1
|
Gorina SS, Iljina TM, Mukhtarova LS, Toporkova YY, Grechkin AN. Detection of Unprecedented CYP74 Enzyme in Mammal: Hydroperoxide Lyase CYP74C44 of the Bat Sturnira hondurensis. Int J Mol Sci 2022; 23:ijms23148009. [PMID: 35887355 PMCID: PMC9320521 DOI: 10.3390/ijms23148009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
The genome of the neotropical fruit bat Sturnira hondurensis was recently sequenced, revealing an unexpected gene encoding a plant-like protein, CYP74C44, which shares ca. 90% sequence identity with the putative CYP74C of Populus trichocarpa. The preparation and properties of the recombinant CYP74C44 are described in the present work. The CYP74C44 enzyme was found to be active against the 13- and 9-hydroperoxides of linoleic and α-linolenic acids (13-HPOD, 13-HPOT, 9-HPOD, and 9-HPOT, respectively), as well as the 15-hydroperoxide of eicosapentaenoic acid (15-HPEPE). All substrates studied were specifically transformed into chain cleavage products that are typical for hydroperoxide lyases (HPLs). The HPL chain cleavage reaction was validated by the identification of NaBH4-reduced products (Me/TMS) of 15-HPEPE and 13- and 9-hydroperoxides as (all-Z)-14-hydroxy-5,8,11-tetradecatrienoic, (9Z)-12-hydroxy-9-dodecenoic, and 9-hydroxynonanoic acids (Me/TMS), respectively. Thus, CYP74C44 possessed the HPL activity that is typical for the CYP74C subfamily proteins.
Collapse
|
2
|
Gorshkov VY, Toporkova YY, Tsers ID, Smirnova EO, Ogorodnikova AV, Gogoleva NE, Parfirova OI, Petrova OE, Gogolev YV. Differential modulation of the lipoxygenase cascade during typical and latent Pectobacterium atrosepticum infections. ANNALS OF BOTANY 2022; 129:271-286. [PMID: 34417794 PMCID: PMC8835645 DOI: 10.1093/aob/mcab108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Plant diseases caused by Pectobacterium atrosepticum are often accompanied by extensive rot symptoms. In addition, these bacteria are able to interact with host plants without causing disease for long periods, even throughout several host plant generations. There is, to date, no information on the comparative physiology/biochemistry of symptomatic and asymptomatic plant-P. atrosepticum interactions. Typical (symptomatic) P. atrosepticum infections are associated with the induction of plant responses mediated by jasmonates, which are one of the products of the lipoxygenase cascade that gives origin to many other oxylipins with physiological activities. In this study, we compared the functioning of the lipoxygenase cascade following typical and latent (asymptomatic) infections to gain better insight into the physiological basis of the asymptomatic and antagonistic coexistence of plants and pectobacteria. METHODS Tobacco plants were mock-inoculated (control) or infected with the wild type P. atrosepticum (typical infection) or its coronafacic acid-deficient mutant (latent infection). The expression levels of the target lipoxygenase cascade-related genes were assessed by Illumina RNA sequencing. Oxylipin profiles were analysed by GC-MS. With the aim of revising the incorrect annotation of one of the target genes, its open reading frame was cloned to obtain the recombinant protein, which was further purified and characterized using biochemical approaches. KEY RESULTS The obtained data demonstrate that when compared to the typical infection, latent asymptomatic P. atrosepticum infection is associated with (and possibly maintained due to) decreased levels of 9-lipoxygenase branch products and jasmonic acid and increased level of cis-12-oxo-10,15-phytodienoic acid. The formation of 9-oxononanoic acid and epoxyalcohols in tobacco plants was based on the identification of the first tobacco hydroperoxide lyase (HPL) with additional epoxyalcohol synthase (EAS) activity. CONCLUSIONS Our results contribute to the hypothesis of the oxylipin signature, indicating that different types of plant interactions with a particular pathogen are characterized by the different oxylipin profiles of the host plant. In addition, the tobacco LOC107825278 gene was demonstrated to encode an NtHPL (CYP74C43) enzyme yielding volatile aldehydes and aldoacids (HPL products) as well as oxiranyl carbinols (EAS products).
