1
|
Liu S, Li X, Fan P, Gu Y, Yang A, Wang W, Zhou L, Chen H, Zheng F, Lin J, Xu Z, Zhao Q. The potential role of transcription factor sterol regulatory element binding proteins (SREBPs) in Alzheimer's disease. Biomed Pharmacother 2024; 180:117575. [PMID: 39442239 DOI: 10.1016/j.biopha.2024.117575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Sterol regulatory element binding proteins (SREBPs) are a series of cholesterol-related transcription factors. Their role in regulating brain cholesterol biosynthesis, amyloid accumulation, and tau tangles formation has been intensively studied in protein-protein interaction analysis based on genes in clinical databases. SREBPs play an important role in maintaining cholesterol homeostasis in the brain. There are three subtypes of SREBPs, SREBP-1a stimulates the expression of genes related to cholesterol and fatty acid synthesis, SREBP-1c stimulates adipogenesis, and SREBP-2 stimulates cholesterol synthase and LDL receptors. SREBP-2 is activated in response to cholesterol depletion and stimulates a compensatory upregulation of cholesterol uptake and synthesis. Previous studies have shown that inhibition of SREBP-2 reduces cholesterol and amyloid accumulation, and new research suggests that SREBPs play a multifaceted role in Alzheimer's disease. Here, we highlight the importance of SREBPs in AD, in terms of multiple pathways regulating cholesterol in the brain, and primarily demonstrate the potential of SREBP-2 inhibitors. There was a trend towards a significant increase in the expression levels of different SREBP isoforms in AD patients compared to healthy controls. Therefore, there is a close link between SREBPs and AD, and this review analyses the potential role of SREBPs in the treatment of AD. In addition, we systematically reviewed the research progress of SREBPs in AD, and this review will provide more innovative insights into the pathogenesis and treatment of AD and new strategies for drug development in AD.
Collapse
Affiliation(s)
- Siyuan Liu
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Xinzhu Li
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Panpan Fan
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Yujia Gu
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Aizhu Yang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Weiyi Wang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Lijun Zhou
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Huanhua Chen
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Fangyuan Zheng
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Junjie Lin
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Zihua Xu
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Qingchun Zhao
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| |
Collapse
|
2
|
Martens N, Zhan N, Yam SC, Leijten FPJ, Palumbo M, Caspers M, Tiane A, Friedrichs S, Li Y, van Vark-van der Zee L, Voortman G, Zimetti F, Jaarsma D, Verschuren L, Jonker JW, Kuipers F, Lütjohann D, Vanmierlo T, Mulder MT. Supplementation of Seaweed Extracts to the Diet Reduces Symptoms of Alzheimer's Disease in the APPswePS1ΔE9 Mouse Model. Nutrients 2024; 16:1614. [PMID: 38892548 PMCID: PMC11174572 DOI: 10.3390/nu16111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
We previously demonstrated that diet supplementation with seaweed Sargassum fusiforme (S. fusiforme) prevented AD-related pathology in a mouse model of Alzheimer's Disease (AD). Here, we tested a lipid extract of seaweed Himanthalia elongata (H. elongata) and a supercritical fluid (SCF) extract of S. fusiforme that is free of excess inorganic arsenic. Diet supplementation with H. elongata extract prevented cognitive deterioration in APPswePS1ΔE9 mice. Similar trends were observed for the S. fusiforme SCF extract. The cerebral amyloid-β plaque load remained unaffected. However, IHC analysis revealed that both extracts lowered glial markers in the brains of APPswePS1ΔE9 mice. While cerebellar cholesterol concentrations remained unaffected, both extracts increased desmosterol, an endogenous LXR agonist with anti-inflammatory properties. Both extracts increased cholesterol efflux, and particularly, H. elongata extract decreased the production of pro-inflammatory cytokines in LPS-stimulated THP-1-derived macrophages. Additionally, our findings suggest a reduction of AD-associated phosphorylated tau and promotion of early oligodendrocyte differentiation by H. elongata. RNA sequencing on the hippocampus of one-week-treated APPswePS1ΔE9 mice revealed effects of H. elongata on, amongst others, acetylcholine and synaptogenesis signaling pathways. In conclusion, extracts of H. elongata and S. fusiforme show potential to reduce AD-related pathology in APPswePS1ΔE9 mice. Increasing desmosterol concentrations may contribute to these effects by dampening neuroinflammation.
Collapse
Affiliation(s)
- Nikita Martens
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, B-3590 Hasselt, Belgium
| | - Na Zhan
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Sammie C. Yam
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Frank P. J. Leijten
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Marcella Palumbo
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (M.P.)
| | - Martien Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Assia Tiane
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, B-3590 Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Silvia Friedrichs
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, D-53127 Bonn, Germany (D.L.)
| | - Yanlin Li
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Department of Immunology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Leonie van Vark-van der Zee
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Gardi Voortman
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (M.P.)
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Johan W. Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.J.)
| | - Folkert Kuipers
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.J.)
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, D-53127 Bonn, Germany (D.L.)
