1
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Hsing V, Zhao HQ, Post M, Devine D, McVey MJ. Preservation of recipient plasma sphingosine-1-phosphate levels reduces transfusion-related acute lung injury. Am J Physiol Lung Cell Mol Physiol 2024; 326:L589-L595. [PMID: 38375568 PMCID: PMC11905805 DOI: 10.1152/ajplung.00388.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024] Open
Abstract
Cold-stored (CS) platelets are once again being reintroduced for clinical use. Transfused CS platelets offer benefits over room temperature-stored (RTS) platelets such as increased hemostatic effects and prolongation of shelf-life. Despite these advantages little is known about their association with transfusion-related acute lung injury (TRALI). TRALI is associated with prolonged storage of RTS platelets and has a mortality of >15%. Determining the safety of CS platelets is important considering their proposed use in TRALI-vulnerable populations with inflammation such as surgical patients or patients with trauma. Donor platelet-derived ceramide causes TRALI, whereas donor platelet sphingosine-1-phosphate (S1P) is barrier protective. Females have higher plasma levels of S1P than males. Cold temperatures increase S1P levels in cells. Therefore, we hypothesized that female (donors or recipients) and/or CS platelets would decrease TRALI. To test this, we compared how male and female donor and recipient allogeneic platelet transfusions of CS (4°C) versus RTS (23°C) platelets stored for 5 days influence murine TRALI. Transfusion of CS platelets significantly reduced recipient lung tissue wet-to-dry ratios, bronchoalveolar lavage total protein, lung tissue myeloperoxidase enzyme activity, histological lung injury scores, and increased plasma sphingosine-1-phosphate (S1P) levels compared with RTS platelet transfusions. Female as opposed to male recipients had less TRALI and higher plasma S1P levels. Female donor mouse platelets had higher S1P levels than males. Mouse and human CS platelets had increased S1P levels compared with RTS platelets. Higher recipient plasma S1P levels appear protective considering females, and males receiving platelets from females or male CS platelets had less TRALI.NEW & NOTEWORTHY Transfusion-related acute lung injury (TRALI) though relatively rare represents a severe lung injury. The sphingolipid sphingosine-1-phosphate (S1P) regulates the severity of platelet-mediated TRALI. Female platelet transfusion recipient plasmas or stored platelets from female donors have higher S1P levels than males, which reduces TRALI. Cold storage of murine platelets preserves platelet-S1P, which reduces TRALI in platelet-transfused recipients.
Collapse
Affiliation(s)
- Vanessa Hsing
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Han Qi Zhao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada
| | - Martin Post
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Dana Devine
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada
| | - Mark J McVey
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
3
|
AlOuda SK, Sasikumar P, AlThunayan T, Alaajam F, Khan S, Sahli KA, Abohassan MS, Pollitt A, Jung SM, Gibbins JM. Role of heat shock protein 47 in platelet glycoprotein VI dimerization and signaling. Res Pract Thromb Haemost 2023; 7:102177. [PMID: 37767064 PMCID: PMC10520510 DOI: 10.1016/j.rpth.2023.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 07/21/2023] [Indexed: 09/29/2023] Open
Abstract
Background Heat shock protein 47 (HSP47) is an intracellular chaperone protein with an indispensable role in collagen biosynthesis in collagen-secreting cells. This chaperone has also been shown to be released and present on the surface of platelets. The inhibition of HSP47 in human platelets or its ablation in mouse platelets reduces platelet function in response to collagen and the glycoprotein (GP) VI collagen receptor agonist CRP-XL. Objectives In this study, we sought, through experiments, to explore cellular distribution, trafficking, and influence on GPVI interactions to understand how HSP47 modulates collagen receptor signaling. Methods HSP47-deficient mouse platelets and SMIH- treated human platelets were used to study the role of HSP47 in collagen mediated responses and signaling. Results Using subcellular fractionation analysis and immunofluorescence microscopy, HSP47 was found to be localized to the platelet-dense tubular system. Following platelet stimulation, HSP47 mobilization to the cell surface was shown to be dependent on actin polymerization, a feature common to other dense tubular system resident platelet proteins that are released to the cell surface during activation. In this location, HSP47 was found to contribute to platelet adhesion to collagen or CRP-XL but not to GFOGER peptide (an integrin α2β1-binding sequence within collagens), indicating selective effects of HSP47 on GPVI function. Dimerization of GPVI on the platelet surface increases its affinity for collagen. GPVI dimerization was reduced following HSP47 inhibition, as was collagen and CRP-XL-mediated signaling. Conclusion The present study identifies a role for cell surface-localized HSP47 in modulating platelet responses to collagen through dimerization of GPVI, thereby enhancing platelet signaling and activation.
Collapse
Affiliation(s)
- Sarah K. AlOuda
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Parvathy Sasikumar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Centre for Haematology, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Taysseer AlThunayan
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Fahd Alaajam
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Sabeeya Khan
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Khaled A. Sahli
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- General Directorate of Medical Services, Ministry of Interior, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed S. Abohassan
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Alice Pollitt
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Stephanie M. Jung
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
4
|
Tolksdorf C, Moritz E, Wolf R, Meyer U, Marx S, Bien-Möller S, Garscha U, Jedlitschky G, Rauch BH. Platelet-Derived S1P and Its Relevance for the Communication with Immune Cells in Multiple Human Diseases. Int J Mol Sci 2022; 23:ijms231810278. [PMID: 36142188 PMCID: PMC9499465 DOI: 10.3390/ijms231810278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a versatile signaling lipid involved in the regulation of numerous cellular processes. S1P regulates cellular proliferation, migration, and apoptosis as well as the function of immune cells. S1P is generated from sphingosine (Sph), which derives from the ceramide metabolism. In particular, high concentrations of S1P are present in the blood. This originates mainly from erythrocytes, endothelial cells (ECs), and platelets. While erythrocytes function as a storage pool for circulating S1P, platelets can rapidly generate S1P de novo, store it in large quantities, and release it when the platelet is activated. Platelets can thus provide S1P in a short time when needed or in the case of an injury with subsequent platelet activation and thereby regulate local cellular responses. In addition, platelet-dependently generated and released S1P may also influence long-term immune cell functions in various disease processes, such as inflammation-driven vascular diseases. In this review, the metabolism and release of platelet S1P are presented, and the autocrine versus paracrine functions of platelet-derived S1P and its relevance in various disease processes are discussed. New pharmacological approaches that target the auto- or paracrine effects of S1P may be therapeutically helpful in the future for pathological processes involving S1P.
Collapse
Affiliation(s)
- Céline Tolksdorf
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Eileen Moritz
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Robert Wolf
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Ulrike Meyer
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Sandra Bien-Möller
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Ulrike Garscha
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Gabriele Jedlitschky
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Bernhard H. Rauch
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Correspondence:
| |
Collapse
|
5
|
Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nat Rev Rheumatol 2022; 18:335-351. [PMID: 35508810 DOI: 10.1038/s41584-022-00784-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Sphingosine 1-phosphate (S1P), which acts via G protein-coupled S1P receptors (S1PRs), is a bioactive lipid essential for vascular integrity and lymphocyte trafficking. The S1P-S1PR signalling axis is a key component of the inflammatory response in autoimmune rheumatic diseases. Several drugs that target S1PRs have been approved for the treatment of multiple sclerosis and inflammatory bowel disease and are under clinical testing for patients with systemic lupus erythematosus (SLE). Preclinical studies support the hypothesis that targeting the S1P-S1PR axis would be beneficial to patients with SLE, rheumatoid arthritis (RA) and systemic sclerosis (SSc) by reducing pathological inflammation. Whereas most preclinical research and development efforts are focused on reducing lymphocyte trafficking, protective effects of circulating S1P on endothelial S1PRs, which maintain the vascular barrier and enable blood circulation while dampening leukocyte extravasation, have been largely overlooked. In this Review, we take a holistic view of S1P-S1PR signalling in lymphocyte and vascular pathobiology. We focus on the potential of S1PR modulators for the treatment of SLE, RA and SSc and summarize the rationale, pathobiology and evidence from preclinical models and clinical studies. Improved understanding of S1P pathobiology in autoimmune rheumatic diseases and S1PR therapeutic modulation is anticipated to lead to efficacious and safer management of these diseases.