Collapse
Affiliation(s)
- Vladimir Y Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Kazan Federal University, 420111 Kazan, Russia
| | - Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Ivan D Tsers
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Kazan Federal University, 420111 Kazan, Russia
| | - Elena O Smirnova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Anna V Ogorodnikova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Natalia E Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Kazan Federal University, 420111 Kazan, Russia
| | - Olga I Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Olga E Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Yuri V Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Kazan Federal University, 420111 Kazan, Russia
| |
Collapse
|
3
|
Toporkova YY, Smirnova EO, Iljina TM, Mukhtarova LS, Gorina SS, Grechkin AN. The CYP74B and CYP74D divinyl ether synthases possess a side hydroperoxide lyase and epoxyalcohol synthase activities that are enhanced by the site-directed mutagenesis. PHYTOCHEMISTRY 2020; 179:112512. [PMID: 32927248 DOI: 10.1016/j.phytochem.2020.112512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
The CYP74 family of cytochromes P450 includes four enzymes of fatty acid hydroperoxide metabolism: allene oxide synthase (AOS), hydroperoxide lyase (HPL), divinyl ether synthase (DES), and epoxyalcohol synthase (EAS). The present work is concerned with catalytic specificities of three recombinant DESs, namely, the 9-DES (LeDES, CYP74D1) of tomato (Solanum lycopersicum), 9-DES (NtDES, CYP74D3) of tobacco (Nicotiana tabacum), and 13-DES (LuDES, CYP74B16) of flax (Linum usitatissimum), as well as their alterations upon the site-directed mutagenesis. Both LeDES and NtDES converted 9-hydroperoxides of linoleic and α-linolenic acids to divinyl ethers colneleic and colnelenic acids (respectively) with only minorities of HPL and EAS products. In contrast, LeDES and NtDES showed low efficiency towards the linoleate 13-hydroperoxide, affording only the low yield of epoxyalcohols. LuDES exhibited mainly the DES activity towards α-linolenate 13-hydroperoxide (preferred substrate), and HPL activity towards linoleate 13-hydroperoxide, respectively. In contrast, LuDES converted 9-hydroperoxides primarily to the epoxyalcohols. The F291V and A287G mutations within the I-helix groove region (SRS-4) of LuDES resulted in the loss of DES activity and the acquirement of the epoxyalcohol synthase activity. Thus, the studied enzymes exhibited the versatility of catalysis and its qualitative alterations upon the site-directed mutagenesis.
Collapse
Affiliation(s)
- Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia.
| | - Elena O Smirnova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Tatiana M Iljina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Lucia S Mukhtarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia.
| |
Collapse
|
4
|
Tsers I, Gorshkov V, Gogoleva N, Parfirova O, Petrova O, Gogolev Y. Plant Soft Rot Development and Regulation from the Viewpoint of Transcriptomic Profiling. PLANTS 2020; 9:plants9091176. [PMID: 32927917 PMCID: PMC7570247 DOI: 10.3390/plants9091176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Soft rot caused by Pectobacterium species is a devastating plant disease poorly characterized in terms of host plant responses. In this study, changes in the transcriptome of tobacco plants after infection with Pectobacterium atrosepticum (Pba) were analyzed using RNA-Seq. To draw a comprehensive and nontrivially itemized picture of physiological events in Pba-infected plants and to reveal novel potential molecular "players" in plant-Pba interactions, an original functional gene classification was performed. The classifications present in various databases were merged, enriched by "missed" genes, and divided into subcategories. Particular changes in plant cell wall-related processes, perturbations in hormonal and other regulatory systems, and alterations in primary, secondary, and redox metabolism were elucidated in terms of gene expression. Special attention was paid to the prediction of transcription factors (TFs) involved in the disease's development. Herewith, gene expression was analyzed within the predicted TF regulons assembled at the whole-genome level based on the presence of particular cis-regulatory elements (CREs) in gene promoters. Several TFs, whose regulons were enriched by differentially expressed genes, were considered to be potential master regulators of Pba-induced plant responses. Differential regulation of genes belonging to a particular multigene family and encoding cognate proteins was explained by the presence/absence of the particular CRE in gene promoters.
Collapse
Affiliation(s)
- Ivan Tsers
- Laboratory of plant infectious diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia;
| | - Vladimir Gorshkov
- Laboratory of plant infectious diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia;
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (N.G.); (O.P.); (O.P.); (Y.G.)
- Correspondence:
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (N.G.); (O.P.); (O.P.); (Y.G.)
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (N.G.); (O.P.); (O.P.); (Y.G.)
| | - Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (N.G.); (O.P.); (O.P.); (Y.G.)
