. In this review, we provide a snapshot of the functions of NPBs in zygotes and early two-cell embryos in mice. We propose that these membrane-less organelles function as a regulatory hub for chromatin organization. On the one hand, NPBs provide the structural platform for centric and pericentric chromatin remodelling. On the other hand, the dynamic changes in nucleolar structure control the release of the pioneer factors (i.e. double homeobox (Dux)). It appears that during transition from totipotency to pluripotency, decline of totipotency and initiation of fully functional nucleolus formation are not independent events but are interconnected. Consequently, it is reasonable to hypothesize that dissecting more unknown functions of NPBs may shed more light on the enigmas of early embryonic development and may ultimately provide novel approaches to improve reprogramming efficiency.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, HeiLongJiang Academy of
Agricultural Sciences, Harbin150086, People's Republic of China
- Key Laboratory of Combining Farming and Animal Husbandry,
Ministry of Agriculture and Rural Affairs, Harbin150086, People's Republic of China
| | - Hong Ma
- Institute of Animal Husbandry, HeiLongJiang Academy of
Agricultural Sciences, Harbin150086, People's Republic of China
- Key Laboratory of Combining Farming and Animal Husbandry,
Ministry of Agriculture and Rural Affairs, Harbin150086, People's Republic of China
| | - Di Liu
- Institute of Animal Husbandry, HeiLongJiang Academy of
Agricultural Sciences, Harbin150086, People's Republic of China
- Key Laboratory of Combining Farming and Animal Husbandry,
Ministry of Agriculture and Rural Affairs, Harbin150086, People's Republic of China
| |
Collapse
|
22
|
Deshpande P, Prentice E, Ceballos AV, Casaccia P, Elbaum-Garfinkle S. Modified histone peptides uniquely tune the material properties of HP1α condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579285. [PMID: 38370661 PMCID: PMC10871333 DOI: 10.1101/2024.02.07.579285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Biomolecular condensates have emerged as a powerful new paradigm in cell biology with broad implications to human health and disease, particularly in the nucleus where phase separation is thought to underly elements of chromatin organization and regulation. Specifically, it has been recently reported that phase separation of heterochromatin protein 1alpha (HP1α) with DNA contributes to the formation of condensed chromatin states. HP1α localization to heterochromatic regions is mediated by its binding to specific repressive marks on the tail of histone H3, such as trimethylated lysine 9 on histone H3 (H3K9me3). However, whether epigenetic marks play an active role in modulating the material properties of HP1α and dictating emergent functions of its condensates, remains only partially understood. Here, we leverage a reductionist system, comprised of modified and unmodified histone H3 peptides, HP1α and DNA to examine the contribution of specific epigenetic marks to phase behavior of HP1α. We show that the presence of histone peptides bearing the repressive H3K9me3 is compatible with HP1α condensates, while peptides containing unmodified residues or bearing the transcriptional activation mark H3K4me3 are incompatible with HP1α phase separation. In addition, inspired by the decreased ratio of nuclear H3K9me3 to HP1α detected in cells exposed to uniaxial strain, using fluorescence microscopy and rheological approaches we demonstrate that H3K9me3 histone peptides modulate the dynamics and network properties of HP1α condensates in a concentration dependent manner. These data suggest that HP1α-DNA condensates are viscoelastic materials, whose properties may provide an explanation for the dynamic behavior of heterochromatin in cells in response to mechanostimulation.
Collapse
Affiliation(s)
- Priyasha Deshpande
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, NY
- Ph.D. Program in Biology, Graduate Center of the City University of New York, NY
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY
| | - Emily Prentice
- Ph.D. Program in Biology, Graduate Center of the City University of New York, NY
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY
| | | | - Patrizia Casaccia
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, NY
- Ph.D. Program in Biology, Graduate Center of the City University of New York, NY
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY
| | - Shana Elbaum-Garfinkle
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, NY
- Ph.D. Program in Biology, Graduate Center of the City University of New York, NY
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, NY
| |
Collapse
|
23
|
Kołacz K, Robaszkiewicz A. PARP1 at the crossroad of cellular senescence and nucleolar processes. Ageing Res Rev 2024; 94:102206. [PMID: 38278370 DOI: 10.1016/j.arr.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Senescent cells that occur in response to telomere shortening, oncogenes, extracellular and intracellular stress factors are characterized by permanent cell cycle arrest, the morphological and structural changes of the cell that include the senescence-associated secretory phenotype (SASP) and nucleoli rearrangement. The associated DNA lesions induce DNA damage response (DDR), which activates the DNA repair protein - poly-ADP-ribose polymerase 1 (PARP1). This protein consumes NAD+ to synthesize ADP-ribose polymer (PAR) on its own protein chain and on other interacting proteins. The involvement of PARP1 in nucleoli processes, such as rRNA transcription and ribosome biogenesis, the maintenance of heterochromatin and nucleoli structure, as well as controlling the crucial DDR protein release from the nucleoli to nucleus, links PARP1 with cellular senescence and nucleoli functioning. In this review we describe and discuss the impact of PARP1-mediated ADP-ribosylation on early cell commitment to senescence with the possible role of senescence-induced PARP1 transcriptional repression and protein degradation on nucleoli structure and function. The cause-effect interplay between PARP1 activation/decline and nucleoli functioning during senescence needs to be studied in detail.