Collapse
|
6
|
Canals D, Clarke CJ. Compartmentalization of Sphingolipid metabolism: Implications for signaling and therapy. Pharmacol Ther 2021; 232:108005. [PMID: 34582834 DOI: 10.1016/j.pharmthera.2021.108005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SLs) are a family of bioactive lipids implicated in a variety of cellular processes, and whose levels are controlled by an interlinked network of enzymes. While the spatial distribution of SL metabolism throughout the cell has been understood for some time, the implications of this for SL signaling and biological outcomes have only recently begun to be fully explored. In this review, we outline the compartmentalization of SL metabolism and describe advances in tools for investigating and probing compartment-specific SL functions. We also briefly discuss the implications of SL compartmentalization for cell signaling and therapeutic approaches to targeting the SL network.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Liu H, Jackson ML, Goudswaard LJ, Moore SF, Hutchinson JL, Hers I. Sphingosine-1-phosphate modulates PAR1-mediated human platelet activation in a concentration-dependent biphasic manner. Sci Rep 2021; 11:15308. [PMID: 34321503 PMCID: PMC8319165 DOI: 10.1038/s41598-021-94052-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/18/2021] [Indexed: 11/08/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive signalling sphingolipid that is increased in diseases such as obesity and diabetes. S1P can modulate platelet function, however the direction of effect and S1P receptors (S1PRs) involved are controversial. Here we describe the role of S1P in regulating human platelet function and identify the receptor subtypes responsible for S1P priming. Human platelets were treated with protease-activated receptor 1 (PAR-1)-activating peptide in the presence or absence of S1P, S1PR agonists or antagonists, and sphingosine kinases inhibitors. S1P alone did not induce platelet aggregation but at low concentrations S1P enhanced PAR1-mediated platelet responses, whereas PAR1 responses were inhibited by high concentrations of S1P. This biphasic effect was mimicked by pan-S1PR agonists. Specific agonists revealed that S1PR1 receptor activation has a positive priming effect, S1PR2 and S1PR3 have no effect on platelet function, whereas S1PR4 and S1PR5 receptor activation have an inhibitory effect on PAR-1 mediated platelet function. Although platelets express both sphingosine kinase 1/2, enzymes which phosphorylate sphingosine to produce S1P, only dual and SphK2 inhibition reduced platelet function. These results support a role for SphK2-mediated S1P generation in concentration-dependent positive and negative priming of platelet function, through S1PR1 and S1PR4/5 receptors, respectively.
Collapse
Affiliation(s)
- Haonan Liu
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Molly L Jackson
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Lucy J Goudswaard
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
- Population Health Sciences, Oakfield House, University of Bristol, Bristol, BS8 2BN, UK
| | - Samantha F Moore
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - James L Hutchinson
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
8
|
Critical Roles of Lysophospholipid Receptors in Activation of Neuroglia and Their Neuroinflammatory Responses. Int J Mol Sci 2021; 22:ijms22157864. [PMID: 34360625 PMCID: PMC8346064 DOI: 10.3390/ijms22157864] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Activation of microglia and/or astrocytes often releases proinflammatory molecules as critical pathogenic mediators that can promote neuroinflammation and secondary brain damages in diverse diseases of the central nervous system (CNS). Therefore, controlling the activation of glial cells and their neuroinflammatory responses has been considered as a potential therapeutic strategy for treating neuroinflammatory diseases. Recently, receptor-mediated lysophospholipid signaling, sphingosine 1-phosphate (S1P) receptor- and lysophosphatidic acid (LPA) receptor-mediated signaling in particular, has drawn scientific interest because of its critical roles in pathogenies of diverse neurological diseases such as neuropathic pain, systemic sclerosis, spinal cord injury, multiple sclerosis, cerebral ischemia, traumatic brain injury, hypoxia, hydrocephalus, and neuropsychiatric disorders. Activation of microglia and/or astrocytes is a common pathogenic event shared by most of these CNS disorders, indicating that lysophospholipid receptors could influence glial activation. In fact, many studies have reported that several S1P and LPA receptors can influence glial activation during the pathogenesis of cerebral ischemia and multiple sclerosis. This review aims to provide a comprehensive framework about the roles of S1P and LPA receptors in the activation of microglia and/or astrocytes and their neuroinflammatory responses in CNS diseases.
Collapse
|
9
|
Kanikarla Marie P, Fowlkes NW, Afshar-Kharghan V, Martch SL, Sorokin A, Shen JP, Morris VK, Dasari A, You N, Sood AK, Overman MJ, Kopetz S, Menter DG. The Provocative Roles of Platelets in Liver Disease and Cancer. Front Oncol 2021; 11:643815. [PMID: 34367949 PMCID: PMC8335590 DOI: 10.3389/fonc.2021.643815] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Both platelets and the liver play important roles in the processes of coagulation and innate immunity. Platelet responses at the site of an injury are rapid; their immediate activation and structural changes minimize the loss of blood. The majority of coagulation proteins are produced by the liver—a multifunctional organ that also plays a critical role in many processes: removal of toxins and metabolism of fats, proteins, carbohydrates, and drugs. Chronic inflammation, trauma, or other causes of irreversible damage to the liver can dysregulate these pathways leading to organ and systemic abnormalities. In some cases, platelet-to-lymphocyte ratios can also be a predictor of disease outcome. An example is cirrhosis, which increases the risk of bleeding and prothrombotic events followed by activation of platelets. Along with a triggered coagulation cascade, the platelets increase the risk of pro-thrombotic events and contribute to cancer progression and metastasis. This progression and the resulting tissue destruction is physiologically comparable to a persistent, chronic wound. Various cancers, including colorectal cancer, have been associated with increased thrombocytosis, platelet activation, platelet-storage granule release, and thrombosis; anti-platelet agents can reduce cancer risk and progression. However, in cancer patients with pre-existing liver disease who are undergoing chemotherapy, the risk of thrombotic events becomes challenging to manage due to their inherent risk for bleeding. Chemotherapy, also known to induce damage to the liver, further increases the frequency of thrombotic events. Depending on individual patient risks, these factors acting together can disrupt the fragile balance between pro- and anti-coagulant processes, heightening liver thrombogenesis, and possibly providing a niche for circulating tumor cells to adhere to—thus promoting both liver metastasis and cancer-cell survival following treatment (that is, with minimal residual disease in the liver).