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (N.G.); (O.P.); (O.P.); (Y.G.)
| |
Collapse
|
5
|
Toporkova YY, Askarova EK, Gorina SS, Ogorodnikova AV, Mukhtarova LS, Grechkin AN. Epoxyalcohol synthase activity of the CYP74B enzymes of higher plants. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158743. [PMID: 32464332 DOI: 10.1016/j.bbalip.2020.158743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023]
Abstract
The CYP74B subfamily of fatty acid hydroperoxide transforming cytochromes P450 includes the most common plant enzymes. All CYP74Bs studied yet except the CYP74B16 (flax divinyl ether synthase, LuDES) and the CYP74B33 (carrot allene oxide synthase, DcAOS) are 13-hydroperoxide lyases (HPLs, synonym: hemiacetal synthases). The results of present work demonstrate that additional products (except the HPL products) of fatty acid hydroperoxides conversion by the recombinant StHPL (CYP74B3, Solanum tuberosum), MsHPL (CYP74B4v1, Medicago sativa), and CsHPL (CYP74B6, Cucumis sativus) are epoxyalcohols. MsHPL, StHPL, and CsHPL converted the 13-hydroperoxides of linoleic (13-HPOD) and α-linolenic acids (13-HPOT) primarily to the chain cleavage products. The minor by-products of 13-HPOD and 13-HPOT conversions by these enzymes were the oxiranyl carbinols, 11-hydroxy-12,13-epoxy-9-octadecenoic and 11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid. At the same time, all enzymes studied converted 9-hydroperoxides into corresponding oxiranyl carbinols with HPL by-products. Thus, the results showed the additional epoxyalcohol synthase activity of studied CYP74B enzymes. The 13-HPOD conversion reliably resulted in smaller yields of the HPL products and bigger yields of the epoxyalcohols compared to the 13-HPOT transformation. Overall, the results show the dualistic HPL/EAS behaviour of studied CYP74B enzymes, depending on hydroperoxide isomerism and unsaturation.
Collapse
Affiliation(s)
- Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia.
| | - Elena K Askarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia
| | - Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia
| | - Anna V Ogorodnikova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia
| | - Lucia S Mukhtarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia.
| |
Collapse
|
6
|
The CYP74 Gene Family in Watermelon: Genome-Wide Identification and Expression Profiling Under Hormonal Stress and Root-Knot Nematode Infection. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Allene oxide synthase (AOS) and hydroperoxide lyase (HPL), members of the CYP74 gene family, are branches of the oxylipin pathway and play vital roles in plant responses to a number of stresses. In this study, four HPL genes and one AOS gene were identified in the watermelon genome, which were clustered into three subfamilies (CYP74A, CYP74B and CYP74C). Sequence analysis revealed that most HPL and AOS proteins from various plants contain representative domains, including Helix-I region, Helix-K region (ExxR) and Heme-binding domain. A number of development-, stress-, and hormone-related cis-elements were found in the promoter regions of the ClAOS and ClHPL genes, and the detected ClAOS and ClHPL genes were differentially expressed in different tissues and fruit development stages, as well as in response to various hormones. In addition, red light could enhance the expression of ClAOS in root-knot nematode-infected leaves and roots of watermelon, implying that ClAOS might play a primary role in red light-induced resistance against root-knot nematodes. These findings lay a foundation for understanding the specific function of CYP74 genes in watermelon.
Collapse
|
7
|
Toporkova YY, Fatykhova VS, Gorina SS, Mukhtarova LS, Grechkin AN. Epoxyalcohol Synthase RjEAS (CYP74A88) from the Japanese Buttercup (Ranunculus japonicus): Cloning and Characterization of Catalytic Properties. BIOCHEMISTRY (MOSCOW) 2019; 84:171-180. [PMID: 31216976 DOI: 10.1134/s0006297919020081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytochromes P450 of the CYP74 family play a key role in the lipoxygenase cascade generating oxylipins (products of polyunsaturated fatty acid oxidation). The CYP74 family includes allene oxide synthases, hydroperoxide lyases, divinyl ether synthases, and epoxyalcohol synthases. In this work, we cloned the CYP74A88 gene from the Japanese buttercup (Ranunculus japonicus) and studied the properties of the encoded recombinant protein. The CYP74A88 enzyme specifically converts linoleic acid 9- and 13-hydroperoxides to oxiranyl carbinols 9,10-epoxy-11-hydroxy-12-octadecenoic acid and 11-hydroxy-12,13-epoxy-9-octadecenoic acid, respectively, which was confirmed by GC-MS analysis and kinetic studies. Therefore, the CYP74A88 enzyme is a specific epoxyalcohol synthase.