| | - Tim Vanmierlo
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, B-3590 Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Monique T. Mulder
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| |
Collapse
|
3
|
Zhang L, Cao Z, Hong Y, He H, Chen L, Yu Z, Gao Y. Squalene Epoxidase: Its Regulations and Links with Cancers. Int J Mol Sci 2024; 25:3874. [PMID: 38612682 PMCID: PMC11011400 DOI: 10.3390/ijms25073874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Squalene epoxidase (SQLE) is a key enzyme in the mevalonate-cholesterol pathway that plays a critical role in cellular physiological processes. It converts squalene to 2,3-epoxysqualene and catalyzes the first oxygenation step in the pathway. Recently, intensive efforts have been made to extend the current knowledge of SQLE in cancers through functional and mechanistic studies. However, the underlying mechanisms and the role of SQLE in cancers have not been fully elucidated yet. In this review, we retrospected current knowledge of SQLE as a rate-limiting enzyme in the mevalonate-cholesterol pathway, while shedding light on its potential as a diagnostic and prognostic marker, and revealed its therapeutic values in cancers. We showed that SQLE is regulated at different levels and is involved in the crosstalk with iron-dependent cell death. Particularly, we systemically reviewed the research findings on the role of SQLE in different cancers. Finally, we discussed the therapeutic implications of SQLE inhibitors and summarized their potential clinical values. Overall, this review discussed the multifaceted mechanisms that involve SQLE to present a vivid panorama of SQLE in cancers.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zheng Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuheng Hong
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Haihua He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Leifeng Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
4
|
Fu X, Wang Z. DHCR24 in Tumor Diagnosis and Treatment: A Comprehensive Review. Technol Cancer Res Treat 2024; 23:15330338241259780. [PMID: 38847653 PMCID: PMC11162140 DOI: 10.1177/15330338241259780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
As an important nutrient in the human body, cholesterol can not only provide structural components for the body's cells, but also can be transformed into a variety of active substances to regulate cell signaling pathways. As an important cholesterol synthase, DHCR24 participates in important regulatory processes in the body. The application of DHCR24 in tumor clinical diagnosis and treatment also attracts much attention. This article reviews the structure and regulatory characteristics of DHCR24, and the research of DHCR24 on tumor progression. We summarize the possible mechanisms of DHCR24 promoting tumor progression through reactive oxygen species (ROS), p53, Ras and PI3K-AKT pathways. Through our review, we hope to provide more research ideas and reference value for the application of DHCR24 in tumor prevention and treatment.
Collapse
Affiliation(s)
- Xin Fu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhaosong Wang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
5
|
Capell-Hattam IM, Fenton NM, Coates HW, Sharpe LJ, Brown AJ. The Non Catalytic Protein ERG28 has a Functional Role in Cholesterol Synthesis and is Coregulated Transcriptionally. J Lipid Res 2022; 63:100295. [PMID: 36216146 PMCID: PMC9730225 DOI: 10.1016/j.jlr.2022.100295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The enzymatic pathway of cholesterol biosynthesis has been well characterized. However, there remain several potential interacting proteins that may play ancillary roles in the regulation of cholesterol production. Here, we identified ERG28 (chromosome 14 open reading frame 1 [C14orf1]), a homologue of the yeast protein Erg28p, as a player in mammalian cholesterol synthesis. ERG28 is conserved from yeast to humans but has been largely overlooked in mammals. Using quantitative RT-PCR, luciferase assays, and publicly available chromatin immunoprecipitation sequencing data, we found that transcription of this gene is driven by the transcription factor SREBP-2, akin to most cholesterol synthesis enzymes, as well as identifying sterol-responsive elements and cofactor binding sites in its proximal promoter. Based on a split luciferase system, ERG28 interacted with itself and two enzymes of cholesterol synthesis (NSDHL and SC4MOL). Huh7 ERG28-KO cell lines were generated, revealing reduced total cholesterol levels in sterol-depleted environments. In addition, radiolabeled metabolic flux assays showed a 60-75% reduction in the rate of cholesterol synthesis in the KO versus wild-type cells, which could be rescued by expression of ectopic ERG28. Unexpectedly, KO of ERG28 also impaired the activation of SREBP-2 under sterol-replete conditions, by a yet-to-be defined mechanism. These results indicate that ERG28 is clearly involved in cholesterol synthesis, although the precise role this noncatalytic protein plays in this complex metabolic pathway remains to be fully elucidated. A deeper understanding of ERG28, and other ancillary proteins of cholesterol synthesis, may help inform therapeutic strategies for diseases associated with aberrant cholesterol metabolism.
Collapse
Affiliation(s)
| | - Nicole M Fenton
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
| | - Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
6
|
Li H, Shen J, Ma S, Zhao F, Zhao W, Chen F, Fu Y, Li B, Cheng J, Deng Y. TGF-β1 suppresses de novo cholesterol biosynthesis in granulosa-lutein cells by down-regulating DHCR24 expression via the GSK-3β/EZH2/H3K27me3 signaling pathway. Int J Biol Macromol 2022; 224:1118-1128. [DOI: 10.1016/j.ijbiomac.2022.10.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
7
|
Jia C, Bai Y, Liu J, Cai W, Liu L, He Y, Song J. Metabolic Regulations by lncRNA, miRNA, and ceRNA Under Grass-Fed and Grain-Fed Regimens in Angus Beef Cattle. Front Genet 2021; 12:579393. [PMID: 33747033 PMCID: PMC7969984 DOI: 10.3389/fgene.2021.579393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Beef cattle raised under grass-fed and grain-fed have many differences, including metabolic efficiency and meat quality. To investigate these two regimens' intrinsic influence on beef cattle, we used high-throughput sequencing and metabolomics analyses to explore differentially expressed genes (DEGs) and metabolimic networks in the liver. A total of 200 DEGs, 76 differentially expressed miRNAs (DEmiRNAs), and two differentially expressed lncRNAs (DElncRNAs) were detected between regimen groups. Metabolic processes and pathways enriched functional genes including target genes of miRNAs and lncRNAs. We found that many genes were involved in energy, retinol and cholesterol metabolism, and bile acid synthesis. Combined with metabolites such as low glucose concentration, high cholesterol concentration, and increased primary bile acid concentration, these genes were mainly responsible for lowering intramuscular fat, low cholesterol, and yellow meat in grass-fed cattle. Additionally, we identified two lncRNAs and eight DEGs as potential competing endogenous RNAs (ceRNAs) to bind miRNAs by the interaction network analysis. These results revealed that the effects of two feeding regimens on beef cattle were mainly induced by gene expression changes in metabolic pathways mediated via lncRNAs, miRNAs, and ceRNAs, and contents of metabolites in the liver. It may provide a clue on feeding regimens inducing the metabolic regulations.