Collapse
Affiliation(s)
- Preeti Kanikarla Marie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie L Martch
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy You
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David George Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
10
|
Chandrakanthan M, Nguyen TQ, Hasan Z, Muralidharan S, Vu TM, Li AWL, Le UTN, Thi Thuy Ha H, Baik SH, Tan SH, Foo JC, Wenk MR, Cazenave-Gassiot A, Torta F, Ong WY, Chan MYY, Nguyen LN. Deletion of Mfsd2b impairs thrombotic functions of platelets. Nat Commun 2021; 12:2286. [PMID: 33863882 PMCID: PMC8052357 DOI: 10.1038/s41467-021-22642-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Abstract
We recently discovered that Mfsd2b, which is the S1P exporter found in blood cells. Here, we report that Mfsd2b is critical for the release of all S1P species in both resting and activated platelets. We show that resting platelets store S1P in the cytoplasm. After activation, this S1P pool is delivered to the plasma membrane, where Mfsd2b is predominantly localized for export. Employing knockout mice of Mfsd2b, we reveal that platelets contribute a minor amount of plasma S1P. Nevertheless, Mfsd2b deletion in whole body or platelets impairs platelet morphology and functions. In particular, Mfsd2b knockout mice show significantly reduced thrombus formation. We show that loss of Mfsd2b affects intrinsic platelet functions as part of remarkable sphingolipid accumulation. These findings indicate that accumulation of sphingolipids including S1P by deletion of Mfsd2b strongly impairs platelet functions, which suggests that the transporter may be a target for the prevention of thrombotic disorders.
Collapse
Affiliation(s)
- Madhuvanthi Chandrakanthan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Toan Quoc Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zafrul Hasan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sneha Muralidharan
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thiet Minh Vu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Aaron Wei Liang Li
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Uyen Thanh Nha Le
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hoa Thi Thuy Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sang-Ha Baik
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sock Hwee Tan
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juat Chin Foo
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wei Yi Ong
- Department of Anatomy, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mark Yan Yee Chan
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Immunology Program Research Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Emerging roles of lysophospholipids in health and disease. Prog Lipid Res 2020; 80:101068. [PMID: 33068601 DOI: 10.1016/j.plipres.2020.101068] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022]
Abstract
Lipids are abundant and play essential roles in human health and disease. The main functions of lipids are building blocks for membrane biogenesis. However, lipids are also metabolized to produce signaling molecules. Here, we discuss the emerging roles of circulating lysophospholipids. These lysophospholipids consist of lysoglycerophospholipids and lysosphingolipids. They are both present in cells at low concentration, but their concentrations in extracellular fluids are significantly higher. The biological functions of some of these lysophospholipids have been recently revealed. Remarkably, some of the lysophospholipids play pivotal signaling roles as well as being precursors for membrane biogenesis. Revealing how circulating lysophospholipids are produced, released, transported, and utilized in multi-organ systems is critical to understand their functions. The discovery of enzymes, carriers, transporters, and membrane receptors for these lysophospholipids has shed light on their physiological significance. In this review, we summarize the biological roles of these lysophospholipids via discussing about the proteins regulating their functions. We also discuss about their potential impacts to human health and diseases.
Collapse
|
12
|
Dhangadamajhi G, Singh S. Sphingosine 1-Phosphate in Malaria Pathogenesis and Its Implication in Therapeutic Opportunities. Front Cell Infect Microbiol 2020; 10:353. [PMID: 32923406 PMCID: PMC7456833 DOI: 10.3389/fcimb.2020.00353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Sphingosine 1-Phosphate (S1P) is a bioactive lipid intermediate in the sphingolipid metabolism, which exist in two pools, intracellular and extracellular, and each pool has a different function. The circulating extracellular pool, specifically the plasma S1P is shown to be important in regulating various physiological processes related to malaria pathogenesis in recent years. Although blood cells (red blood cells and platelets), vascular endothelial cells and hepatocytes are considered as the important sources of plasma S1P, their extent of contribution is still debated. The red blood cells (RBCs) and platelets serve as a major repository of intracellular S1P due to lack, or low activity of S1P degrading enzymes, however, contribution of platelets toward maintaining plasma S1P is shown negligible under normal condition. Substantial evidences suggest platelets loss during falciparum infection as a contributing factor for severe malaria. However, platelets function as a source for plasma S1P in malaria needs to be examined experimentally. RBC being the preferential site for parasite seclusion, and having the ability of trans-cellular S1P transportation to EC upon tight cell-cell contact, might play critical role in differential S1P distribution and parasite growth. In the present review, we have summarized the significance of both the S1P pools in the context of malaria, and how the RBC content of S1P can be channelized in better ways for its possible implication in therapeutic opportunities to control malaria.
Collapse
Affiliation(s)
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
13
|
Hemostasis vs. homeostasis: Platelets are essential for preserving vascular barrier function in the absence of injury or inflammation. Proc Natl Acad Sci U S A 2020; 117:24316-24325. [PMID: 32929010 DOI: 10.1073/pnas.2007642117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Platelets are best known for their vasoprotective responses to injury and inflammation. Here, we have asked whether they also support vascular integrity when neither injury nor inflammation is present. Changes in vascular barrier function in dermal and meningeal vessels were measured in real time in mouse models using the differential extravasation of fluorescent tracers as a biomarker. Severe thrombocytopenia produced by two distinct methods caused increased extravasation of 40-kDa dextran from capillaries and postcapillary venules but had no effect on extravasation of 70-kDa dextran or albumin. This reduction in barrier function required more than 4 h to emerge after thrombocytopenia was established, reverting to normal as the platelet count recovered. Barrier dysfunction was also observed in mice that lacked platelet-dense granules, dense granule secretion machinery, glycoprotein (GP) VI, or the GPVI signaling effector phospholipase C (PLC) γ2. It did not occur in mice lacking α-granules, C type lectin receptor-2 (CLEC-2), or protease activated receptor 4 (PAR4). Notably, although both meningeal and dermal vessels were affected, intracerebral vessels, which are known for their tighter junctions between endothelial cells, were not. Collectively, these observations 1) highlight a role for platelets in maintaining vascular homeostasis in the absence of injury or inflammation, 2) provide a sensitive biomarker for detecting changes in platelet-dependent barrier function, 3) identify which platelet processes are required, and 4) suggest that the absence of competent platelets causes changes in the vessel wall itself, accounting for the time required for dysfunction to emerge.
Collapse
|
14
|
Kessler T, Schunkert H, von Hundelshausen P. Novel Approaches to Fine-Tune Therapeutic Targeting of Platelets in Atherosclerosis: A Critical Appraisal. Thromb Haemost 2020; 120:1492-1504. [PMID: 32772352 DOI: 10.1055/s-0040-1714352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pathogenesis of atherosclerotic vascular disease is driven by a multitude of risk factors intertwining metabolic and inflammatory pathways. Increasing knowledge about platelet biology sheds light on how platelets take part in these processes from early to later stages of plaque development. Recent insights from experimental studies and mouse models substantiate platelets as initiators and amplifiers in atherogenic leukocyte recruitment. These studies are complemented by results from genetics studies shedding light on novel molecular mechanisms which provide an interesting prospect as novel targets. For instance, experimental studies provide further details how platelet-decorated von Willebrand factor tethered to activated endothelial cells plays a role in atherogenic monocyte recruitment. Novel aspects of platelets as atherogenic inductors of neutrophil extracellular traps and particularities in signaling pathways such as cyclic guanosine monophosphate and the inhibitory adaptor molecule SHB23/LNK associating platelets with atherogenesis are shared. In summary, it was our intention to balance insights from recent experimental data that support a plausible role for platelets in atherogenesis against a paucity of clinical evidence needed to validate this concept in humans.