Collapse
Affiliation(s)
- Y Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of Russian Academy of Sciences, Kazan, Tatarstan, 420111, Russia.
| | - V S Fatykhova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of Russian Academy of Sciences, Kazan, Tatarstan, 420111, Russia
| | - S S Gorina
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of Russian Academy of Sciences, Kazan, Tatarstan, 420111, Russia
| | - L S Mukhtarova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of Russian Academy of Sciences, Kazan, Tatarstan, 420111, Russia
| | - A N Grechkin
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of Russian Academy of Sciences, Kazan, Tatarstan, 420111, Russia
| |
Collapse
|
8
|
Gorina SS, Mukhitova FK, Ilyina TM, Toporkova YY, Grechkin AN. Detection of unprecedented allene oxide synthase member of CYP74B subfamily: CYP74B33 of carrot (Daucus carota). Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1580-1590. [PMID: 31330195 DOI: 10.1016/j.bbalip.2019.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022]
Abstract
Enzymes of CYP74 family widespread in higher plants control the metabolism of fatty acid hydroperoxides to numerous bioactive oxylipins. Hydroperoxide lyases (HPLs, synonym: hemiacetal synthases) of CYP74B subfamily belong to the most common CYP74 enzymes. HPLs isomerize the hydroperoxides to the short-lived hemiacetals, which are spontaneously decomposed to aldehydes and aldoacids. All CYP74Bs studied yet except the CYP74B16 (flax divinyl ether synthase, LuDES) possessed the 13-HPL activity. Present work reports the cloning of the expressed CYP74B33 gene of carrot (Daucus carota L.) and studies of catalytic properties of the recombinant CYP74B33 protein. In contrast to all CYP74B proteins studied yet, CYP74B33 behaved differently in few respects. Firstly, the preferred substrates of CYP74B33 are 9-hydroperoxides. Secondly and most importantly, CYP74B33 exhibits the 9-allene oxide synthase (AOS) activity. For example, the 9(S)-hydroperoxide of linoleic acid (9-HPOD) underwent the conversion to α-ketol via the short-lived allene oxide. Uncommonly, the 9-HPOD conversion affords a minority of cis-10-oxo-11-phytoenoic acid, which is also produced by CYP74C but not the CYP74A AOSs. The similar product patterns were observed upon the incubations of CYP74B33 with 9(S)-hydroperoxide of α-linolenic acid. The enzyme possessed a mixed HPL, AOS, and the epoxyalcohol synthase activity toward the 13-hydroperoxides, but the total activity was much lower than toward 9-hydroperoxides. Thus, the obtained results show that CYP74B33 is an unprecedented 9-AOS within the CYP74B subfamily.
Collapse
Affiliation(s)
- Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Fakhima K Mukhitova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Tatiana M Ilyina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia.
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia.
| |
Collapse
|
9
|
Ogorodnikova AV, Mukhitova FK, Chechetkin IR, Khairutdinov BI, Grechkin AN. Detection of Divinyl Ether Synthase Activity and a Novel Oxylipin (1'Z)–Colneleic Acid in Asparagus (Asparagus officinalis L.). RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019010114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Chechetkin IR, Blufard AS, Yarin AY, Fedina EO, Khairutdinov BI, Grechkin AN. Detection and identification of complex oxylipins in meadow buttercup (Ranunculus acris) leaves. PHYTOCHEMISTRY 2019; 157:92-102. [PMID: 30390606 DOI: 10.1016/j.phytochem.2018.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/05/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Screening of linolipins, i.e. galactolipids containing esterified residues of divinyl ether oxylipins, in the leaves of several higher plants revealed the presence of these complex oxylipins in the meadow buttercup leaves. The rapid accumulation of linolipins occurred in the injured leaves of meadow buttercup, while intact leaves possessed no linolipins. These oxylipins were isolated from the injured leaves, separated and purified by HPLC. The structural analyses of linolipins by UV, mass-spectroscopy and NMR spectroscopy resulted in the identification of eight molecular species. Three of them were identical to linolipins B-D found earlier in the leaves of flax (Linum usitatissimum L.). Other molecular species were identified as 1-O-(ω5Z)-etherolenoyl-2-O-dinor-(ω5Z)-etherolenoyl-3-O-β-D-galactopyranosyl-sn-glycerol, 1-O-(ω5Z)-etherolenoyl-2-O-(7Z,10Z,13Z)-hexadecatrienoyl-3-O-β-D-galactopyranosyl-sn-glycerol, 1-O-(ω5Z)-etherolenoyl-2-O-(7Z,10Z)-hexadecadienoyl-3-O-β-D-galactopyranosyl-sn-glycerol, 1-O-(ω5Z)-etherolenoyl-2-O-α-linolenoyl-3-O-β-D-galactopyranosyl-sn-glycerol, and 1-O-(ω5Z)-etherolenoyl-2-O-palmitoyl-3-O-(α-galactopyranosyl-1-6-β-D-galactopyranosyl)-sn-glycerol. The trivial names "linolipins E, F, G, H and I," respectively, have been ascribed to these novel complex oxylipins.