Collapse
Affiliation(s)
- Cunling Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Department of Animal & Avian Science, University of Maryland, College Park, MD, United States
| | - Ying Bai
- Department of Animal & Avian Science, University of Maryland, College Park, MD, United States
| | - Jianan Liu
- Department of Animal & Avian Science, University of Maryland, College Park, MD, United States
| | - Wentao Cai
- Department of Animal & Avian Science, University of Maryland, College Park, MD, United States
| | - Lei Liu
- Department of Animal & Avian Science, University of Maryland, College Park, MD, United States.,Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Science, Shenzhen, China
| | - Yanghua He
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Manoa, HI, United States
| | - Jiuzhou Song
- Department of Animal & Avian Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
8
|
Xue L, Qi H, Zhang H, Ding L, Huang Q, Zhao D, Wu BJ, Li X. Targeting SREBP-2-Regulated Mevalonate Metabolism for Cancer Therapy. Front Oncol 2020; 10:1510. [PMID: 32974183 PMCID: PMC7472741 DOI: 10.3389/fonc.2020.01510] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, targeting metabolic reprogramming has emerged as a potential therapeutic approach for fighting cancer. Sterol regulatory element binding protein-2 (SREBP-2), a basic helix-loop-helix leucine zipper transcription factor, mainly regulates genes involved in cholesterol biosynthesis and homeostasis. SREBP-2 binds to the sterol regulatory elements (SREs) in the promoters of its target genes and activates the transcription of mevalonate pathway genes, such as HMG-CoA reductase (HMGCR), mevalonate kinase and other key enzymes. In this review, we first summarized the structure of SREBP-2 and its activation and regulation by multiple signaling pathways. We then found that SREBP-2 and its regulated enzymes, including HMGCR, FPPS, SQS, and DHCR4 from the mevalonate pathway, participate in the progression of various cancers, including prostate, breast, lung, and hepatocellular cancer, as potential targets. Importantly, preclinical and clinical research demonstrated that fatostatin, statins, and N-BPs targeting SREBP-2, HMGCR, and FPPS, respectively, alone or in combination with other drugs, have been used for the treatment of different cancers. This review summarizes new insights into the critical role of the SREBP-2-regulated mevalonate pathway for cancer and its potential for targeted cancer therapy.
Collapse
Affiliation(s)
- Linyuan Xue
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - He Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
9
|
Capell-Hattam IM, Sharpe LJ, Qian L, Hart-Smith G, Prabhu AV, Brown AJ. Twin enzymes, divergent control: The cholesterogenic enzymes DHCR14 and LBR are differentially regulated transcriptionally and post-translationally. J Biol Chem 2020; 295:2850-2865. [PMID: 31911440 PMCID: PMC7049974 DOI: 10.1074/jbc.ra119.011323] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/13/2019] [Indexed: 01/07/2023] Open
Abstract
Cholesterol synthesis is a tightly regulated process, both transcriptionally and post-translationally. Transcriptional control of cholesterol synthesis is relatively well-understood. However, of the ∼20 enzymes in cholesterol biosynthesis, post-translational regulation has only been examined for a small number. Three of the four sterol reductases in cholesterol production, 7-dehydrocholesterol reductase (DHCR7), 14-dehydrocholesterol reductase (DHCR14), and lamin-B receptor (LBR), share evolutionary ties with a high level of sequence homology and predicted structural homology. DHCR14 and LBR uniquely share the same Δ-14 reductase activity in cholesterol biosynthesis, yet little is known about their post-translational regulation. We have previously identified specific modes of post-translational control of DHCR7, but it is unknown whether these regulatory mechanisms are shared by DHCR14 and LBR. Using CHO-7 cells stably expressing epitope-tagged DHCR14 or LBR, we investigated the post-translational regulation of these enzymes. We found that DHCR14 and LBR undergo differential post-translational regulation, with DHCR14 being rapidly turned over, triggered by cholesterol and other sterol intermediates, whereas LBR remained stable. DHCR14 is degraded via the ubiquitin-proteasome system, and we identified several DHCR14 and DHCR7 putative interaction partners, including a number of E3 ligases that modulate DHCR14 levels. Interestingly, we found that gene expression across an array of human tissues showed a negative relationship between the C14-sterol reductases; one enzyme or the other tends to be predominantly expressed in each tissue. Overall, our findings indicate that whereas LBR tends to be the constitutively active C14-sterol reductase, DHCR14 levels are tunable, responding to the local cellular demands for cholesterol.
Collapse
Affiliation(s)
- Isabelle M Capell-Hattam
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Lydia Qian
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Gene Hart-Smith
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia; Department of Molecular Sciences, Macquarie University, Macquarie Park, New South Wales 2109, Australia
| | - Anika V Prabhu
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
10
|
Ando H, Horibata Y, Aoyama C, Shimizu H, Shinohara Y, Yamashita S, Sugimoto H. Side-chain oxysterols suppress the transcription of CTP: Phosphoethanolamine cytidylyltransferase and 3-hydroxy-3-methylglutaryl-CoA reductase by inhibiting the interaction of p300 and NF-Y, and H3K27 acetylation. J Steroid Biochem Mol Biol 2019; 195:105482. [PMID: 31580889 DOI: 10.1016/j.jsbmb.2019.105482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Abstract
CTP: phosphoethanolamine cytidylyltransferase (Pcyt2) is the rate-limiting enzyme in mammalian phosphatidylethanolamine (PE) biosynthesis. Previously, we reported that increasedPcyt2 mRNA levels after serum starvation are suppressed by 25-hydroxycholesterol (HC) (25-HC), and that nuclear factor-Y (NF-Y) is involved in the inhibitory effects. Transcription of Hmgcr, which encodes 3-hydroxy-3-methylglutaryl-CoA reductase, is suppressed in the same manner. However, no typical sterol regulatory element (SRE) was detected in the Pcyt2 promoter. We were therefore interested in the effect of 25-HC on the modification of histones and thus treated cells with histone acetyltransferase inhibitor (anacardic acid) or histone deacetylase inhibitor (trichostatin A). The suppressive effect of 25-HC on Pcyt2 and Hmgcr mRNA transcription was ameliorated by trichostatin A. Anacardic acid, 25-HC and 24(S)-HC suppressed their transcription by inhibiting H3K27 acetylation in their promoters as evaluated by chromatin immunoprecipitation (ChIP) assays. 27-HC, 22(S)-HC and 22(R)-HC also suppressed their transcription, but 7α-HC, 7β-HC, the synthetic LXR agonist T0901317 and cholesterol did not. Furthermore, 25-HC inhibited p300 recruitment to the Pcyt2 and Hmgcr promoters, and suppressed H3K27 acetylation. 25-HC in the medium was easily conducted into cells. Based on these results, we concluded that 25-HC (and other side-chain oxysterols) in the medium was easily transferred into cells, suppressed H3K27 acetylation via p300 recruitment on the NF-Y complex in the Pcyt2 and Hmgcr promoters, and then suppressed transcription of these genes although LXR is not involved.