Collapse
Affiliation(s)
- Thorsten Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Philipp von Hundelshausen
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Partner Site Munich Heart Alliance, Munich, Germany.,Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Klinikum der Universität, Ludwig-Maximilians-Universität, Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
15
|
Pokrovskaya ID, Yadav S, Rao A, McBride E, Kamykowski JA, Zhang G, Aronova MA, Leapman RD, Storrie B. 3D ultrastructural analysis of α-granule, dense granule, mitochondria, and canalicular system arrangement in resting human platelets. Res Pract Thromb Haemost 2020; 4:72-85. [PMID: 31989087 PMCID: PMC6971324 DOI: 10.1002/rth2.12260] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND State-of-the-art 3-dimensional (3D) electron microscopy approaches provide a new standard for the visualization of human platelet ultrastructure. Application of these approaches to platelets rapidly fixed prior to purification to minimize activation should provide new insights into resting platelet ultrastructure. OBJECTIVES Our goal was to determine the 3D organization of α-granules, dense granules, mitochondria, and canalicular system in resting human platelets and map their spatial relationships. METHODS We used serial block face-scanning electron microscopy images to render the 3D ultrastructure of α-granules, dense granules, mitochondria, canalicular system, and plasma membrane for 30 human platelets, 10 each from 3 donors. α-Granule compositional data were assessed by sequential, serial section cryo-immunogold electron microscopy and by immunofluorescence (structured illumination microscopy). RESULTS AND CONCLUSIONS α-Granule number correlated linearly with platelet size, while dense granule and mitochondria number had little correlation with platelet size. For all subcellular compartments, individual organelle parameters varied considerably and organelle volume fraction had little correlation with platelet size. Three-dimensional data from 30 platelets indicated only limited spatial intermixing of the different organelle classes. Interestingly, almost 70% of α-granules came within ≤35 nm of each other, a distance associated in other cell systems with protein-mediated contact sites. Size and shape analysis of the 1488 α-granules analyzed revealed no more variation than that expected for a Gaussian distribution. Protein distribution data indicated that all α-granules likely contained the same major set of proteins, albeit at varying amounts and varying distribution within the granule matrix.
Collapse
Affiliation(s)
- Irina D. Pokrovskaya
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Shilpi Yadav
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Amith Rao
- Laboratory of Cellular Imaging and Macromolecular BiophysicsNIBIBNIHBethesdaMDUSA
| | - Emma McBride
- Laboratory of Cellular Imaging and Macromolecular BiophysicsNIBIBNIHBethesdaMDUSA
| | - Jeffrey A. Kamykowski
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Guofeng Zhang
- Laboratory of Cellular Imaging and Macromolecular BiophysicsNIBIBNIHBethesdaMDUSA
| | - Maria A. Aronova
- Laboratory of Cellular Imaging and Macromolecular BiophysicsNIBIBNIHBethesdaMDUSA
| | - Richard D. Leapman
- Laboratory of Cellular Imaging and Macromolecular BiophysicsNIBIBNIHBethesdaMDUSA
| | - Brian Storrie
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| |
Collapse
|
16
|
Poppe A, Moritz E, Geffken M, Schreiber J, Greiwe G, Amschler K, Wruck M, Schwedhelm E, Daum G, Kluge S, Peine S, Winkler MS. Analyses of sphingosine‐1‐phosphate in the context of transfusion: how much is in stored blood products and in patient blood? Transfusion 2019; 59:3071-3076. [DOI: 10.1111/trf.15494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Annika Poppe
- Clinic and Policlinic for Anesthesiology and Intensive Care MedicineUniversity Medicine Rostock Rostock Germany
| | - Eileen Moritz
- Institute of Pharmacology, Department of General PharmacologyUniversity Medicine Greifswald Greifswald Germany
| | - Maria Geffken
- Institute of Transfusion MedicineUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Joerg Schreiber
- Center for Anesthesiology, Intensive Care Medicine, Pain Therapy and Palliative MedicineBenedictus Krankenhaus Tutzing Tutzing Germany
| | - Gillis Greiwe
- Center for Anesthesiology and Intensive Care MedicineUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Katharina Amschler
- Department of Allergology and VenerologyUniversity Medicine Göttingen Göttingen Germany
| | - Marie‐Louise Wruck
- Center for Anesthesiology and Intensive Care MedicineUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and ToxicologyUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Günter Daum
- Clinic and Policlinic for Vascular MedicineUniversity Heart Center, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Stefan Kluge
- Center for Anesthesiology and Intensive Care MedicineUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Sven Peine
- Institute of Transfusion MedicineUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Martin Sebastian Winkler
- Center for Anesthesiology and Intensive Care MedicineUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
- Department of Anesthesiology and Intensive Care MedicineUniversity Medicine Göttingen Göttingen Germany
| |
Collapse
|
17
|
Eisinger F, Patzelt J, Langer HF. The Platelet Response to Tissue Injury. Front Med (Lausanne) 2018; 5:317. [PMID: 30483508 PMCID: PMC6242949 DOI: 10.3389/fmed.2018.00317] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, various studies have increasingly explained platelet functions not only in their central role as a regulator in cellular hemostasis and coagulation. In fact, there is growing evidence that under specific conditions, platelets act as a mediator between the vascular system, hemostasis, and the immune system. Therefore, they are essential in many processes involved in tissue remodeling and tissue reorganization after injury or inflammatory responses. These processes include the promotion of inflammatory processes, the contribution to innate and adaptive immune responses during bacterial and viral infections, the modulation of angiogenesis, and the regulation of cell apoptosis in steady-state tissue homeostasis or after tissue breakdown. All in all platelets may contribute to the control of tissue homeostasis much more than generally assumed. This review summarizes the current knowledge of platelets as part of the tissue remodeling network and seeks to provide possible translational implications for clinical therapy.
Collapse
Affiliation(s)
- Felix Eisinger
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Johannes Patzelt
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Harald F. Langer
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
18
|
Dihydro-sphingosine 1-phosphate interacts with carrier proteins in a manner distinct from that of sphingosine 1-phosphate. Biosci Rep 2018; 38:BSR20181288. [PMID: 30279204 PMCID: PMC6209608 DOI: 10.1042/bsr20181288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 01/02/2023] Open
Abstract
Dihydro-sphingosine 1-phosphate (DH-S1P) is an analog of sphingosine 1-phosphate (S1P), which is a potent lysophospholipid mediator. DH-S1P has been proposed to exert physiological properties similar to S1P. Although S1P is known to be carried on HDL via apolipoprotein M (apoM), the association between DH-S1P and HDL/apoM has not been fully elucidated. Therefore, in the present study, we aimed to elucidate this association and to compare it with that of S1P and HDL/apoM. First, we investigated the distributions of S1P and DH-S1P among lipoproteins and lipoprotein-depleted fractions in human serum and plasma samples and observed that both S1P and DH-S1P were detected on HDL; furthermore, elevated amounts of DH-S1P in serum samples were distributed to the lipoprotein-depleted fraction to a greater degree than to the HDL fraction. Concordantly, a preference for HDL over albumin was only observed for S1P, and not for DH-S1P, when the molecules were secreted from platelets. Regarding the association with HDL, although both S1P and DH-S1P prefer to bind to HDL, HDL preferentially accepts S1P over DH-S1P. For the association with apoM, S1P was not detected on HDL obtained from apoM knockout mice, while DH-S1P was detected. Moreover, apoM retarded the degradation of S1P, but not of DH-S1P. These results suggest that S1P binds to HDL via apoM, while DH-S1P binds to HDL in a non-specific manner. Thus, DH-S1P is not a mere analog of S1P and might possess unique clinical significance.
