1
|
Saeed S, Zahoor AF, Ahmad M, Anjum MN, Akhtar R, Shahzadi I. Synthetic methodologies for the construction of selenium-containing heterocycles: a review. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2091566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sadaf Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rabia Akhtar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Irum Shahzadi
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
2
|
Berenji Ardestani S, Eftedal I, Pedersen M, Jeppesen PB, Nørregaard R, Matchkov VV. Endothelial dysfunction in small arteries and early signs of atherosclerosis in ApoE knockout rats. Sci Rep 2020; 10:15296. [PMID: 32943715 PMCID: PMC7499202 DOI: 10.1038/s41598-020-72338-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Endothelial dysfunction is recognized as a major contributor to atherosclerosis and has been suggested to be evident far before plaque formation. Endothelial dysfunction in small resistance arteries has been suggested to initiate long before changes in conduit arteries. In this study, we address early changes in endothelial function of atherosclerosis prone rats. Male ApoE knockout (KO) rats (11- to 13-weeks-old) were subjected to either a Western or standard diet. The diet intervention continued for a period of 20–24 weeks. Endothelial function of pulmonary and mesenteric arteries was examined in vitro using an isometric myograph. We found that Western diet decreased the contribution of cyclooxygenase (COX) to control the vascular tone of both pulmonary and mesenteric arteries. These changes were associated with early stage atherosclerosis and elevated level of plasma total cholesterol, LDL and triglyceride in ApoE KO rats. Chondroid-transformed smooth muscle cells, calcifications, macrophages accumulation and foam cells were also observed in the aortic arch from ApoE KO rats fed Western diet. The ApoE KO rats are a new model to study endothelial dysfunction during the earlier stages of atherosclerosis and could help us improve preclinical drug development.
Collapse
Affiliation(s)
- Simin Berenji Ardestani
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark. .,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Michael Pedersen
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Per Bendix Jeppesen
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Vladimir V Matchkov
- Department of Biomedicine, MEMBRANES, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Characterization of Atherosclerosis Formation in a Murine Model of Type IIa Human Familial Hypercholesterolemia. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1878964. [PMID: 29977908 PMCID: PMC6011105 DOI: 10.1155/2018/1878964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022]
Abstract
A murine genetic model of LDL-cholesterol- (LDL-C-) driven atherosclerosis, based on complete deficiencies of both the LDL-receptor (Ldlr-/-) and key catalytic component of an apolipoprotein B-edisome complex (Apobec1-/-), which converts apoB-100 to apoB-48, has been extensively characterized. These gene deficiencies allow high levels of apoB-100 to be present and inefficiently cleared, thus leading to very high levels of LDL-C in mice on a normal diet. Many key features of atherosclerotic plaques observed in human familial hypercholesterolemia are found in these mice as they are allowed to age through 72 weeks. The general characteristics include the presence of high levels of LDL-C in plasma and macrophage-related fatty streak formation in the aortic tree, which progressively worsens with age. More specifically, plaque found in the aortic sinuses contains a lipid core with relatively high numbers of macrophages and a smooth muscle cell α-actin- and collagen-containing cap, which thins with age. These critical features of plaque progression suggest that the Ldlr-/-/Apobec1-/- mouse line presents a superior model of LDL-C-driven atherosclerosis.
Collapse
|
4
|
Lin L, Liu X, Xu J, Weng L, Ren J, Ge J, Zou Y. High-density lipoprotein inhibits mechanical stress-induced cardiomyocyte autophagy and cardiac hypertrophy through angiotensin II type 1 receptor-mediated PI3K/Akt pathway. J Cell Mol Med 2015; 19:1929-38. [PMID: 25946687 PMCID: PMC4549043 DOI: 10.1111/jcmm.12567] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/29/2015] [Indexed: 12/24/2022] Open
Abstract
Mechanical stress triggers cardiac hypertrophy and autophagy through an angiotensin II (Ang II) type 1 (AT1) receptor-dependent mechanism. Low level of high density lipoprotein (HDL) is an independent risk factor for cardiac hypertrophy. This study was designed to evaluate the effect of HDL on mechanical stress-induced cardiac hypertrophy and autophagy. A 48-hr mechanical stretch and a 4-week transverse aortic constriction were employed to induce cardiomyocyte hypertrophy in vitro and in vivo, respectively, prior to the assessment of myocardial autophagy using LC3b-II and beclin-1. Our results indicated that HDL significantly reduced mechanical stretch-induced rise in autophagy as demonstrated by LC3b-II and beclin-1. In addition, mechanical stress up-regulated AT1 receptor expression in both cultured cardiomyocytes and in mouse hearts, whereas HDL significantly suppressed the AT1 receptor. Furthermore, the role of Akt phosphorylation in HDL-mediated action was assessed using MK-2206, a selective inhibitor for Akt phosphorylation. Our data further revealed that MK-2206 mitigated HDL-induced beneficial responses on cardiac remodelling and autophagy. Taken together, our data revealed that HDL inhibited mechanical stress-induced cardiac hypertrophy and autophagy through downregulation of AT1 receptor, and HDL ameliorated cardiac hypertrophy and autophagy via Akt-dependent mechanism.