Collapse
Affiliation(s)
- Hiromi Ando
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Chieko Aoyama
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Hiroaki Shimizu
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Yasutake Shinohara
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Satoko Yamashita
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan.
| |
Collapse
|
11
|
Coates HW, Chua NK, Brown AJ. Consulting prostate cancer cohort data uncovers transcriptional control: Regulation of the MARCH6 gene. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1656-1668. [PMID: 31422115 DOI: 10.1016/j.bbalip.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022]
Abstract
Cholesterol accumulation is a hallmark of prostate cancer (PCa) enabled by the upregulation of its synthesis, which presents a potential therapeutic target. This pathway is suppressed by the E3 ubiquitin ligase membrane-associated RING-CH-type finger 6 (MARCH6); however, little is known of MARCH6 regulation, particularly at the transcriptional level. Here, we consulted large transcriptomic PCa datasets to investigate transcription factors and DNA sequence elements that regulate the MARCH6 gene. Amongst 498 primary PCa tissues of The Cancer Genome Atlas, we identified a striking positive correlation between MARCH6 and androgen receptor (AR) gene expression (r = 0.81, p < 1 × 10-117) that held in other primary tumour datasets. Two putative androgen response elements were identified in the MARCH6 gene using motif prediction and mining of publicly accessible chromatin immunoprecipitation-sequencing data. However, MARCH6 expression was not androgen-responsive in luciferase reporter and qRT-PCR assays. Instead, we established that the MARCH6-AR correlation in primary PCa is due to common regulation by the transcription factor Sp1. We located a region 100 bp downstream of the MARCH6 transcriptional start site that contains three Sp1 binding sites and strongly upregulates promoter activity. The functionality of this region, and Sp1-mediated upregulation of MARCH6, was confirmed using pharmacological and genetic inhibition of Sp1. Moreover, modulation of Sp1 activity affected the stability of squalene monooxygenase, a cholesterol biosynthesis enzyme and MARCH6 substrate. We thus establish Sp1 as the first known regulator of the MARCH6 gene and demonstrate that interrogation of transcriptomic datasets can assist in the de novo inference of transcriptional regulation.
Collapse
Affiliation(s)
- Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Ngee Kiat Chua
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
12
|
Sharpe LJ, Howe V, Scott NA, Luu W, Phan L, Berk JM, Hochstrasser M, Brown AJ. Cholesterol increases protein levels of the E3 ligase MARCH6 and thereby stimulates protein degradation. J Biol Chem 2018; 294:2436-2448. [PMID: 30545937 DOI: 10.1074/jbc.ra118.005069] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
The E3 ligase membrane-associated ring-CH-type finger 6 (MARCH6) is a polytopic enzyme bound to the membranes of the endoplasmic reticulum. It controls levels of several known protein substrates, including a key enzyme in cholesterol synthesis, squalene monooxygenase. However, beyond its own autodegradation, little is known about how MARCH6 itself is regulated. Using CRISPR/Cas9 gene-editing, MARCH6 overexpression, and immunoblotting, we found here that cholesterol stabilizes MARCH6 protein endogenously and in HEK293 cells that stably express MARCH6. Conversely, MARCH6-deficient HEK293 and HeLa cells lost their ability to degrade squalene monooxygenase in a cholesterol-dependent manner. The ability of cholesterol to boost MARCH6 did not seem to involve a putative sterol-sensing domain in this E3 ligase, but was abolished when either membrane extraction by valosin-containing protein (VCP/p97) or proteasomal degradation was inhibited. Furthermore, cholesterol-mediated stabilization was absent in two MARCH6 mutants that are unable to degrade themselves, indicating that cholesterol stabilizes MARCH6 protein by preventing its autodegradation. Experiments with chemical chaperones suggested that this likely occurs through a conformational change in MARCH6 upon cholesterol addition. Moreover, cholesterol reduced the levels of at least three known MARCH6 substrates, indicating that cholesterol-mediated MARCH6 stabilization increases its activity. Our findings highlight an important new role for cholesterol in controlling levels of proteins, extending the known repertoire of cholesterol homeostasis players.