Collapse
Affiliation(s)
- Ivan R Chechetkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia.
| | - Alexander S Blufard
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Andrey Y Yarin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Evgenia O Fedina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Bulat I Khairutdinov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| |
Collapse
|
11
|
Toporkova YY, Smirnova EO, Gorina SS, Mukhtarova LS, Grechkin AN. Detection of the first higher plant epoxyalcohol synthase: Molecular cloning and characterisation of the CYP74M2 enzyme of spikemoss Selaginella moellendorffii. PHYTOCHEMISTRY 2018; 156:73-82. [PMID: 30195166 DOI: 10.1016/j.phytochem.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 05/13/2023]
Abstract
The CYP74M2 gene of a model plant, the spikemoss Selaginella moellendorffii Hieron, was cloned and the catalytic properties of corresponding recombinant protein were studied. The recombinant CYP74M2 protein was active towards 13-hydroperoxides of linoleic and a-linolenic acids (13-HPOD and 13-HPOT, respectively). In contrast to previously studied CYP74M1 and CYP74M3, which possessed the divinyl ether synthase activity, CYP74M2 behaved as a dedicated epoxyalcohol synthase (EAS). For instance, the 13-HPOD was converted to three epimeric oxiranyl carbinols 1-3 (formed at a ratio ca. 4:2:1), namely the (11R,12S,13S), (11R,12R, 13S), and (11S,12S,13S) epimers of (9Z)-11-hydroxy-12,13-epoxy-9-octadecenoic acid. Besides these products, a minority of oxiranyl vinyl carbinols like (10E)-11-hydroxy-12,13-epoxy-9-octadecenoic acid was formed. The 13-HPOT conversion by CYP74M2 afforded two stereoisomers of 11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid. Individual oxylipins were purified by HPLC and finally identified by their NMR data, including the 1H-NMR, 2D-COSY, HSQC, and HMBC. Thus, the CYP74M2 is the dedicated epoxyalcohol synthase. To our knowledge, no enzymes of this type have been detected in higher plants yet.
Collapse
Affiliation(s)
- Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia.
| | - Elena O Smirnova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Lucia S Mukhtarova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia.
| |
Collapse
|
12
|
Koeduka T. Functional evolution of biosynthetic enzymes that produce plant volatiles. Biosci Biotechnol Biochem 2018; 82:192-199. [PMID: 29338642 DOI: 10.1080/09168451.2017.1422968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plants synthesize volatile compounds to attract pollinators. The volatiles emitted by flowers are often complex mixtures of organic compounds; pollinators are capable of distinctly recognizing different volatile compounds. Plants also produce volatile compounds to protect themselves against herbivores and pathogens. Some of the volatile compounds produced in floral and vegetative tissues are toxic to insects and microbes. To adapt changes in the environment, plants have evolved the ability to synthesize a unique set of volatiles. Intensive studies have identified and characterized the enzymes responsible for the formation of plant volatiles. In particular, many biosynthetic genes have been isolated and their enzymatic functions have been proposed. This review describes how plants have evolved the biosynthetic pathways leading to the formation of green leaf volatiles and phenylpropene volatiles.