Collapse
|
19
|
Tukijan F, Chandrakanthan M, Nguyen LN. The signalling roles of sphingosine-1-phosphate derived from red blood cells and platelets. Br J Pharmacol 2018; 175:3741-3746. [PMID: 30047983 PMCID: PMC6135780 DOI: 10.1111/bph.14451] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is an essential, bioactive lysophospholipid mediator that regulates various physiological functions such as lymphocyte trafficking, inflammation and behavioural characteristics of the vascular system. S1P signalling is mediated via a family of five GPCRs, which are expressed in various cell types and tissues. S1P concentration is maintained in a gradient through the activity of S1P degrading enzymes, and this gradient is critical for lymphocyte egress. To exert its extracellular signalling roles, S1P must be secreted out of the cells by protein transporters. The recent discovery of S1P transporters has shed light on the sources of S1P. However, these transporters still need to be clarified as they are important in defining the S1P gradient for lymphocyte recirculation and the source of S1P for maintenance of blood vessels. Here, we review the current understanding of S1P sources, highlighting the roles of S1P transporters with an emphasis on haematopoietic cells as a major source of circulatory S1P.
Collapse
Affiliation(s)
- Farhana Tukijan
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | | | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| |
Collapse
|
20
|
Sun XJ, Wang C, Zhang LX, Yu F, Chen M, Zhao MH. Sphingosine-1-phosphate and its receptors in anti-neutrophil cytoplasmic antibody-associated vasculitis. Nephrol Dial Transplant 2018; 32:1313-1322. [PMID: 28206609 DOI: 10.1093/ndt/gfw427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 11/02/2016] [Indexed: 11/13/2022] Open
Abstract
Background C5a plays a crucial role in anti-neutrophil cytoplasmic antibody (ANCA)-mediated neutrophil recruitment and activation. Our previous studies found that the interaction between sphingosine-1-phosphate (S1P) and C5a plays an important role in the ANCA-mediated activation of neutrophils. In the current study, the expression levels of S1P in plasma and its receptors (S1PR1-5) in kidneys were analysed in patients with ANCA-associated vasculitis (AAV). Methods Plasma samples from 32 AAV patients in active stage and 20 AAV patients in remission were collected. The plasma levels of S1P were determined by an enzyme-linked immunosorbent assay (ELISA). The expression of S1PR1-5 in the renal specimens from 24 AAV patients was detected by immunohistochemistry. The associations of the plasma levels of S1P and renal expression of S1PRs with clinical and pathological parameters were analysed. Results The level of plasma S1P was significantly higher in AAV patients in active stage than it was in both patients in remission and in normal controls. Correlation analysis showed that the plasma levels of S1P correlated with the initial serum creatinine levels (r = 0.502, P = 0.003) and inversely correlated with the estimated glomerular filtration rate (eGFR; r = -0.358, P = 0.044) in AAV patients. Double-labelling immunofluorescence assay suggested that S1PR1-5 were expressed on endothelial cells in the glomeruli and that S1PR1, 4 and 5 were expressed on neutrophils. Conclusions In AAV patients, the circulating S1P levels were elevated and the renal expression of S1PR2-5 was upregulated. The levels of circulating S1P and the renal expression of S1PR were associated with the renal involvement and disease activity of AAV.
Collapse
Affiliation(s)
- Xiao-Jing Sun
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| | - Chen Wang
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| | - Lu-Xia Zhang
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| | - Feng Yu
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| |
Collapse
|
21
|
Sukocheva OA. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming. Int J Mol Sci 2018; 19:420. [PMID: 29385066 PMCID: PMC5855642 DOI: 10.3390/ijms19020420] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 02/05/2023] Open
Abstract
Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER) positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1) and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P) in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR) and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| |
Collapse
|
22
|
LeVine DN, Cianciolo RE, Linder KE, Bizikova P, Birkenheuer AJ, Brooks MB, Salous AK, Nordone SK, Bellinger DA, Marr H, Jones SL, Fischer TH, Deng Y, Mazepa M, Key NS. Endothelial alterations in a canine model of immune thrombocytopenia. Platelets 2017; 30:88-97. [PMID: 29182425 DOI: 10.1080/09537104.2017.1378807] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bleeding heterogeneity amongst patients with immune thrombocytopenia (ITP) is poorly understood. Platelets play a role in maintaining endothelial integrity, and variable thrombocytopenia-induced endothelial changes may influence bleeding severity. Platelet-derived endothelial stabilizers and markers of endothelial integrity in ITP are largely underexplored. We hypothesized that, in a canine ITP model, thrombocytopenia would lead to alterations in the endothelial ultrastructure and that the Von Willebrand factor (vWF) would serve as a marker of endothelial injury associated with thrombocytopenia. Thrombocytopenia was induced in healthy dogs with an antiplatelet antibody infusion; control dogs received an isotype control antibody. Cutaneous biopsies were obtained prior to thrombocytopenia induction, at platelet nadir, 24 hours after nadir, and on platelet recovery. Cutaneous capillaries were assessed by electron microscopy for vessel thickness, the number of pinocytotic vesicles, the number of large vacuoles, and the number of gaps between cells. Pinocytotic vesicles are thought to represent an endothelial membrane reserve that can be used for repair of damaged endothelial cells. Plasma samples were assessed for vWF. ITP dogs had significantly decreased pinocytotic vesicle numbers compared to control dogs (P = 0.0357) and the increase in plasma vWF from baseline to 24 hours correlated directly with the endothelial large vacuole score (R = 0.99103; P < 0.0001). This direct correlation between plasma vWF and the number of large vacuoles, representing the vesiculo-vacuolar organelle (VVO), a permeability structure, suggests that circulating vWF could serve as a biomarker for endothelial alterations and potentially a predictor of thrombocytopenic bleeding. Overall, our results indicate that endothelial damage occurs in the canine ITP model and variability in the degree of endothelial damage may account for differences in the bleeding phenotype among patients with ITP.