Collapse
Affiliation(s)
- Kinga Kołacz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12 /16, 90-237 Lodz, Poland.
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research (IFBR), 600 5th Street South, St. Petersburgh, FL 33701, USA.
| |
Collapse
|
24
|
Willemin A, Szabó D, Pombo A. Epigenetic regulatory layers in the 3D nucleus. Mol Cell 2024; 84:415-428. [PMID: 38242127 PMCID: PMC10872226 DOI: 10.1016/j.molcel.2023.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
Nearly 7 decades have elapsed since Francis Crick introduced the central dogma of molecular biology, as part of his ideas on protein synthesis, setting the fundamental rules of sequence information transfer from DNA to RNAs and proteins. We have since learned that gene expression is finely tuned in time and space, due to the activities of RNAs and proteins on regulatory DNA elements, and through cell-type-specific three-dimensional conformations of the genome. Here, we review major advances in genome biology and discuss a set of ideas on gene regulation and highlight how various biomolecular assemblies lead to the formation of structural and regulatory features within the nucleus, with roles in transcriptional control. We conclude by suggesting further developments that will help capture the complex, dynamic, and often spatially restricted events that govern gene expression in mammalian cells.
Collapse
Affiliation(s)
- Andréa Willemin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| | - Dominik Szabó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| |
Collapse
|
25
|
Ogienko AA, Korepina MO, Pindyurin AV, Omelina ES. New Functional Motifs for the Targeted Localization of Proteins to the Nucleolus in Drosophila and Human Cells. Int J Mol Sci 2024; 25:1230. [PMID: 38279227 PMCID: PMC10817092 DOI: 10.3390/ijms25021230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The nucleolus is a significant nuclear organelle that is primarily known for its role in ribosome biogenesis. However, emerging evidence suggests that the nucleolus may have additional functions. Particularly, it is involved in the organization of the three-dimensional structure of the genome. The nucleolus acts as a platform for the clustering of repressed chromatin, although this process is not yet fully understood, especially in the context of Drosophila. One way to study the regions of the genome that cluster near the nucleolus in Drosophila demands the identification of a reliable nucleolus-localizing signal (NoLS) motif(s) that can highly specifically recruit the protein of interest to the nucleolus. Here, we tested a series of various NoLS motifs from proteins of different species, as well as some of their combinations, for the ability to drive the nucleolar localization of the chimeric H2B-GFP protein. Several short motifs were found to effectively localize the H2B-GFP protein to the nucleolus in over 40% of transfected Drosophila S2 cells. Furthermore, it was demonstrated that NoLS motifs derived from Drosophila proteins exhibited greater efficiency compared to that of those from other species.
Collapse
Affiliation(s)
- Anna A. Ogienko
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | | | - Evgeniya S. Omelina
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
26
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
27
|
Chakma CR, Garvie A, Wong LH, Good-Jacobson KL. Visualizing Epigenetic Modifications and Nuclear Bodies by Immunofluorescence Staining in Naïve, Activated, and Memory B Cell Subsets. Methods Mol Biol 2024; 2826:47-54. [PMID: 39017884 DOI: 10.1007/978-1-0716-3950-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Immunofluorescence microscopy is a powerful technique using fluorescently labelled antibodies which can be used to visualize proteins in the nucleus. A key advantage of this method is that it can provide insight into the spatial organization and the localization of nuclear proteins, which can provide elucidation of their function. Here, we provide a protocol for immunofluorescence staining in the nucleus, which has successfully been used to visualize histone modifications and nuclear bodies in human and mouse B lymphocytes, using as few as 1 × 104-5 × 104 cells.
Collapse
Affiliation(s)
- Clarissa R Chakma
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Andrew Garvie
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lee H Wong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
- Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
28
|
Kumar P, Gholamalamdari O, Zhang Y, Zhang L, Vertii A, van Schaik T, Peric-Hupkes D, Sasaki T, Gilbert DM, van Steensel B, Ma J, Kaufman PD, Belmont AS. Nucleolus and centromere TSA-Seq reveals variable localization of heterochromatin in different cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564613. [PMID: 37961445 PMCID: PMC10634939 DOI: 10.1101/2023.10.29.564613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Genome differential positioning within interphase nuclei remains poorly explored. We extended and validated TSA-seq to map genomic regions near nucleoli and pericentric heterochromatin in four human cell lines. Our study confirmed that smaller chromosomes localize closer to nucleoli but further deconvolved this by revealing a preference for chromosome arms below 36-46 Mbp in length. We identified two lamina associated domain subsets through their differential nuclear lamina versus nucleolar positioning in different cell lines which showed distinctive patterns of DNA replication timing and gene expression across all cell lines. Unexpectedly, active, nuclear speckle-associated genomic regions were found near typically repressive nuclear compartments, which is attributable to the close proximity of nuclear speckles and nucleoli in some cell types, and association of centromeres with nuclear speckles in hESCs. Our study points to a more complex and variable nuclear genome organization than suggested by current models, as revealed by our TSA-seq methodology.