Collapse
Affiliation(s)
- Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuebo Liu
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianfeng Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Liqing Weng
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Science, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Gonzalez-Covarrubias V. Lipidomics in longevity and healthy aging. Biogerontology 2013; 14:663-72. [PMID: 23948799 DOI: 10.1007/s10522-013-9450-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/02/2013] [Indexed: 12/18/2022]
Abstract
The role of classical lipids in aging diseases and human longevity has been widely acknowledged. Triglyceride and cholesterol concentrations are clinically assessed to infer the risk of cardiovascular disease while larger lipoprotein particle size and low triglyceride levels have been identified as markers of human longevity. The rise of lipidomics as a branch of metabolomics has provided an additional layer of accuracy to pinpoint specific lipids and its association with aging diseases and longevity. The molecular composition and concentration of lipid species determine their cellular localization, metabolism, and consequently, their impact in disease and health. For example, low density lipoproteins are the main carriers of sphingomyelins and ceramides, while high density lipoproteins are mostly loaded with ether phosphocholines, partly explaining their opposing roles in atherogenesis. Moreover, the identification of specific lipid species in aging diseases and longevity would aid to clarify how these lipids alter health and influence longevity. For instance, ether phosphocholines PC (O-34:1) and PC (O-34:3) have been positively associated with longevity and negatively with diabetes, and hypertension, but other species of phosphocholines show no effect or an opposite association with these traits confirming the relevance of the identification of molecular lipid species to tackle our understanding of healthy aging and disease. Up-to-date, a minor fraction of the human plasma lipidome has been associated to healthy aging and longevity, further research would pinpoint toward specific lipidomic profiles as potential markers of healthy aging and metabolic diseases.
Collapse
|
6
|
Lin L, Gong H, Ge J, Jiang G, Zhou N, Li L, Ye Y, Zhang G, Ge J, Zou Y. High density lipoprotein downregulates angiotensin II type 1 receptor and inhibits angiotensin II-induced cardiac hypertrophy. Biochem Biophys Res Commun 2010; 404:28-33. [PMID: 21094634 DOI: 10.1016/j.bbrc.2010.11.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 11/10/2010] [Indexed: 12/14/2022]
Abstract
Angiotensin II (AngII) and its type receptor (AT1-R) play important roles in the development of cardiac hypertrophy. Low level of high density lipoprotein (HDL) is also an independent risk factor for cardiac hypertrophy. We therefore investigated in the present study whether HDL inhibits cardiac hypertrophy relatively to inhibition of AngII and AT1-R in both in vitro and in vivo experiments. Stimulation of cultured cardiomyocytes of neonatal rats with AngII for 24 h and infusion of AngII in mice for 2 weeks resulted in marked cardiac hypertrophic responses including increased protein synthesis, enlarged sizes of cardiomyocytes and hearts, upregulated phosphorylation levels of protein kinases and reprogrammed expression of specific genes, all of which were significantly attenuated by the treatment with HDL. Furthermore, AngII-treatment induced upregulation of AT-R expression either in cultured cardiomyocytes or in hearts of mice and HDL significantly suppressed the upregulation of AT1-R. Our results suggest that HDL may abrogate AngII-induced cardiac hypertrophy through downregulation of AT1-R expression.