Collapse
Affiliation(s)
- Laura J Sharpe
- From the School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia and
| | - Vicky Howe
- From the School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia and
| | - Nicola A Scott
- From the School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia and
| | - Winnie Luu
- From the School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia and
| | - Lisa Phan
- From the School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia and
| | - Jason M Berk
- the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Mark Hochstrasser
- the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Andrew J Brown
- From the School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia and
| |
Collapse
|
13
|
El-Darzi N, Astafev A, Mast N, Saadane A, Lam M, Pikuleva IA. N, N-Dimethyl-3β-hydroxycholenamide Reduces Retinal Cholesterol via Partial Inhibition of Retinal Cholesterol Biosynthesis Rather Than its Liver X Receptor Transcriptional Activity. Front Pharmacol 2018; 9:827. [PMID: 30090064 PMCID: PMC6069453 DOI: 10.3389/fphar.2018.00827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
N,N-dimethyl-3β-hydroxycholenamide (DMHCA) is an experimental pharmaceutical and a steroidal liver X receptor (LXR) agonist, which does not induce undesired hepatic lipogenesis. Herein, DMHCA was evaluated for its retinal effects on normal C57BL/6J and Cyp27a1−/−Cyp46a1−/− mice; the latter having higher retinal total and esterified cholesterol in addition to retinal vascular abnormalities. Different doses and two formulations were used for DMHCA delivery either via drinking water (C57BL/6J mice) or by oral gavage (Cyp27a1−/−Cyp46a1−/− mice). The duration of treatment was 1 week for C57BL/6J mice and 2 or 4 weeks for Cyp27a1−/−Cyp46a1−/− mice. In both genotypes, the higher DMHCA doses (37–80 mg/kg of body weight/day) neither increased serum triglycerides nor serum cholesterol but altered the levels of retinal sterols. Total retinal cholesterol was decreased in the DMHCA-treated mice, mainly due to a decrease in retinal unesterified cholesterol. In addition, retinal levels of cholesterol precursors lanosterol, zymosterol, desmosterol, and lathosterol were changed in Cyp27a1−/−Cyp46a1−/− mice. In both genotypes, DMHCA effect on retinal expression of the LXR target genes was only moderate and gender-specific. Collectively, the data obtained provide evidence for a decrease in retinal cholesterol as a result of DMHCA acting in the retina as an enzyme inhibitor of cholesterol biosynthesis rather than a LXR transcriptional activator. Specifically, DMHCA appears to partially inhibit the cholesterol biosynthetic enzyme Δ24-dehydrocholesterol reductase rather than upregulate the expression of LXR target genes involved in reverse cholesterol transport. The identified DMHCA dosages, formulations, and routes of delivery as well as the observed effects on the retina should be considered in future studies using DMHCA as a potential therapeutic for age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Artem Astafev
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Aicha Saadane
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Morrie Lam
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
14
|
Athithan V, Srikumar K. 28-Homocastasterone down regulates blood glucose, cholesterol, triglycerides, SREBP1c and activates LxR expression in normal & diabetic male rat. Chem Biol Interact 2017; 277:8-20. [DOI: 10.1016/j.cbi.2017.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
|
15
|
Howe V, Sharpe LJ, Prabhu AV, Brown AJ. New insights into cellular cholesterol acquisition: promoter analysis of human HMGCR and SQLE , two key control enzymes in cholesterol synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:647-657. [DOI: 10.1016/j.bbalip.2017.03.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/22/2017] [Indexed: 01/06/2023]
|
16
|
Identifying Sterol Response Elements Within Promoters of Genes. Methods Mol Biol 2017. [PMID: 28205174 DOI: 10.1007/978-1-4939-6875-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cholesterol levels are under tight control within cells. This involves a complex interplay of balancing synthesis, uptake, and export. A major player in the transcriptional regulation of cholesterol levels is sterol regulatory element binding protein (SREBP). SREBP is upregulated in conditions of low cholesterol, and then binds to sterol regulatory elements (SREs) that exist within the promoters of genes involved in cholesterol synthesis and uptake.Here, we describe a method to identify sterol response elements (SREs) using in silico and experimental approaches.
Collapse
|
17
|
Sayols-Baixeras S, Irvin MR, Arnett DK, Elosua R, Aslibekyan SW. Epigenetics of Lipid Phenotypes. CURRENT CARDIOVASCULAR RISK REPORTS 2016; 10:31. [PMID: 28496562 PMCID: PMC5421987 DOI: 10.1007/s12170-016-0513-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dyslipidemia is a well-established risk factor for cardiovascular disease, the main cause of death worldwide. Blood lipid profiles are patterned by both genetic and environmental factors. In recent years, epigenetics has emerged as a paradigm that unifies these influences. In this review, we have summarized the latest evidence implicating epigenetic mechanisms-DNA methylation, histone modification, and regulation by RNAs-in lipid homeostasis. Key findings have emerged in a number of novel epigenetic loci located in biologically plausible genes (e.g. CPT1A, ABCG1, SREBF1, and others), as well as microRNA-33a/b. Evidence from animal and cell culture models suggests a complex interplay between different classes of epigenetic processes in the lipid-related genomic regions. While epigenetic findings hold the potential to explain the interindividual variability in lipid profiles as well as the underlying mechanisms, they have yet to be translated into effective therapies for dyslipidemia.
Collapse
Affiliation(s)
- Sergi Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Group, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Dr. Aiguader, 88, Barcelona 08003, Spain, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain, (tel) 34-93-316-07-27, (fax) 34-93-316-04-10
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 220F, Birmingham, AL 35205, USA, (tel) 1-205-975-7672, (fax)1-205-975-3329
| | - Donna K Arnett
- College of Public Health, University of Kentucky, 111 Washington Avenue, Lexington, KY 40536, USA, (tel) 1-859-257-5678, (fax) 1-859-257-8811
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Group, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Dr. Aiguader, 88, Barcelona 08003, Spain, (tel) 34-93-316-08-00, (fax) 34-93-316-04-10
| | - Stella W Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 230J, Birmingham, AL 35205, USA, (tel) 1-205-975-7675, (fax) 1-205-975-3329
| |
Collapse
|
18
|
Prabhu AV, Luu W, Li D, Sharpe LJ, Brown AJ. DHCR7: A vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res 2016; 64:138-151. [PMID: 27697512 DOI: 10.1016/j.plipres.2016.09.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/07/2023]
Abstract
The conversion of 7-dehydrocholesterol to cholesterol, the final step of cholesterol synthesis in the Kandutsch-Russell pathway, is catalyzed by the enzyme 7-dehydrocholesterol reductase (DHCR7). Homozygous or compound heterozygous mutations in DHCR7 lead to the developmental disease Smith-Lemli-Opitz syndrome, which can also result in fetal mortality, highlighting the importance of this enzyme in human development and survival. Besides serving as a substrate for DHCR7, 7-dehydrocholesterol is also a precursor of vitamin D via the action of ultraviolet light on the skin. Thus, DHCR7 exerts complex biological effects, involved in both cholesterol and vitamin D production. Indeed, we argue that DHCR7 can act as a switch between cholesterol and vitamin D synthesis. This review summarizes current knowledge about the critical enzyme DHCR7, highlighting recent findings regarding its structure, transcriptional and post-transcriptional regulation, and its links to vitamin D synthesis. Greater understanding about DHCR7 function, regulation and its place within cellular metabolism will provide important insights into its biological roles.