Collapse
|
29
|
Lee GE, Byun J, Lee CJ, Cho YY. Molecular Mechanisms for the Regulation of Nuclear Membrane Integrity. Int J Mol Sci 2023; 24:15497. [PMID: 37895175 PMCID: PMC10607757 DOI: 10.3390/ijms242015497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
The nuclear membrane serves a critical role in protecting the contents of the nucleus and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive research has been dedicated to topics such as nuclear membrane assembly and disassembly during cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral proteins, which also function as transcription factors, within the nuclear membrane remains an area of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only during cell division but also in the regulation of gene expression and the communication between the nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases. This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity and provide insights into the role of type II membrane protein transcription factors in this context. Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate processes governing nuclear membrane integrity. Such insights have broad-reaching implications for cellular function and our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Ga-Eun Lee
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Jiin Byun
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Chungcheongnam-do, Republic of Korea
| | - Yong-Yeon Cho
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
- RCD Control and Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
30
|
Rajshekar S, Adame-Arana O, Bajpai G, Lin K, Colmenares S, Safran S, Karpen GH. Affinity hierarchies and amphiphilic proteins underlie the co-assembly of nucleolar and heterochromatin condensates. RESEARCH SQUARE 2023:rs.3.rs-3385692. [PMID: 37841837 PMCID: PMC10571612 DOI: 10.21203/rs.3.rs-3385692/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Nucleoli are surrounded by Pericentromeric Heterochromatin (PCH), reflecting a close spatial association between the two largest biomolecular condensates in eukaryotic nuclei. This nuclear organizational feature is highly conserved and is disrupted in diseased states like senescence, however, the mechanisms driving PCH-nucleolar association are unclear. High-resolution live imaging during early Drosophila development revealed a highly dynamic process in which PCH and nucleolar formation is coordinated and interdependent. When nucleolus assembly was eliminated by deleting the ribosomal RNA genes (rDNA), PCH showed increased compaction and subsequent reorganization to a shell-like structure. In addition, in embryos lacking rDNA, some nucleolar proteins were redistributed into new bodies or 'neocondensates,' including enrichment in the core of the PCH shell. These observations, combined with physical modeling and simulations, suggested that nucleolar-PCH associations are mediated by a hierarchy of affinities between PCH, nucleoli, and 'amphiphilic' protein(s) that interact with both nucleolar and PCH components. This result was validated by demonstrating that the depletion of one candidate amphiphile, the nucleolar protein Pitchoune, significantly reduced PCH-nucleolar associations. Together, these results unveil a dynamic program for establishing nucleolar-PCH associations during animal development, demonstrate that nucleoli are required for normal PCH organization, and identify Pitchoune as an amphiphilic molecular link that promotes PCH-nucleolar associations. Finally, we propose that disrupting affinity hierarchies between interacting condensates can liberate molecules to form neocondensates or other aberrant structures that could contribute to cellular disease phenotypes.
Collapse
Affiliation(s)
- Srivarsha Rajshekar
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
| | - Omar Adame-Arana
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Gaurav Bajpai
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Kyle Lin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
| | - Serafin Colmenares
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
| | - Samuel Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Gary H Karpen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
- Division of Biological Sciences and the Environment, Lawrence Berkeley National Laboratory, Berkeley, USA
| |
Collapse
|
31
|
Patrasso EA, Raikundalia S, Arango D. Regulation of the epigenome through RNA modifications. Chromosoma 2023; 132:231-246. [PMID: 37138119 PMCID: PMC10524150 DOI: 10.1007/s00412-023-00794-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
Chemical modifications of nucleotides expand the complexity and functional properties of genomes and transcriptomes. A handful of modifications in DNA bases are part of the epigenome, wherein DNA methylation regulates chromatin structure, transcription, and co-transcriptional RNA processing. In contrast, more than 150 chemical modifications of RNA constitute the epitranscriptome. Ribonucleoside modifications comprise a diverse repertoire of chemical groups, including methylation, acetylation, deamination, isomerization, and oxidation. Such RNA modifications regulate all steps of RNA metabolism, including folding, processing, stability, transport, translation, and RNA's intermolecular interactions. Initially thought to influence all aspects of the post-transcriptional regulation of gene expression exclusively, recent findings uncovered a crosstalk between the epitranscriptome and the epigenome. In other words, RNA modifications feedback to the epigenome to transcriptionally regulate gene expression. The epitranscriptome achieves this feat by directly or indirectly affecting chromatin structure and nuclear organization. This review highlights how chemical modifications in chromatin-associated RNAs (caRNAs) and messenger RNAs (mRNAs) encoding factors involved in transcription, chromatin structure, histone modifications, and nuclear organization affect gene expression transcriptionally.