Collapse
Affiliation(s)
- Takao Koeduka
- a Graduate School of Sciences and Technology for Innovation (Agriculture), Department of Biological Chemistry , Yamaguchi University , Yamaguchi , Japan
| |
Collapse
|
13
|
Toporkova YY, Gorina SS, Mukhitova FK, Hamberg M, Ilyina TM, Mukhtarova LS, Grechkin AN. Identification of CYP443D1 (CYP74 clan) of Nematostella vectensis as a first cnidarian epoxyalcohol synthase and insights into its catalytic mechanism. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1099-1109. [PMID: 28774820 DOI: 10.1016/j.bbalip.2017.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/16/2017] [Accepted: 07/29/2017] [Indexed: 01/08/2023]
Abstract
The CYP74 clan enzymes are responsible for the biosynthesis of numerous bioactive oxylipins in higher plants, some Proteobacteria, brown and green algae, and Metazoa. A novel putative CYP74 clan gene CYP443D1 of the starlet sea anemone (Nematostella vectensis, Cnidaria) has been cloned, and the properties of the corresponding recombinant protein have been studied in the present work. The recombinant CYP443D1 was incubated with the 9- and 13-hydroperoxides of linoleic and α-linolenic acids (9-HPOD, 13-HPOD, 9-HPOT, and 13-HPOT, respectively), as well as with the 9-hydroperoxide of γ-linolenic acid (γ-9-HPOT) and 15-hydroperoxide of eicosapentaenoic acid (15-HPEPE). The enzyme was active towards all C18-hydroperoxides with some preference to 9-HPOD. In contrast, 15-HPEPE was a poor substrate. The CYP443D1 specifically converted 9-HPOD into the oxiranyl carbinol 1, (9S,10R,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acid. Both 18O atoms from [18O2-hydroperoxy]9-HPOD were virtually quantitatively incorporated into product 1. Thus, the CYP443D1 exhibited epoxyalcohol synthase (EAS) activity. The 18O labelling data demonstrated that the reaction mechanism included three sequential steps: (1) hydroperoxyl homolysis, (2) oxy radical rearrangement into epoxyallylic radical, (3) hydroxyl rebound, resulting in oxiranyl carbinol formation. The 9-HPOT and γ-9-HPOT were also specifically converted into the oxiranyl carbinols, 15,16- and 6,7-dehydro analogues of compound 1, respectively. The 13-HPOD was converted into erythro- and threo-isomers of oxiranyl carbinol, as well as oxiranyl vinyl carbinols. The obtained results allow assignment of the name "N. vectensis EAS" (NvEAS) to CYP443D1. The NvEAS is a first EAS detected in Cnidaria.
Collapse
Affiliation(s)
- Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Fakhima K Mukhitova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Tatyana M Ilyina
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Lucia S Mukhtarova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia.
| |
Collapse
|
14
|
Gorina SS, Toporkova YY, Mukhtarova LS, Smirnova EO, Chechetkin IR, Khairutdinov BI, Gogolev YV, Grechkin AN. Oxylipin biosynthesis in spikemoss Selaginella moellendorffii: Molecular cloning and identification of divinyl ether synthases CYP74M1 and CYP74M3. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:301-9. [DOI: 10.1016/j.bbalip.2016.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 12/31/2015] [Accepted: 01/07/2016] [Indexed: 12/20/2022]
|
15
|
Koeduka T, Ishizaki K, Mwenda CM, Hori K, Sasaki-Sekimoto Y, Ohta H, Kohchi T, Matsui K. Biochemical characterization of allene oxide synthases from the liverwort Marchantia polymorpha and green microalgae Klebsormidium flaccidum provides insight into the evolutionary divergence of the plant CYP74 family. PLANTA 2015; 242:1175-86. [PMID: 26105654 DOI: 10.1007/s00425-015-2355-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/15/2015] [Indexed: 05/26/2023]
Abstract
Allene oxide synthases (AOSs) were isolated from liverworts and charophytes. These AOSs exhibited enzymatic properties similar to those of angiosperms but formed a distinct phylogenetic clade. Allene oxide synthase (AOS) and hydroperoxide lyase (HPL) mediate the formation of precursors of jasmonates and carbon-six volatiles, respectively. AOS and HPL utilize fatty acid hydroperoxides and belong to the plant cytochrome P450 74 (CYP74) family that mediates plant defense against herbivores, pathogens, or abiotic stresses. Although members of the CYP74 family have been reported in mosses and other species, the evolution and function of multiple CYP74 genes in plants remain elusive. Here, we show that the liverwort Marchantia polymorpha belongs to a basal group in the evolution of land plants; has two closely related proteins (59% identity), MpAOS1 and MpAOS2, that are similar to moss PpAOS1 (49 and 47% identity, respectively); and exhibits AOS activity but not HPL activity. We also found that the green microalgae Klebsormidium flaccidum, consist of multicellular and non-branching filaments, contains an enzyme, KfAOS, that is similar to PpAOS1 (37% identity), and converts 13-hydroperoxide of linolenic acid to 12-oxo-phytodienoic acid in a coupled reaction with allene oxide cyclase. Phylogenetic analysis showed two evolutionarily distinct clusters. One cluster comprised AOS and HPL from charophytic algae, liverworts, and mosses, including MpAOSs and KfAOS. The other cluster was formed by angiosperm CYP74. Our results suggest that plant CYP74 enzymes with AOS, HPL, and divinyl ether synthase activities have arisen multiple times and in the two different clades, which occurred prior to the divergence of the flowering plant lineage.