Collapse
Affiliation(s)
- Anika V Prabhu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Winnie Luu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Dianfan Li
- National Center for Protein Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Benatti P, Chiaramonte ML, Lorenzo M, Hartley JA, Hochhauser D, Gnesutta N, Mantovani R, Imbriano C, Dolfini D. NF-Y activates genes of metabolic pathways altered in cancer cells. Oncotarget 2016; 7:1633-50. [PMID: 26646448 PMCID: PMC4811486 DOI: 10.18632/oncotarget.6453] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/15/2015] [Indexed: 12/21/2022] Open
Abstract
The trimeric transcription factor NF-Y binds to the CCAAT box, an element enriched in promoters of genes overexpressed in tumors. Previous studies on the NF-Y regulome identified the general term metabolism as significantly enriched. We dissect here in detail the targeting of metabolic genes by integrating analysis of NF-Y genomic binding and profilings after inactivation of NF-Y subunits in different cell types. NF-Y controls de novo biosynthetic pathways of lipids, teaming up with the master SREBPs regulators. It activates glycolytic genes, but, surprisingly, is neutral or represses mitochondrial respiratory genes. NF-Y targets the SOCG (Serine, One Carbon, Glycine) and Glutamine pathways, as well as genes involved in the biosynthesis of polyamines and purines. Specific cancer-driving nodes are generally under NF-Y control. Altogether, these data delineate a coherent strategy to promote expression of metabolic genes fuelling anaerobic energy production and other anabolic pathways commonly altered in cancer cells.
Collapse
Affiliation(s)
- Paolo Benatti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | | | - Mariangela Lorenzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - John A. Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - Daniel Hochhauser
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
20
|
Transcriptional suppression of CTP:phosphoethanolamine cytidylyltransferase by 25-hydroxycholesterol is mediated by nuclear factor-Y and Yin Yang 1. Biochem J 2015; 471:369-79. [DOI: 10.1042/bj20150318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022]
Abstract
Nuclear factor-Y and Yin Yang 1 are important for basal transcription of CTP:phosphoethanolamine cytidylyltransferase for phosphatidylethanolamine biosynthesis. Nuclear factor-Y is involved in the inhibitory effect of 25-hydroxycholesterol on this enzyme transcription by inhibiting the interaction between nuclear factor-Y and RNA polymerase II.
Collapse
|
21
|
Honsho M, Abe Y, Fujiki Y. Dysregulation of Plasmalogen Homeostasis Impairs Cholesterol Biosynthesis. J Biol Chem 2015; 290:28822-33. [PMID: 26463208 DOI: 10.1074/jbc.m115.656983] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 11/06/2022] Open
Abstract
Plasmalogen biosynthesis is regulated by modulating fatty acyl-CoA reductase 1 stability in a manner dependent on cellular plasmalogen level. However, physiological significance of the regulation of plasmalogen biosynthesis remains unknown. Here we show that elevation of the cellular plasmalogen level reduces cholesterol biosynthesis without affecting the isoprenylation of proteins such as Rab and Pex19p. Analysis of intermediate metabolites in cholesterol biosynthesis suggests that the first oxidative step in cholesterol biosynthesis catalyzed by squalene monooxygenase (SQLE), an important regulator downstream HMG-CoA reductase in cholesterol synthesis, is reduced by degradation of SQLE upon elevation of cellular plasmalogen level. By contrast, the defect of plasmalogen synthesis causes elevation of SQLE expression, resulting in the reduction of 2,3-epoxysqualene required for cholesterol synthesis, hence implying a novel physiological consequence of the regulation of plasmalogen biosynthesis.
Collapse
Affiliation(s)
- Masanori Honsho
- From the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- From the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yukio Fujiki
- From the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
22
|
Prabhu AV, Sharpe LJ, Brown AJ. The sterol-based transcriptional control of human 7-dehydrocholesterol reductase (DHCR7): Evidence of a cooperative regulatory program in cholesterol synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1431-9. [PMID: 25048193 DOI: 10.1016/j.bbalip.2014.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/20/2014] [Accepted: 07/07/2014] [Indexed: 02/01/2023]
Abstract
The enzyme 7-dehydrocholesterol reductase (DHCR7) catalyzes the final step of cholesterol synthesis via the Kandutsch-Russell pathway, and is crucial in maintaining cellular cholesterol levels. Its absence leads to the devastating fetal developmental disorder Smith-Lemli-Opitz Syndrome (SLOS). How this enzyme is regulated has implications in controlling not only cholesterol synthesis, but also the synthesis of Vitamin D - another product of 7-dehydrocholesterol. In this study, we look specifically at how DHCR7 is regulated by the sterol regulatory element-binding protein-2 (SREBP-2) transcription factor. Sterol regulation has previously been studied in the rat DHCR7 promoter, but we have found that its regulatory elements are not all conserved in humans. Rather, the human promoter contains two binding sites for SREBP-2 (at -155 and -55) and a binding site for the nuclear factor-Y (NF-Y) cofactor (at -136). The -155 site is a particularly responsive sterol regulatory element (SRE) which is well conserved in mammals, and was possibly overlooked in the rat promoter study. The exact location of the weaker -55 site (close to the known rat SRE) may have shifted during evolution. Furthermore, we established that the two SREs that bind SREBP-2 work in cooperation to synergistically activate DHCR7. We have previously characterized the SREs in DHCR24, the final enzyme in the alternate Bloch pathway of cholesterol synthesis. Here, comparison of the sterol regulation of these terminal enzymes demonstrates the unique cooperative system that helps to control cholesterol synthesis.