Collapse
Affiliation(s)
- Emmely A Patrasso
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Medical and Pharmaceutical Biotechnology Program, IMC University of Applied Sciences, Krems, Austria
| | - Sweta Raikundalia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
32
|
Abstract
The p-arms of the five human acrocentric chromosomes bear nucleolar organizer regions (NORs) comprising ribosomal gene (rDNA) repeats that are organized in a homogeneous tandem array and transcribed in a telomere-to-centromere direction. Precursor ribosomal RNA transcripts are processed and assembled into ribosomal subunits, the nucleolus being the physical manifestation of this process. I review current understanding of nucleolar chromosome biology and describe current exploration into a role for the NOR chromosomal context. Full DNA sequences for acrocentric p-arms are now emerging, aided by the current revolution in long-read sequencing and genome assembly. Acrocentric p-arms vary from 10.1 to 16.7 Mb, accounting for ∼2.2% of the genome. Bordering rDNA arrays, distal junctions, and proximal junctions are shared among the p-arms, with distal junctions showing evidence of functionality. The remaining p-arm sequences comprise multiple satellite DNA classes and segmental duplications that facilitate recombination between heterologous chromosomes, which is likely also involved in Robertsonian translocations.
Collapse
Affiliation(s)
- Brian McStay
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland;
| |
Collapse
|
33
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
34
|
Arroyo M, Cardoso CM, Hastert FD. In situ Quantification of Cytosine Modification Levels in Heterochromatic Domains of Cultured Mammalian Cells. Bio Protoc 2023; 13:e4716. [PMID: 37497462 PMCID: PMC10366683 DOI: 10.21769/bioprotoc.4716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 04/26/2023] [Indexed: 07/28/2023] Open
Abstract
Epigenetic modifications of DNA, and especially cytosine, play a crucial role in regulating basic cellular processes and thereby the overall cellular metabolism. Their levels change during organismic and cellular development, but especially also in pathogenic aberrations such as cancer. Levels of respective modifications are often addressed in bulk by specialized mass spectrometry techniques or by employing dedicated ChIP-seq protocols, with the latter giving information about the sequence context of the modification. However, to address modification levels on a single cell basis, high- or low-content microscopy techniques remain the preferred methodology. The protocol presented here describes a straightforward method to detect and quantify different DNA modifications in human cell lines, which can also be adapted to other cultured mammalian cell types. To this end, cells are immunostained against two different cytosine modifications in combination with DNA counterstaining. Image acquisition takes place on a confocal microscopy system. A semi-automated analysis pipeline helps to gather data in a fast and reliable fashion. The protocol is comparatively simple, fast, and cost effective. By employing methodologies that are often well established in most molecular biology laboratories, many researchers are able to apply the described protocol straight away in-house.
Collapse
Affiliation(s)
- Maria Arroyo
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Cristina M. Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Florian D. Hastert
- Department of Virology, Paul Ehrlich Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| |
Collapse
|
35
|
Hernández‐Carralero E, Cabrera E, Rodríguez-Torres G, Hernández-Reyes Y, Singh A, Santa-María C, Fernández-Justel J, Janssens R, Marteijn J, Evert B, Mailand N, Gómez M, Ramadan K, Smits VJ, Freire R. ATXN3 controls DNA replication and transcription by regulating chromatin structure. Nucleic Acids Res 2023; 51:5396-5413. [PMID: 36971114 PMCID: PMC10287915 DOI: 10.1093/nar/gkad212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 11/18/2023] Open
Abstract
The deubiquitinating enzyme Ataxin-3 (ATXN3) contains a polyglutamine (PolyQ) region, the expansion of which causes spinocerebellar ataxia type-3 (SCA3). ATXN3 has multiple functions, such as regulating transcription or controlling genomic stability after DNA damage. Here we report the role of ATXN3 in chromatin organization during unperturbed conditions, in a catalytic-independent manner. The lack of ATXN3 leads to abnormalities in nuclear and nucleolar morphology, alters DNA replication timing and increases transcription. Additionally, indicators of more open chromatin, such as increased mobility of histone H1, changes in epigenetic marks and higher sensitivity to micrococcal nuclease digestion were detected in the absence of ATXN3. Interestingly, the effects observed in cells lacking ATXN3 are epistatic to the inhibition or lack of the histone deacetylase 3 (HDAC3), an interaction partner of ATXN3. The absence of ATXN3 decreases the recruitment of endogenous HDAC3 to the chromatin, as well as the HDAC3 nuclear/cytoplasm ratio after HDAC3 overexpression, suggesting that ATXN3 controls the subcellular localization of HDAC3. Importantly, the overexpression of a PolyQ-expanded version of ATXN3 behaves as a null mutant, altering DNA replication parameters, epigenetic marks and the subcellular distribution of HDAC3, giving new insights into the molecular basis of the disease.