Collapse
Affiliation(s)
- Takao Koeduka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| | | | - Cynthia Mugo Mwenda
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Koichi Hori
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Kanagawa, 226-8501, Japan
| | - Yuko Sasaki-Sekimoto
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Kanagawa, 226-8501, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Matsui
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
16
|
Ogorodnikova AV, Mukhitova FK, Grechkin AN. Oxylipins in the spikemoss Selaginella martensii: Detection of divinyl ethers, 12-oxophytodienoic acid and related cyclopentenones. PHYTOCHEMISTRY 2015; 118:42-50. [PMID: 26277770 DOI: 10.1016/j.phytochem.2015.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 05/21/2023]
Abstract
Green tissues of spikemoss Selaginella martensii Spring possessed the complex oxylipins patterns. Major oxylipins were the products of linoleic and α-linolenic acids metabolism via the sequential action of 13-lipoxygenase and divinyl ether synthase (DES) or allene oxide synthase (AOS). AOS products were represented by 12-oxophytodienoic acid (12-oxo-PDA) isomers. Exceptionally, S. martensii possesses high level of 12-oxo-9(13),15-PDA, which is very uncommon in flowering plants. Separate divinyl ethers were purified after micro-preparative incubations of linoleic or α-linolenic acids with homogenate of S. martensii aerial parts. The NMR data allowed us to identify all geometric isomers of divinyl ethers. Linoleic acid was converted to divinyl ethers etheroleic acid, (11Z)-etheroleic acid and a minority of (ω5Z)-etheroleic acid. With α-linolenate precursor, the specificity of divinyl ether biosynthesis was distinct. Etherolenic and (ω5Z)-etherolenic acids were the prevailing products while (11Z)-etherolenic acid was a minor one. Divinyl ethers are detected first time in non-flowering land plant. These are the first observations of fatty acid metabolism through the lipoxygenase pathway in spikemosses (Lycopodiophyta).
Collapse
Affiliation(s)
- Anna V Ogorodnikova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Fakhima K Mukhitova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia.
| |
Collapse
|
17
|
Gorina SS, Toporkova YY, Mukhtarova LS, Chechetkin IR, Khairutdinov BI, Gogolev YV, Grechkin AN. Detection and molecular cloning of CYP74Q1 gene: identification of Ranunculus acris leaf divinyl ether synthase. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1227-33. [PMID: 24863619 DOI: 10.1016/j.bbalip.2014.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/10/2014] [Accepted: 05/16/2014] [Indexed: 01/15/2023]
Abstract
Enzymes of the CYP74 family, including the divinyl ether synthase (DES), play important roles in plant cell signalling and defence. The potent DES activities have been detected before in the leaves of the meadow buttercup (Ranunculus acris L.) and few other Ranunculaceae species. The nature of these DESs and their genes remained unrevealed. The PCR with degenerate primers enabled to detect the transcript of unknown P450 gene assigned as CYP74Q1. Besides, two more CYP74Q1 isoforms with minimal sequence variations have been found. The full length recombinant CYP74Q1 protein was expressed in Escherichia coli. The preferred substrates of this enzyme are the 13-hydroperoxides of α-linolenic and linoleic acids, which are converted to the divinyl ether oxylipins (ω5Z)-etherolenic acid, (9Z,11E)-12-[(1'Z,3'Z)-hexadienyloxy]-9,11-dodecadienoic acid, and (ω5Z)-etheroleic acid, (9Z,11E)-12-[(1'Z)-hexenyloxy]-9,11-dodecadienoic acid, respectively, as revealed by the data of mass spectrometry, NMR and UV spectroscopy. Thus, CYP74Q1 protein was identified as the R. acris DES (RaDES), a novel DES type and the opening member of new CYP74Q subfamily.