Collapse
Affiliation(s)
- Dana N LeVine
- a Department of Veterinary Clinical Sciences , Iowa State University , Ames , IA , USA.,b Department of Clinical Sciences , North Carolina State University, College of Veterinary Medicine , Raleigh , NC , USA.,h Department of Pathology and Laboratory Animal Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Rachel E Cianciolo
- c Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Keith E Linder
- d Department of Population Health and Pathobiology , North Carolina State University, College of Veterinary Medicine , Raleigh , NC , USA
| | - Petra Bizikova
- b Department of Clinical Sciences , North Carolina State University, College of Veterinary Medicine , Raleigh , NC , USA
| | - Adam J Birkenheuer
- b Department of Clinical Sciences , North Carolina State University, College of Veterinary Medicine , Raleigh , NC , USA
| | - Marjory B Brooks
- e Department of Population Medicine and Diagnostic Sciences , Cornell University, College of Veterinary Medicine , Ithaca , NY , USA
| | - Abdelghaffar K Salous
- f Division of Cardiovascular Medicine , The Gill Heart Institute, University of Kentucky , Lexington , KY , USA
| | - Shila K Nordone
- g Department of Molecular Biomedical Sciences , North Carolina State University, College of Veterinary Medicine , Raleigh , NC , USA
| | - Dwight A Bellinger
- h Department of Pathology and Laboratory Animal Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Henry Marr
- b Department of Clinical Sciences , North Carolina State University, College of Veterinary Medicine , Raleigh , NC , USA
| | - Sam L Jones
- b Department of Clinical Sciences , North Carolina State University, College of Veterinary Medicine , Raleigh , NC , USA
| | - Thomas H Fischer
- h Department of Pathology and Laboratory Animal Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Yu Deng
- i Department of Biostatistics , University of North Carolina , Chapel Hill , NC , USA
| | - Marshall Mazepa
- h Department of Pathology and Laboratory Animal Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Nigel S Key
- h Department of Pathology and Laboratory Animal Medicine , University of North Carolina , Chapel Hill , NC , USA.,j Department of Medicine , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
23
|
Abstract
Sphingosine 1-phosphate (S1P) is a potent lipid mediator that works on five kinds of S1P receptors located on the cell membrane. In the circulation, S1P is distributed to HDL, followed by albumin. Since S1P and HDL share several bioactivities, S1P is believed to be responsible for the pleiotropic effects of HDL. Plasma S1P levels are reportedly lower in subjects with coronary artery disease, suggesting that S1P might be deeply involved in the pathogenesis of atherosclerosis. In basic experiments, however, S1P appears to possess both pro-atherosclerotic and anti-atherosclerotic properties; for example, S1P possesses anti-apoptosis, anti-inflammation, and vaso-relaxation properties and maintains the barrier function of endothelial cells, while S1P also promotes the egress and activation of lymphocytes and exhibits pro-thrombotic properties. Recently, the mechanism for the biased distribution of S1P on HDL has been elucidated; apolipoprotein M (apoM) carries S1P on HDL. ApoM is also a modulator of S1P, and the metabolism of apoM-containing lipoproteins largely affects the plasma S1P level. Moreover, apoM modulates the biological properties of S1P. S1P bound to albumin exerts both beneficial and harmful effects in the pathogenesis of atherosclerosis, while S1P bound to apoM strengthens anti-atherosclerotic properties and might weaken the pro-atherosclerotic properties of S1P. Although the detailed mechanisms remain to be elucidated, apoM and S1P might be novel targets for the alleviation of atherosclerotic diseases in the future.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
24
|
Rohrbach T, Maceyka M, Spiegel S. Sphingosine kinase and sphingosine-1-phosphate in liver pathobiology. Crit Rev Biochem Mol Biol 2017; 52:543-553. [PMID: 28618839 DOI: 10.1080/10409238.2017.1337706] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over 20 years ago, sphingosine-1-phosphate (S1P) was discovered to be a bioactive signaling molecule. Subsequent studies later identified two related kinases, sphingosine kinase 1 and 2, which are responsible for the phosphorylation of sphingosine to S1P. Many stimuli increase sphingosine kinase activity and S1P production and secretion. Outside the cell, S1P can bind to and activate five S1P-specific G protein-coupled receptors (S1PR1-5) to regulate many important cellular and physiological processes in an autocrine or paracrine manner. S1P is found in high concentrations in the blood where it functions to control vascular integrity and trafficking of lymphocytes. Obesity increases blood S1P levels in humans and mice. With the world wide increase in obesity linked to consumption of high-fat, high-sugar diets, S1P is emerging as an accomplice in liver pathobiology, including acute liver failure, metabolic syndrome, control of blood lipid and glucose homeostasis, nonalcoholic fatty liver disease, and liver fibrosis. Here, we review recent research on the importance of sphingosine kinases, S1P, and S1PRs in liver pathobiology, with a focus on exciting insights for new therapeutic modalities that target S1P signaling axes for a variety of liver diseases.
Collapse
Affiliation(s)
- Timothy Rohrbach
- a Department of Biochemistry and Molecular Biology and the Massey Cancer Center , VCU School of Medicine , Richmond , VA , USA
| | - Michael Maceyka
- a Department of Biochemistry and Molecular Biology and the Massey Cancer Center , VCU School of Medicine , Richmond , VA , USA
| | - Sarah Spiegel
- a Department of Biochemistry and Molecular Biology and the Massey Cancer Center , VCU School of Medicine , Richmond , VA , USA
| |
Collapse
|
25
|
Kurano M, Nishikawa M, Kuma H, Jona M, Yatomi Y. Involvement of Band3 in the efflux of sphingosine 1-phosphate from erythrocytes. PLoS One 2017; 12:e0177543. [PMID: 28494002 PMCID: PMC5426782 DOI: 10.1371/journal.pone.0177543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/28/2017] [Indexed: 12/15/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator that is thought to be involved in various diseases. Although the main source of S1P in the plasma is erythrocytes, how S1P is exported from erythrocytes has not been elucidated. When we differentiated K562 cells into erythroblast-like cells with sodium butyrate, we observed that the efflux of S1P was increased without increased expression of previously proposed S1P transporters, while the expression levels of Band3 were increased. Therefore, in this study, we investigated the involvement of Band 3, the most characteristic membranous transporter for erythrocytes, in S1P efflux, using 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid, disodium salt (H2DIDS), which is an inhibitor of Band3. First, we treated human washed erythrocytes with H2DIDS and found that H2DIDS decreased the S1P levels in the supernatant, while it increased the cellular S1P contents. Next, when we injected H2DIDS into mice, the plasma S1P level was significantly decreased. Finally, when we overexpressed or suppressed Band3 in K562 cells, S1P efflux was enhanced or decreased, respectively, while the overexpression of Band3 in HEK293 cells did not modulate S1P efflux. These results suggested the possible involvement of Band3 in the transport of S1P, a multi-functional bioactive phospholipid, from erythrocytes.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masako Nishikawa
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kuma
- Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - Masahiro Jona
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
26
|
Abstract
Vertebrates are endowed with a closed circulatory system, the evolution of which required novel structural and regulatory changes. Furthermore, immune cell trafficking paradigms adapted to the barriers imposed by the closed circulatory system. How did such changes occur mechanistically? We propose that spatial compartmentalization of the lipid mediator sphingosine 1-phosphate (S1P) may be one such mechanism. In vertebrates, S1P is spatially compartmentalized in the blood and lymphatic circulation, thus comprising a sharp S1P gradient across the endothelial barrier. Circulatory S1P has critical roles in maturation and homeostasis of the vascular system as well as in immune cell trafficking. Physiological functions of S1P are tightly linked to shear stress, the key biophysical stimulus from blood flow. Thus, circulatory S1P confinement could be a primordial strategy of vertebrates in the development of a closed circulatory system. This review discusses the cellular and molecular basis of the S1P gradients and aims to interpret its physiological significance as a key feature of the closed circulatory system.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Vascular Biology Program, Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts 02115; ,
| | - Timothy Hla
- Vascular Biology Program, Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts 02115; ,
| |
Collapse
|
27
|
Gazit SL, Mariko B, Thérond P, Decouture B, Xiong Y, Couty L, Bonnin P, Baudrie V, Le Gall SM, Dizier B, Zoghdani N, Ransinan J, Hamilton JR, Gaussem P, Tharaux PL, Chun J, Coughlin SR, Bachelot-Loza C, Hla T, Ho-Tin-Noé B, Camerer E. Platelet and Erythrocyte Sources of S1P Are Redundant for Vascular Development and Homeostasis, but Both Rendered Essential After Plasma S1P Depletion in Anaphylactic Shock. Circ Res 2016; 119:e110-26. [PMID: 27582371 DOI: 10.1161/circresaha.116.308929] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022]
Abstract
RATIONALE Sphingosine-1-phosphate (S1P) signaling is essential for vascular development and postnatal vascular homeostasis. The relative importance of S1P sources sustaining these processes remains unclear. OBJECTIVE To address the level of redundancy in bioactive S1P provision to the developing and mature vasculature. METHODS AND RESULTS S1P production was selectively impaired in mouse platelets, erythrocytes, endothelium, or smooth muscle cells by targeted deletion of genes encoding sphingosine kinases -1 and -2. S1P deficiency impaired aggregation and spreading of washed platelets and profoundly reduced their capacity to promote endothelial barrier function ex vivo. However, and in contrast to recent reports, neither platelets nor any other source of S1P was essential for vascular development, vascular integrity, or hemostasis/thrombosis. Yet rapid and profound depletion of plasma S1P during systemic anaphylaxis rendered both platelet- and erythrocyte-derived S1P essential for survival, with a contribution from blood endothelium observed only in the absence of circulating sources. Recovery was sensitive to aspirin in mice with but not without platelet S1P, suggesting that platelet activation and stimulus-response coupling is needed. S1P deficiency aggravated vasoplegia in this model, arguing a vital role for S1P in maintaining vascular resistance during recovery from circulatory shock. Accordingly, the S1P2 receptor mediated most of the survival benefit of S1P, whereas the endothelial S1P1 receptor was dispensable for survival despite its importance for maintaining vascular integrity. CONCLUSIONS Although source redundancy normally secures essential S1P signaling in developing and mature blood vessels, profound depletion of plasma S1P renders both erythrocyte and platelet S1P pools necessary for recovery and high basal plasma S1P levels protective during anaphylactic shock.