Collapse
Affiliation(s)
- Esperanza Hernández‐Carralero
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Elisa Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Gara Rodríguez-Torres
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Yeray Hernández-Reyes
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Abhay N Singh
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Cristina Santa-María
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - José Miguel Fernández-Justel
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bernd O Evert
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - María Gómez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Kristijan Ramadan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
36
|
Rodrigues A, MacQuarrie KL, Freeman E, Lin A, Willis AB, Xu Z, Alvarez AA, Ma Y, White BEP, Foltz DR, Huang S. Nucleoli and the nucleoli-centromere association are dynamic during normal development and in cancer. Mol Biol Cell 2023; 34:br5. [PMID: 36753381 PMCID: PMC10092642 DOI: 10.1091/mbc.e22-06-0237] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Centromeres are known to cluster around nucleoli in Drosophila and mammalian cells, but the significance of the nucleoli-centromere interaction remains underexplored. To determine whether the interaction is dynamic under different physiological and pathological conditions, we examined nucleolar structure and centromeres at various differentiation stages using cell culture models and the results showed dynamic changes in nucleolar characteristics and nucleoli-centromere interactions through differentiation and in cancer cells. Embryonic stem cells usually have a single large nucleolus, which is clustered with a high percentage of centromeres. As cells differentiate into intermediate states, the nucleolar number increases and the centromere association decreases. In terminally differentiated cells, including myotubes, neurons, and keratinocytes, the number of nucleoli and their association with centromeres are at the lowest. Cancer cells demonstrate the pattern of nucleoli number and nucleoli-centromere association that is akin to proliferative cell types, suggesting that nucleolar reorganization and changes in nucleoli-centromere interactions may play a role in facilitating malignant transformation. This idea is supported in a case of pediatric rhabdomyosarcoma, in which induced differentiation reduces the nucleolar number and centromere association. These findings suggest active roles of nucleolar structure in centromere function and genome organization critical for cellular function in both normal development and cancer.
Collapse
Affiliation(s)
- Aaron Rodrigues
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Kyle L. MacQuarrie
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Emma Freeman
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Alicia Lin
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Alexander B. Willis
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Zhaofa Xu
- Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611
| | - Angel A. Alvarez
- Stem Cell Core and Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Yongchao Ma
- Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611
| | - Bethany E. Perez White
- Department of Dermatology and Skin Biology and Diseases Resource-based Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Daniel R. Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Sui Huang
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
37
|
Djeghloul D, Dimond A, Cheriyamkunnel S, Kramer H, Patel B, Brown K, Montoya A, Whilding C, Wang YF, Futschik ME, Veland N, Montavon T, Jenuwein T, Merkenschlager M, Fisher AG. Loss of H3K9 trimethylation alters chromosome compaction and transcription factor retention during mitosis. Nat Struct Mol Biol 2023; 30:489-501. [PMID: 36941433 PMCID: PMC10113154 DOI: 10.1038/s41594-023-00943-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/13/2023] [Indexed: 03/23/2023]
Abstract
Recent studies have shown that repressive chromatin machinery, including DNA methyltransferases and polycomb repressor complexes, binds to chromosomes throughout mitosis and their depletion results in increased chromosome size. In the present study, we show that enzymes that catalyze H3K9 methylation, such as Suv39h1, Suv39h2, G9a and Glp, are also retained on mitotic chromosomes. Surprisingly, however, mutants lacking histone 3 lysine 9 trimethylation (H3K9me3) have unusually small and compact mitotic chromosomes associated with increased histone H3 phospho Ser10 (H3S10ph) and H3K27me3 levels. Chromosome size and centromere compaction in these mutants were rescued by providing exogenous first protein lysine methyltransferase Suv39h1 or inhibiting Ezh2 activity. Quantitative proteomic comparisons of native mitotic chromosomes isolated from wild-type versus Suv39h1/Suv39h2 double-null mouse embryonic stem cells revealed that H3K9me3 was essential for the efficient retention of bookmarking factors such as Esrrb. These results highlight an unexpected role for repressive heterochromatin domains in preserving transcription factor binding through mitosis and underscore the importance of H3K9me3 for sustaining chromosome architecture and epigenetic memory during cell division.
Collapse
Affiliation(s)
- Dounia Djeghloul
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK.
| | - Andrew Dimond
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Sherry Cheriyamkunnel
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Bhavik Patel
- Flow Cytometry Facility, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Karen Brown
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Alex Montoya
- Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Chad Whilding
- Microscopy Facility, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Yi-Fang Wang
- Bioinformatics, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Matthias E Futschik
- Bioinformatics, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Nicolas Veland
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Thomas Montavon
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Jenuwein
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
38
|
Tuning between Nuclear Organization and Functionality in Health and Disease. Cells 2023; 12:cells12050706. [PMID: 36899842 PMCID: PMC10000962 DOI: 10.3390/cells12050706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The organization of eukaryotic genome in the nucleus, a double-membraned organelle separated from the cytoplasm, is highly complex and dynamic. The functional architecture of the nucleus is confined by the layers of internal and cytoplasmic elements, including chromatin organization, nuclear envelope associated proteome and transport, nuclear-cytoskeletal contacts, and the mechano-regulatory signaling cascades. The size and morphology of the nucleus could impose a significant impact on nuclear mechanics, chromatin organization, gene expression, cell functionality and disease development. The maintenance of nuclear organization during genetic or physical perturbation is crucial for the viability and lifespan of the cell. Abnormal nuclear envelope morphologies, such as invagination and blebbing, have functional implications in several human disorders, including cancer, accelerated aging, thyroid disorders, and different types of neuro-muscular diseases. Despite the evident interplay between nuclear structure and nuclear function, our knowledge about the underlying molecular mechanisms for regulation of nuclear morphology and cell functionality during health and illness is rather poor. This review highlights the essential nuclear, cellular, and extracellular components that govern the organization of nuclei and functional consequences associated with nuclear morphometric aberrations. Finally, we discuss the recent developments with diagnostic and therapeutic implications targeting nuclear morphology in health and disease.