Collapse
Affiliation(s)
- Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, 420111 Kazan, Russia
| | - Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, 420111 Kazan, Russia
| | - Lucia S Mukhtarova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, 420111 Kazan, Russia
| | - Ivan R Chechetkin
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, 420111 Kazan, Russia
| | - Bulat I Khairutdinov
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, 420111 Kazan, Russia
| | - Yuri V Gogolev
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, 420111 Kazan, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, 420111 Kazan, Russia.
| |
Collapse
|
18
|
Chechetkin IR, Blufard AS, Khairutdinov BI, Mukhitova FK, Gorina SS, Yarin AY, Antsygina LL, Grechkin AN. Isolation and structure elucidation of linolipins C and D, complex oxylipins from flax leaves. PHYTOCHEMISTRY 2013; 96:110-6. [PMID: 24042063 DOI: 10.1016/j.phytochem.2013.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/05/2013] [Accepted: 08/17/2013] [Indexed: 05/08/2023]
Abstract
Two complex oxylipins (linolipins C and D) were isolated from the leaves of flax plants inoculated with phytopathogenic bacteria Pectobacterium atrosepticum. Their structures were elucidated based on UV, MS and NMR spectroscopic data. Both oxylipins were identified as digalactosyldiacylglycerol (DGDG) molecular species. Linolipin C contains one residue of divinyl ether (ω5Z)-etherolenic acid and one α-linolenate residue at sn-1 and sn-2 positions, respectively. Linolipin D possesses two (ω5Z)-etherolenic acid residues at both sn-1 and sn-2 positions. The rapid formation (2-30min) of linolipins C and D alongside with linolipins A and B occurred in the flax leaves upon their damage by freezing-thawing.
Collapse
Key Words
- (13S)-HPOT
- (13S)-hydroperoxy-MGDG
- (9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid
- 1,2-Di-O-[(9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoyl]-3-O-β-d-galactopyranosyl-sn-glycerol
- DES
- Divinyl ether synthase
- ESI MS
- Etherolenic acid
- Flax
- Galactolipid
- LOX
- Linaceae
- Linum usitatissimum
- Oxylipin
- Pectobacterium atrosepticum
- SBOCFWSPOCJDHY-NXTVNIMXSA-N
- SSSOQCOUWWCQSF-MNNDCQRZSA-N
- divinyl ether synthase
- electrospray ionization mass spectrometry
- lipoxygenase
Collapse
Affiliation(s)
- Ivan R Chechetkin
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, 420111 Kazan, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ermilova VS, Gorina SS, Osipova EV, Toporkova YY, Mukhtarova LS, Gogolev YV, Grechkin AN. Alteration of the catalytic properties of divinyl ether synthase as a result of substitutions of unique amino acids. DOKL BIOCHEM BIOPHYS 2013; 452:251-4. [PMID: 24150585 DOI: 10.1134/s1607672913050128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Indexed: 11/22/2022]
Affiliation(s)
- V S Ermilova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, ul. Lobachevskogo 2/31, Kazan, 420111, Tatarstan Russia
| | | | | | | | | | | | | |
Collapse
|
20
|
Toporkova YY, Ermilova VS, Gorina SS, Mukhtarova LS, Osipova EV, Gogolev YV, Grechkin AN. Structure-function relationship in the CYP74 family: conversion of divinyl ether synthases into allene oxide synthases by site-directed mutagenesis. FEBS Lett 2013; 587:2552-8. [PMID: 23827817 DOI: 10.1016/j.febslet.2013.06.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/26/2013] [Accepted: 06/19/2013] [Indexed: 01/10/2023]
Abstract
Non-classical P450s of CYP74 family control several enzymatic conversions of fatty acid hydroperoxides to bioactive oxylipins in plants, some invertebrates and bacteria. The family includes two dehydrases, namely allene oxide synthase (AOS) and divinyl ether synthase (DES), and two isomerases, hydroperoxide lyase (HPL) and epoxyalcohol synthase. To study the interconversion of different CYP74 enzymes, we prepared the mutant forms V379F and E292G of tobacco (CYP74D3) and flax (CYP74B16) divinyl ether synthases (DESs), respectively. In contrast to the wild type (WT) enzymes, both mutant forms lacked DES activity. Instead, they produced the typical AOS products, α-ketols and (in the case of the flax DES mutant) 12-oxo-10,15-phytodienoic acid. This is the first demonstration of DES into AOS conversions caused by single point mutations.
Collapse
Affiliation(s)
- Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | | | | | | | | | | | | |
Collapse
|