Collapse
Affiliation(s)
- Salomé L Gazit
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Boubacar Mariko
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Patrice Thérond
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Benoit Decouture
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Yuquan Xiong
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Ludovic Couty
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Philippe Bonnin
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Véronique Baudrie
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Sylvain M Le Gall
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Blandine Dizier
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Nesrine Zoghdani
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Jessica Ransinan
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Justin R Hamilton
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Pascale Gaussem
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Pierre-Louis Tharaux
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Jerold Chun
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Shaun R Coughlin
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Christilla Bachelot-Loza
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Timothy Hla
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Benoit Ho-Tin-Noé
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Eric Camerer
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.).
| |
Collapse
|
28
|
Crescente M, Pluthero FG, Li L, Lo RW, Walsh TG, Schenk MP, Holbrook LM, Louriero S, Ali MS, Vaiyapuri S, Falet H, Jones IM, Poole AW, Kahr WHA, Gibbins JM. Intracellular Trafficking, Localization, and Mobilization of Platelet-Borne Thiol Isomerases. Arterioscler Thromb Vasc Biol 2016; 36:1164-73. [PMID: 27079884 DOI: 10.1161/atvbaha.116.307461] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/28/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Thiol isomerases facilitate protein folding in the endoplasmic reticulum, and several of these enzymes, including protein disulfide isomerase and ERp57, are mobilized to the surface of activated platelets, where they influence platelet aggregation, blood coagulation, and thrombus formation. In this study, we examined the synthesis and trafficking of thiol isomerases in megakaryocytes, determined their subcellular localization in platelets, and identified the cellular events responsible for their movement to the platelet surface on activation. APPROACH AND RESULTS Immunofluorescence microscopy imaging was used to localize protein disulfide isomerase and ERp57 in murine and human megakaryocytes at various developmental stages. Immunofluorescence microscopy and subcellular fractionation analysis were used to localize these proteins in platelets to a compartment distinct from known secretory vesicles that overlaps with an inner cell-surface membrane region defined by the endoplasmic/sarcoplasmic reticulum proteins calnexin and sarco/endoplasmic reticulum calcium ATPase 3. Immunofluorescence microscopy and flow cytometry were used to monitor thiol isomerase mobilization in activated platelets in the presence and absence of actin polymerization (inhibited by latrunculin) and in the presence or absence of membrane fusion mediated by Munc13-4 (absent in platelets from Unc13d(Jinx) mice). CONCLUSIONS Platelet-borne thiol isomerases are trafficked independently of secretory granule contents in megakaryocytes and become concentrated in a subcellular compartment near the inner surface of the platelet outer membrane corresponding to the sarco/endoplasmic reticulum of these cells. Thiol isomerases are mobilized to the surface of activated platelets via a process that requires actin polymerization but not soluble N-ethylmaleimide-sensitive fusion protein attachment receptor/Munc13-4-dependent vesicular-plasma membrane fusion.
Collapse
Affiliation(s)
- Marilena Crescente
- From the School of Biological Sciences, University of Reading, Reading, United Kingdom (M.C., M.P.S., L.M.H., S.L., M.S.A., S.V., I.M.J., J.M.G.); Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (F.G.P., L.L., R.W.L., W.H.A.K.); Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada (R.W.L., W.H.A.K.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.G.W., A.W.P.); and Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA (H.F.)
| | - Fred G Pluthero
- From the School of Biological Sciences, University of Reading, Reading, United Kingdom (M.C., M.P.S., L.M.H., S.L., M.S.A., S.V., I.M.J., J.M.G.); Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (F.G.P., L.L., R.W.L., W.H.A.K.); Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada (R.W.L., W.H.A.K.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.G.W., A.W.P.); and Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA (H.F.)
| | - Ling Li
- From the School of Biological Sciences, University of Reading, Reading, United Kingdom (M.C., M.P.S., L.M.H., S.L., M.S.A., S.V., I.M.J., J.M.G.); Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (F.G.P., L.L., R.W.L., W.H.A.K.); Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada (R.W.L., W.H.A.K.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.G.W., A.W.P.); and Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA (H.F.)
| | - Richard W Lo
- From the School of Biological Sciences, University of Reading, Reading, United Kingdom (M.C., M.P.S., L.M.H., S.L., M.S.A., S.V., I.M.J., J.M.G.); Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (F.G.P., L.L., R.W.L., W.H.A.K.); Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada (R.W.L., W.H.A.K.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.G.W., A.W.P.); and Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA (H.F.)
| | - Tony G Walsh
- From the School of Biological Sciences, University of Reading, Reading, United Kingdom (M.C., M.P.S., L.M.H., S.L., M.S.A., S.V., I.M.J., J.M.G.); Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (F.G.P., L.L., R.W.L., W.H.A.K.); Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada (R.W.L., W.H.A.K.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.G.W., A.W.P.); and Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA (H.F.)
| | - Michael P Schenk
- From the School of Biological Sciences, University of Reading, Reading, United Kingdom (M.C., M.P.S., L.M.H., S.L., M.S.A., S.V., I.M.J., J.M.G.); Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (F.G.P., L.L., R.W.L., W.H.A.K.); Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada (R.W.L., W.H.A.K.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.G.W., A.W.P.); and Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA (H.F.)
| | - Lisa M Holbrook
- From the School of Biological Sciences, University of Reading, Reading, United Kingdom (M.C., M.P.S., L.M.H., S.L., M.S.A., S.V., I.M.J., J.M.G.); Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (F.G.P., L.L., R.W.L., W.H.A.K.); Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada (R.W.L., W.H.A.K.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.G.W., A.W.P.); and Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA (H.F.)