Collapse
|
39
|
Zhang X, Jiang Q, Li J, Zhang S, Cao Y, Xia X, Cai D, Tan J, Chen J, Han JDJ. KCNQ1OT1 promotes genome-wide transposon repression by guiding RNA-DNA triplexes and HP1 binding. Nat Cell Biol 2022; 24:1617-1629. [PMID: 36266489 DOI: 10.1038/s41556-022-01008-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/07/2022] [Indexed: 01/18/2023]
Abstract
Transposon (de)repression and heterochromatin reorganization are dynamically regulated during cell fate determination and are hallmarks of cellular senescence. However, whether they are sequence specifically regulated remains unknown. Here we uncover that the KCNQ1OT1 lncRNA, by sequence-specific Hoogsteen base pairing with double-stranded genomic DNA via its repeat-rich region and binding to the heterochromatin protein HP1α, guides, induces and maintains epigenetic silencing at specific repetitive DNA elements. Repressing KCNQ1OT1 or deleting its repeat-rich region reduces DNA methylation and H3K9me3 on KCNQ1OT1-targeted transposons. Engineering a fusion KCNQ1OT1 with an ectopically targeting guiding triplex sequence induces de novo DNA methylation at the target site. Phenotypically, repressing KCNQ1OT1 induces senescence-associated heterochromatin foci, transposon activation and retrotransposition as well as cellular senescence, demonstrating an essential role of KCNQ1OT1 to safeguard against genome instability and senescence.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Quanlong Jiang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiyang Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shiqiang Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaqiang Cao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xian Xia
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Donghong Cai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Tan
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China.
| |
Collapse
|
40
|
van Schaik T, Manzo SG, Vouzas AE, Liu NQ, Teunissen H, de Wit E, Gilbert DM, van Steensel B. Dynamic chromosomal interactions and control of heterochromatin positioning by Ki-67. EMBO Rep 2022; 23:e55782. [PMID: 36245428 PMCID: PMC9724667 DOI: 10.15252/embr.202255782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Ki-67 is a chromatin-associated protein with a dynamic distribution pattern throughout the cell cycle and is thought to be involved in chromatin organization. The lack of genomic interaction maps has hampered a detailed understanding of its roles, particularly during interphase. By pA-DamID mapping in human cell lines, we find that Ki-67 associates with large genomic domains that overlap mostly with late-replicating regions. Early in interphase, when Ki-67 is present in pre-nucleolar bodies, it interacts with these domains on all chromosomes. However, later in interphase, when Ki-67 is confined to nucleoli, it shows a striking shift toward small chromosomes. Nucleolar perturbations indicate that these cell cycle dynamics correspond to nucleolar maturation during interphase, and suggest that nucleolar sequestration of Ki-67 limits its interactions with larger chromosomes. Furthermore, we demonstrate that Ki-67 does not detectably control chromatin-chromatin interactions during interphase, but it competes with the nuclear lamina for interaction with late-replicating DNA, and it controls replication timing of (peri)centromeric regions. Together, these results reveal a highly dynamic choreography of genome interactions and roles for Ki-67 in heterochromatin organization.
Collapse
Affiliation(s)
- Tom van Schaik
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Stefano G Manzo
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Athanasios E Vouzas
- Department of Biological ScienceThe Florida State UniversityTallahasseeFLUSA,San Diego Biomedical Research InstituteSan DiegoCAUSA
| | - Ning Qing Liu
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Hans Teunissen
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Elzo de Wit
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - David M Gilbert
- Department of Biological ScienceThe Florida State UniversityTallahasseeFLUSA,San Diego Biomedical Research InstituteSan DiegoCAUSA
| | - Bas van Steensel
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands,Department of Cell BiologyErasmus University Medical CentreRotterdamThe Netherlands
| |
Collapse
|
41
|
Abstract
Cellular senescence is implicated in a wide range of physiological and pathological conditions throughout an organism's entire lifetime. In particular, it has become evident that senescence plays a causative role in aging and age-associated disorders. This is not due simply to the loss of function of senescent cells. Instead, the substantial alterations of the cellular activities of senescent cells, especially the array of secretory factors, impact the surrounding tissues or even entire organisms. Such non-cell-autonomous functionality is largely coordinated by tissue-specific genes, constituting a cell fate-determining state. Senescence can be viewed as a gain-of-function phenotype or a process of cell identity shift. Cellular functionality or lineage-specific gene expression is tightly linked to the cell type-specific epigenetic landscape, reinforcing the heterogeneity of senescence across cell types. Here, we aim to define the senescence cellular functionality and epigenetic features that may contribute to the gain-of-function phenotype.