Collapse
Affiliation(s)
- Anika V Prabhu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
23
|
Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 2014; 513:440-3. [PMID: 25043031 DOI: 10.1038/nature13492] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/15/2014] [Indexed: 01/20/2023]
Abstract
Eukaryotic cells coordinately control anabolic and catabolic processes to maintain cell and tissue homeostasis. Mechanistic target of rapamycin complex 1 (mTORC1) promotes nutrient-consuming anabolic processes, such as protein synthesis. Here we show that as well as increasing protein synthesis, mTORC1 activation in mouse and human cells also promotes an increased capacity for protein degradation. Cells with activated mTORC1 exhibited elevated levels of intact and active proteasomes through a global increase in the expression of genes encoding proteasome subunits. The increase in proteasome gene expression, cellular proteasome content, and rates of protein turnover downstream of mTORC1 were all dependent on induction of the transcription factor nuclear factor erythroid-derived 2-related factor 1 (NRF1; also known as NFE2L1). Genetic activation of mTORC1 through loss of the tuberous sclerosis complex tumour suppressors, TSC1 or TSC2, or physiological activation of mTORC1 in response to growth factors or feeding resulted in increased NRF1 expression in cells and tissues. We find that this NRF1-dependent elevation in proteasome levels serves to increase the intracellular pool of amino acids, which thereby influences rates of new protein synthesis. Therefore, mTORC1 signalling increases the efficiency of proteasome-mediated protein degradation for both quality control and as a mechanism to supply substrate for sustained protein synthesis.
Collapse
|
24
|
Tint GS, Pan L, Shang Q, Sharpe LJ, Brown AJ, Li M, Yu H. Desmosterol in brain is elevated because DHCR24 needs REST for Robust Expression but REST is poorly expressed. Dev Neurosci 2014; 36:132-42. [PMID: 24861183 DOI: 10.1159/000362363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/19/2014] [Indexed: 11/19/2022] Open
Abstract
Cholesterol synthesis in the fetal brain is inhibited because activity of DHCR24 (24-dehydrocholesterol reductase) is insufficient, causing concentrations of the precursor desmosterol to increase temporarily to 15-25% of total sterols at birth. We demonstrate that failure of DHCR24 to be adequately upregulated during periods of elevated cholesterol synthesis in the brain results from the presence in its promoter of the repressor element 1 (RE1) nucleotide sequence that binds the RE1-silencing transcription factor (REST) and that REST, generally reduced in neural tissues, uncharacteristically but not without precedent, enhances DHCR24 transcription. DHCR24 and REST mRNA levels are reduced 3- to 4-fold in fetal mouse brain compared to liver (p < 0.001). Chromatin immunoprecipitation assays suggested that REST binds to the human DHCR24 promoter in the vicinity of the predicted human RE1 sequence. Luminescent emission from a human DHCR24 promoter construct with a mutated RE1 sequence was reduced 2-fold compared to output from a reporter with wild-type RE1 (p < 0.005). Silencing REST in HeLa cells resulted in significant reductions of DHCR24 mRNA (2-fold) and DHCR24 protein (4-fold). As expected, relative concentrations of Δ(24)-cholesterol precursor sterols increased 3- to 4-fold, reflecting the inhibition of DHCR24 enzyme activity. In contrast, mRNA levels of DHCR7 (sterol 7-dehydrocholesterol reductase), a gene essential for cholesterol synthesis lacking an RE1 sequence, and concentrations of HMGR (3-hydroxy-3-methyl-glutaryl-CoA reductase) enzyme protein were both unaffected. Surprisingly, a dominant negative fragment of REST consisting of just the DNA binding domain (about 20% of the protein) and full-length REST enhanced DHCR24 expression equally well. Furthermore, RE1 and the sterol response element (SRE), the respective binding sites for REST and the SRE binding protein (SREBP), are contiguous. These observations led us to hypothesize that REST acts because it is bound in close proximity to SREBP, thus amplifying its ability to upregulate DHCR24. It is likely that modulation of DHCR24 expression by REST persisted in the mammalian genome either because it does no harm or because suppressing metabolically active DHCR24 while providing abundant quantities of the multifunctional sterol desmosterol during neural development proved useful.
Collapse
Affiliation(s)
- G S Tint
- Research Service, Department of Veterans Affairs Medical Center, East Orange, N.J., USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Circulating levels of cholesterol precursors in the body have proven their value over the years as indicators of in-vivo cholesterol synthesis. However, there is growing interest in their potential as markers of various disease states. The purpose of this review is to evaluate current literature on cholesterol precursors as disease markers. RECENT FINDINGS Firstly, we focus on studies linking circulating squalene with the risk of cardiovascular disease. Secondly, we explore the interplay between cholesterol precursors (7-dehydrocholesterol and desmosterol) and the enzymes that act upon them (DHCR7 and DHCR24) in the context of liver disease. For instance, recent findings indicate that circulating desmosterol is elevated in nonalcoholic steatohepatitis. This may be linked to this regulatory cholesterol precursor being produced in and effluxed from hepatocytes, or alternatively from lipid-laden hepatic macrophages (Kupffer cells), which play an important role in the cause of nonalcoholic steatohepatitis. Desmosterol is also implicated in Hepatitis C virus replication, and hence may also be involved in viral fatty liver disease, possibly contributing to virus pathogenicity and/or host defense. Furthermore, there is increasing evidence that the activity of DHCR7 may affect chronic liver diseases by influencing vitamin D levels. SUMMARY Beyond their accepted application as markers of cholesterol synthesis, cholesterol precursors have potential both as disease indicators, and for providing deeper insights into the disease process.