Collapse
Affiliation(s)
- Li Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ling C, Zheng Z, Jiang XC, Zhong W, Li S. Synthesis of a series of novel 2,4,5-trisubstituted selenazole compounds as potential PLTP inhibitors. Bioorg Med Chem Lett 2010; 20:5123-5. [DOI: 10.1016/j.bmcl.2010.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/24/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
|
8
|
Quintão ECR, Cazita PM. Lipid transfer proteins: past, present and perspectives. Atherosclerosis 2009; 209:1-9. [PMID: 19733354 DOI: 10.1016/j.atherosclerosis.2009.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/02/2009] [Accepted: 08/03/2009] [Indexed: 11/15/2022]
Abstract
Lipid transfer proteins (PLTP and CETP) play roles in atherogenesis by modifying the arterial intima cholesterol content via altering the concentration and function of plasma lipoproteins and influencing inflammation. In this regard, endotoxins impair the reverse cholesterol transport (RCT) system in an endotoxemic rodent model, supporting a pro-inflammatory role of HDL reported in chronic diseases where atherosclerosis is premature. High PLTP activity related to atherosclerosis in some clinical studies, but the mechanisms involved could not be ascertained. In experimental animals the relation of elevated plasma PLTP concentration with atherosclerosis was confounded by HDL-C lowering and by unfavorable effects on several inflammatory markers. Coincidently, PLTP also increases in human experimental endotoxemia and in clinical sepsis. Human population investigations seem to favor low CETP as atheroprotective; this is supported by animal models where overexpression of huCETP is atherogenic, most likely due to increased concentration of apoB-lipoprotein-cholesterol. Thus, in spite of CETP facilitating the HDL-C-mediated RCT, the reduction of apoB-LP-cholesterol concentration is the probable antiatherogenic mechanism of CETP inhibition. On the other hand, experimental huCETP expression protects mice from the harmful effects of a bacterial polysaccharide infusion and the mortality rate of severely ill patients correlates with reduction of the plasma CETP concentration. Thus, the roles played by PLTP and CETP on atherosclerosis and acute inflammation seem contradictory. Therefore, the biological roles of PLTP and CETP must be carefully monitored when investigating drugs that inhibit their activity in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Eder C R Quintão
- Lipids Lab, LIM 10, Faculty of Medical Sciences, University of São Paulo, SP, Brazil.
| | | |
Collapse
|
9
|
van Haperen R, Samyn H, Moerland M, van Gent T, Peeters M, Grosveld F, van Tol A, de Crom R. Elevated expression of phospholipid transfer protein in bone marrow derived cells causes atherosclerosis. PLoS One 2008; 3:e2255. [PMID: 18509527 PMCID: PMC2386265 DOI: 10.1371/journal.pone.0002255] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 03/25/2008] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Phospholipid transfer protein (PLTP) is expressed by various cell types. In plasma, it is associated with high density lipoproteins (HDL). Elevated levels of PLTP in transgenic mice result in decreased HDL and increased atherosclerosis. PLTP is present in human atherosclerotic lesions, where it seems to be macrophage derived. The aim of the present study is to evaluate the atherogenic potential of macrophage derived PLTP. METHODS AND FINDINGS Here we show that macrophages from human PLTP transgenic mice secrete active PLTP. Subsequently, we performed bone marrow transplantations using either wild type mice (PLTPwt/wt), hemizygous PLTP transgenic mice (huPLTPtg/wt) or homozygous PLTP transgenic mice (huPLTPtg/tg) as donors and low density lipoprotein receptor deficient mice (LDLR-/-) as acceptors, in order to establish the role of PLTP expressed by bone marrow derived cells in diet-induced atherogenesis. Atherosclerosis was increased in the huPLTPtg/wt-->LDLR-/- mice (2.3-fold) and even further in the huPLTPtg/tg-->LDLR-/- mice (4.5-fold) compared with the control PLTPwt/wt-->LDLR-/- mice (both P<0.001). Plasma PLTP activity levels and non-HDL cholesterol were increased and HDL cholesterol decreased compared with controls (all P<0.01). PLTP was present in atherosclerotic plaques in the mice as demonstrated by immunohistochemistry and appears to co-localize with macrophages. Isolated macrophages from PLTP transgenic mice do not show differences in cholesterol efflux or in cytokine production. Lipopolysaccharide activation of macrophages results in increased production of PLTP. This effect was strongly amplified in PLTP transgenic macrophages. CONCLUSIONS We conclude that PLTP expression by bone marrow derived cells results in atherogenic effects on plasma lipids, increased PLTP activity, high local PLTP protein levels in the atherosclerotic lesions and increased atherosclerotic lesion size.
Collapse
Affiliation(s)
- Rien van Haperen
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannelore Samyn
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Matthijs Moerland
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Teus van Gent
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marian Peeters
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Frank Grosveld
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Arie van Tol
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Rini de Crom
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Vascular Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|