Collapse
Affiliation(s)
- Ioana Olan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom; ,
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom; ,
| |
Collapse
|
42
|
Kalukula Y, Stephens AD, Lammerding J, Gabriele S. Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol 2022; 23:583-602. [PMID: 35513718 PMCID: PMC9902167 DOI: 10.1038/s41580-022-00480-z] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
As the home of cellular genetic information, the nucleus has a critical role in determining cell fate and function in response to various signals and stimuli. In addition to biochemical inputs, the nucleus is constantly exposed to intrinsic and extrinsic mechanical forces that trigger dynamic changes in nuclear structure and morphology. Emerging data suggest that the physical deformation of the nucleus modulates many cellular and nuclear functions. These functions have long been considered to be downstream of cytoplasmic signalling pathways and dictated by gene expression. In this Review, we discuss an emerging perspective on the mechanoregulation of the nucleus that considers the physical connections from chromatin to nuclear lamina and cytoskeletal filaments as a single mechanical unit. We describe key mechanisms of nuclear deformations in time and space and provide a critical review of the structural and functional adaptive responses of the nucleus to deformations. We then consider the contribution of nuclear deformations to the regulation of important cellular functions, including muscle contraction, cell migration and human disease pathogenesis. Collectively, these emerging insights shed new light on the dynamics of nuclear deformations and their roles in cellular mechanobiology.
Collapse
Affiliation(s)
- Yohalie Kalukula
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sylvain Gabriele
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| |
Collapse
|
43
|
Belmont AS. Nuclear Compartments: An Incomplete Primer to Nuclear Compartments, Bodies, and Genome Organization Relative to Nuclear Architecture. Cold Spring Harb Perspect Biol 2022; 14:a041268. [PMID: 34400557 PMCID: PMC9248822 DOI: 10.1101/cshperspect.a041268] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This work reviews nuclear compartments, defined broadly to include distinct nuclear structures, bodies, and chromosome domains. It first summarizes original cytological observations before comparing concepts of nuclear compartments emerging from microscopy versus genomic approaches and then introducing new multiplexed imaging approaches that promise in the future to meld both approaches. I discuss how previous models of radial distribution of chromosomes or the binary division of the genome into A and B compartments are now being refined by the recognition of more complex nuclear compartmentalization. The poorly understood question of how these nuclear compartments are established and maintained is then discussed, including through the modern perspective of phase separation, before moving on to address possible functions of nuclear compartments, using the possible role of nuclear speckles in modulating gene expression as an example. Finally, the review concludes with a discussion of future questions for this field.
Collapse
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
44
|
Boldyreva LV, Andreyeva EN, Pindyurin AV. Position Effect Variegation: Role of the Local Chromatin Context in Gene Expression Regulation. Mol Biol 2022. [DOI: 10.1134/s0026893322030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Razin SV, Ulianov SV. Genome-Directed Cell Nucleus Assembly. BIOLOGY 2022; 11:biology11050708. [PMID: 35625436 PMCID: PMC9138775 DOI: 10.3390/biology11050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Speckles and other nuclear bodies, the nucleolus and perinucleolar zone, transcription/replication factories and the lamina-associated compartment, serve as a structural basis for various genomic functions. In turn, genome activity and specific chromatin 3D organization directly impact the integrity of intranuclear assemblies, initiating/facilitating their formation and dictating their composition. Thus, the large-scale nucleus structure and genome activity mutually influence each other. The cell nucleus is frequently considered a compartment in which the genome is placed to protect it from external forces. Here, we discuss the evidence demonstrating that the cell nucleus should be considered, rather, as structure built around the folded genome. Decondensing chromosomes provide a scaffold for the assembly of the nuclear envelope after mitosis, whereas genome activity directs the assembly of various nuclear compartments, including nucleolus, speckles and transcription factories. Abstract The cell nucleus is frequently considered a cage in which the genome is placed to protect it from various external factors. Inside the nucleus, many functional compartments have been identified that are directly or indirectly involved in implementing genomic DNA’s genetic functions. For many years, it was assumed that these compartments are assembled on a proteinaceous scaffold (nuclear matrix), which provides a structural milieu for nuclear compartmentalization and genome folding while simultaneously offering some rigidity to the cell nucleus. The results of research in recent years have made it possible to consider the cell nucleus from a different angle. From the “box” in which the genome is placed, the nucleus has become a kind of mobile exoskeleton, which is formed around the packaged genome, under the influence of transcription and other processes directly related to the genome activity. In this review, we summarize the main arguments in favor of this point of view by analyzing the mechanisms that mediate cell nucleus assembly and support its resistance to mechanical stresses.
Collapse
Affiliation(s)
- Sergey V. Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence: or
| | - Sergey V. Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
46
|
Melamed A, Fitzgerald TW, Wang Y, Ma J, Birney E, Bangham CRM. Selective clonal persistence of human retroviruses in vivo: Radial chromatin organization, integration site, and host transcription. SCIENCE ADVANCES 2022; 8:eabm6210. [PMID: 35486737 PMCID: PMC9054021 DOI: 10.1126/sciadv.abm6210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The human retroviruses HTLV-1 (human T cell leukemia virus type 1) and HIV-1 persist in vivo as a reservoir of latently infected T cell clones. It is poorly understood what determines which clones survive in the reservoir. We compared >160,000 HTLV-1 integration sites (>40,000 HIV-1 sites) from T cells isolated ex vivo from naturally infected individuals with >230,000 HTLV-1 integration sites (>65,000 HIV-1 sites) from in vitro infection to identify genomic features that determine selective clonal survival. Three statistically independent factors together explained >40% of the observed variance in HTLV-1 clonal survival in vivo: the radial intranuclear position of the provirus, its genomic distance from the centromere, and the intensity of local host genome transcription. The radial intranuclear position of the provirus and its distance from the centromere also explained ~7% of clonal persistence of HIV-1 in vivo. Selection for the intranuclear and intrachromosomal location of the provirus and host transcription intensity favors clonal persistence of human retroviruses in vivo.