Collapse
Affiliation(s)
- Andrew J Brown
- aSchool of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia bInstitute of Biomedicine, Anatomy, University of Helsinki cMinerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | | |
Collapse
|
26
|
Luu W, Zerenturk EJ, Kristiana I, Bucknall MP, Sharpe LJ, Brown AJ. Signaling regulates activity of DHCR24, the final enzyme in cholesterol synthesis. J Lipid Res 2013; 55:410-20. [PMID: 24363437 DOI: 10.1194/jlr.m043257] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The role of signaling in regulating cholesterol homeostasis is gradually becoming more widely recognized. Here, we explored how kinases and phosphorylation sites regulate the activity of the enzyme involved in the final step of cholesterol synthesis, 3β-hydroxysterol Δ24-reductase (DHCR24). Many factors are known to regulate DHCR24 transcriptionally, but little is known about its posttranslational regulation. We developed a system to specifically test human ectopic DHCR24 activity in a model cell-line (Chinese hamster ovary-7) using siRNA targeted only to hamster DHCR24, thus ensuring that all activity could be attributed to the human enzyme. We determined the effect of known phosphorylation sites and found that mutating certain residues (T110, Y299, and Y507) inhibited DHCR24 activity. In addition, inhibitors of protein kinase C ablated DHCR24 activity, although not through a known phosphorylation site. Our data indicate a novel mechanism whereby DHCR24 activity is regulated by signaling.
Collapse
Affiliation(s)
- Winnie Luu
- School of Biotechnology and Biomolecular Sciences The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Desmosterol and DHCR24: unexpected new directions for a terminal step in cholesterol synthesis. Prog Lipid Res 2013; 52:666-80. [PMID: 24095826 DOI: 10.1016/j.plipres.2013.09.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/25/2013] [Accepted: 09/12/2013] [Indexed: 01/31/2023]
Abstract
3β-Hydroxysterol Δ(24)-reductase (DHCR24) catalyzes the conversion of desmosterol to cholesterol. This ultimate step of cholesterol biosynthesis appears to be remarkable in its diverse functions and the number of diseases it is implicated in from vascular disease to Hepatitis C virus (HCV) infection to cancer to Alzheimer's disease. This review summarizes the present knowledge on the DHCR24 gene, sterol Δ(24)-reductase protein and the regulation of both. In addition, the functions of desmosterol, DHCR24 and their roles in human diseases are discussed. It is apparent that DHCR24 exerts more complex effects than what would be expected based on the enzymatic activity of sterol Δ(24)-reduction alone, such as its influence in modulating oxidative stress. Increasing information about DHCR24 membrane association, processing, enzymatic regulation and interaction partners will provide further fundamental insights into DHCR24 and its many and varied biological roles.
Collapse
|
28
|
Protein tyrosine phosphatase inhibition down-regulates ligand-induced ABCA1 expression. Atherosclerosis 2013; 228:362-9. [DOI: 10.1016/j.atherosclerosis.2013.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/05/2013] [Accepted: 03/09/2013] [Indexed: 11/22/2022]
|
29
|
Sharpe LJ, Brown AJ. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J Biol Chem 2013; 288:18707-15. [PMID: 23696639 DOI: 10.1074/jbc.r113.479808] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is the target of the statins, important drugs that lower blood cholesterol levels and treat cardiovascular disease. Consequently, the regulation of HMGCR has been investigated in detail. However, this enzyme acts very early in the cholesterol synthesis pathway, with ∼20 subsequent enzymes needed to produce cholesterol. How they are regulated is largely unexplored territory, but there is growing evidence that enzymes beyond HMGCR serve as flux-controlling points. Here, we introduce some of the known regulatory mechanisms affecting enzymes beyond HMGCR and highlight the need to further investigate their control.
Collapse
Affiliation(s)
- Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | | |
Collapse
|
30
|
A comprehensive machine-readable view of the mammalian cholesterol biosynthesis pathway. Biochem Pharmacol 2013; 86:56-66. [PMID: 23583456 PMCID: PMC3912678 DOI: 10.1016/j.bcp.2013.03.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/17/2023]
Abstract
Cholesterol biosynthesis serves as a central metabolic hub for numerous biological processes in health and disease. A detailed, integrative single-view description of how the cholesterol pathway is structured and how it interacts with other pathway systems is lacking in the existing literature. Here we provide a systematic review of the existing literature and present a detailed pathway diagram that describes the cholesterol biosynthesis pathway (the mevalonate, the Kandutch-Russell and the Bloch pathway) and shunt pathway that leads to 24(S),25-epoxycholesterol synthesis. The diagram has been produced using the Systems Biology Graphical Notation (SBGN) and is available in the SBGN-ML format, a human readable and machine semantically parsable open community file format.
Collapse
|
31
|
Promoter analysis of the DHCR24 (3β-hydroxysterol Δ(24)-reductase) gene: characterization of SREBP (sterol-regulatory-element-binding protein)-mediated activation. Biosci Rep 2012; 33:57-69. [PMID: 23050906 PMCID: PMC3522477 DOI: 10.1042/bsr20120095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DHCR24 (3β-hydroxysterol Δ24-reductase) catalyses the reduction of the C-24 double bond of sterol intermediates during cholesterol biosynthesis. DHCR24 has also been involved in cell growth, senescence and cellular response to oncogenic and oxidative stress. Despite its important roles, little is known about the transcriptional mechanisms controlling DHCR24 gene expression. We analysed the proximal promoter region and the cholesterol-mediated regulation of DHCR24. A putative SRE (sterol-regulatory element) at −98/−90 bp of the transcription start site was identified. Other putative regulatory elements commonly found in SREBP (SRE-binding protein)-targeted genes were also identified. Sterol responsiveness was analysed by luciferase reporter assays of approximately 1 kb 5′-flanking region of the human DHCR24 gene in HepG2 and SK-N-MC cells. EMSAs (electrophoretic mobility-shift assays) and ChIP (chromatin immunoprecipitation) assays demonstrated cholesterol-dependent recruitment and binding of SREBPs to the putative SRE. Given the presence of several CACCC-boxes in the DHCR24 proximal promoter, we assessed the role of KLF5 (Krüppel-like factor 5) in androgen-regulated DHCR24 expression. DHT (dihydrotestosterone) increased DHCR24 expression synergistically with lovastatin. However, DHT was unable to activate the DHCR24 proximal promoter, whereas KLF5 did, indicating that this mechanism is not involved in the androgen-induced stimulation of DHCR24 expression. The results of the present study allow the elucidation of the mechanism of regulation of the DHCR24 gene by cholesterol availability and identification of other putative cis-acting elements which may be relevant for the regulation of DHCR24 expression.
Collapse
|