Collapse
Affiliation(s)
- Anat Melamed
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | | | - Yuchuan Wang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ewan Birney
- European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Charles R. M. Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
47
|
Gurova K. Can aggressive cancers be identified by the "aggressiveness" of their chromatin? Bioessays 2022; 44:e2100212. [PMID: 35452144 DOI: 10.1002/bies.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Phenotypic plasticity is a crucial feature of aggressive cancer, providing the means for cancer progression. Stochastic changes in tumor cell transcriptional programs increase the chances of survival under any condition. I hypothesize that unstable chromatin permits stochastic transitions between transcriptional programs in aggressive cancers and supports non-genetic heterogeneity of tumor cells as a basis for their adaptability. I present a mechanistic model for unstable chromatin which includes destabilized nucleosomes, mobile chromatin fibers and random enhancer-promoter contacts, resulting in stochastic transcription. I suggest potential markers for "unsettled" chromatin in tumors associated with poor prognosis. Although many of the characteristics of unstable chromatin have been described, they were mostly used to explain changes in the transcription of individual genes. I discuss approaches to evaluate the role of unstable chromatin in non-genetic tumor cell heterogeneity and suggest using the degree of chromatin instability and transcriptional noise in tumor cells to predict cancer aggressiveness.
Collapse
Affiliation(s)
- Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
48
|
Cuadrado Á, Figueroa RI, Sixto M, Bravo I, De Bustos A. First record of the spatial organization of the nucleosome-less chromatin of dinoflagellates: The nonrandom distribution of microsatellites and bipolar arrangement of telomeres in the nucleus of Gambierdiscus australes (Dinophyceae). JOURNAL OF PHYCOLOGY 2022; 58:297-307. [PMID: 35038777 DOI: 10.1111/jpy.13236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Dinoflagellates are a group of protists whose exceptionally large genome is organized in permanently condensed nucleosome-less chromosomes. In this study, we examined the potential role of repetitive DNAs in both the structure of dinoflagellate chromosomes and the architecture of the dinoflagellate nucleus. Non-denaturing fluorescent in situ hybridization (ND-FSH) was used to determine the abundance and physical distribution of telomeric DNA and 16 microsatellites (1- to 4-bp repeats) in the nucleus of Gambierdiscus australes. The results showed an increased relative abundance of the different microsatellite motifs with increasing GC content. Two ND-FISH probes, (A)20 and (AAT)5 , did not yield signals whereas the remainder revealed a dispersed but nonrandom distribution of the microsatellites, mostly in clusters. The bean-shaped interphase nucleus of G. australes contained a region with a high density of trinucleotides. This nuclear compartment was located between the nucleolar organizer region (NOR), located on the concave side of the nucleus, and the convex side. Telomeric DNA was grouped in multiple foci and distributed in two polarized compartments: one associated with the NOR and the other peripherally located along the convex side of the nucleus. Changes in the position of the telomeres during cell division evidenced their dynamic distribution and thus that of the chromosomes during dinomitosis. These insights into the spatial organization of microsatellites and telomeres and thus into the nuclear architecture of G. australes will open up new lines of research into the structure and function of the nucleosome-less chromatin of dinoflagellates.
Collapse
Affiliation(s)
- Ángeles Cuadrado
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá (UAH), Alcalá de Henares, Madrid, 28805, Spain
| | - Rosa I Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, Vigo, 36390, Spain
| | - Marta Sixto
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, Vigo, 36390, Spain
- Campus do Mar, Facultad de Ciencias del Mar, Universidad de Vigo, Vigo, 36311, Spain
| | - Isabel Bravo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, Vigo, 36390, Spain
| | - Alfredo De Bustos
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá (UAH), Alcalá de Henares, Madrid, 28805, Spain
| |
Collapse
|
49
|
Lamina-associated domains: Tethers and looseners. Curr Opin Cell Biol 2022; 74:80-87. [DOI: 10.1016/j.ceb.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023]
|
50
|
Abstract
A hallmark of retroviral replication is establishment of the proviral state, wherein a DNA copy of the viral RNA genome is stably incorporated into a host cell chromosome. Integrase is the viral enzyme responsible for the catalytic steps involved in this process, and integrase strand transfer inhibitors are widely used to treat people living with HIV. Over the past decade, a series of X-ray crystallography and cryogenic electron microscopy studies have revealed the structural basis of retroviral DNA integration. A variable number of integrase molecules congregate on viral DNA ends to assemble a conserved intasome core machine that facilitates integration. The structures additionally informed on the modes of integrase inhibitor action and the means by which HIV acquires drug resistance. Recent years have witnessed the development of allosteric integrase inhibitors, a highly promising class of small molecules that antagonize viral morphogenesis. In this Review, we explore recent insights into the organization and mechanism of the retroviral integration machinery and highlight open questions as well as new directions in the field.
Collapse
|