| | - Silvia Louriero
- From the School of Biological Sciences, University of Reading, Reading, United Kingdom (M.C., M.P.S., L.M.H., S.L., M.S.A., S.V., I.M.J., J.M.G.); Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (F.G.P., L.L., R.W.L., W.H.A.K.); Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada (R.W.L., W.H.A.K.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.G.W., A.W.P.); and Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA (H.F.)
| | - Marfoua S Ali
- From the School of Biological Sciences, University of Reading, Reading, United Kingdom (M.C., M.P.S., L.M.H., S.L., M.S.A., S.V., I.M.J., J.M.G.); Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (F.G.P., L.L., R.W.L., W.H.A.K.); Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada (R.W.L., W.H.A.K.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.G.W., A.W.P.); and Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA (H.F.)
| | - Sakthivel Vaiyapuri
- From the School of Biological Sciences, University of Reading, Reading, United Kingdom (M.C., M.P.S., L.M.H., S.L., M.S.A., S.V., I.M.J., J.M.G.); Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (F.G.P., L.L., R.W.L., W.H.A.K.); Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada (R.W.L., W.H.A.K.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.G.W., A.W.P.); and Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA (H.F.)
| | - Hervé Falet
- From the School of Biological Sciences, University of Reading, Reading, United Kingdom (M.C., M.P.S., L.M.H., S.L., M.S.A., S.V., I.M.J., J.M.G.); Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (F.G.P., L.L., R.W.L., W.H.A.K.); Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada (R.W.L., W.H.A.K.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.G.W., A.W.P.); and Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA (H.F.)
| | - Ian M Jones
- From the School of Biological Sciences, University of Reading, Reading, United Kingdom (M.C., M.P.S., L.M.H., S.L., M.S.A., S.V., I.M.J., J.M.G.); Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (F.G.P., L.L., R.W.L., W.H.A.K.); Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada (R.W.L., W.H.A.K.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.G.W., A.W.P.); and Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA (H.F.)
| | - Alastair W Poole
- From the School of Biological Sciences, University of Reading, Reading, United Kingdom (M.C., M.P.S., L.M.H., S.L., M.S.A., S.V., I.M.J., J.M.G.); Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (F.G.P., L.L., R.W.L., W.H.A.K.); Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada (R.W.L., W.H.A.K.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.G.W., A.W.P.); and Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA (H.F.)
| | - Walter H A Kahr
- From the School of Biological Sciences, University of Reading, Reading, United Kingdom (M.C., M.P.S., L.M.H., S.L., M.S.A., S.V., I.M.J., J.M.G.); Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (F.G.P., L.L., R.W.L., W.H.A.K.); Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada (R.W.L., W.H.A.K.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.G.W., A.W.P.); and Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA (H.F.).
| | - Jonathan M Gibbins
- From the School of Biological Sciences, University of Reading, Reading, United Kingdom (M.C., M.P.S., L.M.H., S.L., M.S.A., S.V., I.M.J., J.M.G.); Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (F.G.P., L.L., R.W.L., W.H.A.K.); Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada (R.W.L., W.H.A.K.); School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (T.G.W., A.W.P.); and Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA (H.F.).
| |
Collapse
|
29
|
Vito CD, Hadi LA, Navone SE, Marfia G, Campanella R, Mancuso ME, Riboni L. Platelet-derived sphingosine-1-phosphate and inflammation: from basic mechanisms to clinical implications. Platelets 2016; 27:393-401. [PMID: 26950429 DOI: 10.3109/09537104.2016.1144179] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Beyond key functions in hemostasis and thrombosis, platelets are recognized as key players of inflammation, an underlying feature of a variety of diseases. In this regard, platelets act as a circulating source of several pro- and anti-inflammatory molecules, which are secreted from their intracellular stores upon activation. Among them, mounting evidence highlights a crucial role of sphingosine-1-phosphate (S1P), a multifunctional sphingoid mediator. S1P-induced pleiotropic effects include those crucial in inflammatory processes, such as the maintenance of the endothelial barrier integrity, and leukocyte activation and recruitment at the injured site. This review outlines the peculiar features and molecular mechanisms that allow platelets for acting as a unique factory that produces and stores S1P in large quantities. A particular emphasis is placed on the autocrine and paracrine roles of S1P derived from the "inflamed" platelets, highlighting the role of its cross-talk with endothelial and blood cells involved in inflammation, and the mechanisms of its contribution to the development and progression of inflammatory diseases. Finally, potential clinical implications of platelet-derived S1P as diagnostic tool of inflammatory severity, and as therapeutic target in inflammation are discussed.
Collapse
Affiliation(s)
- Clara Di Vito
- a Department of Medical Biotechnology and Translational Medicine, LITA-Segrate , University of Milan , Milan , Italy
| | - Loubna Abdel Hadi
- a Department of Medical Biotechnology and Translational Medicine, LITA-Segrate , University of Milan , Milan , Italy
| | - Stefania Elena Navone
- b Neurosurgery Unit, Laboratory of Experimental Neurosurgery and Cell Therapy, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , University of Milan , Milan , Italy
| | - Giovanni Marfia
- b Neurosurgery Unit, Laboratory of Experimental Neurosurgery and Cell Therapy, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , University of Milan , Milan , Italy
| | - Rolando Campanella
- c Division of Neurosurgery, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , University of Milan , Milan , Italy
| | - Maria Elisa Mancuso
- d Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Laura Riboni
- a Department of Medical Biotechnology and Translational Medicine, LITA-Segrate , University of Milan , Milan , Italy
| |
Collapse
|
30
|
Rivera FJ, Kazanis I, Ghevaert C, Aigner L. Beyond Clotting: A Role of Platelets in CNS Repair? Front Cell Neurosci 2016; 9:511. [PMID: 26834562 PMCID: PMC4718976 DOI: 10.3389/fncel.2015.00511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/21/2015] [Indexed: 12/16/2022] Open
Affiliation(s)
- Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University SalzburgSalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
| | - Ilias Kazanis
- Department of Clinical Neuroscience, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of CambridgeCambridge, UK; Department of Biology, University of PatrasPatras, Greece
| | - Cedric Ghevaert
- Department of Haematology, University of CambridgeCambridge, UK; National Health Service Blood and Transplant, Cambridge Biomedical CampusCambridge, UK
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University SalzburgSalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
| |
Collapse
|
31
|
Role of Munc13-4 as a Ca2+-dependent tether during platelet secretion. Biochem J 2015; 473:627-39. [PMID: 26637270 DOI: 10.1042/bj20151150] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/04/2015] [Indexed: 11/17/2022]
Abstract
The Munc13 family of exocytosis regulators has multiple Ca(2+)-binding, C2 domains. Here, we probed the mechanism by which Munc13-4 regulates in vitro membrane fusion and platelet exocytosis. We show that Munc13-4 enhances in vitro soluble NSF attachment protein receptor (SNARE)-dependent, proteoliposome fusion in a Ca(2+)- and phosphatidylserine (PS)-dependent manner that was independent of SNARE concentrations. Munc13-4-SNARE interactions, under the conditions used, were minimal in the absence or presence of Ca(2+). However, Munc13-4 was able to bind and cluster liposomes harbouring PS in response to Ca(2+). Interestingly, Ca(2+)-dependent liposome binding/clustering and enhancement of proteoliposome fusion required both Munc13-4 C2 domains, but only the Ca(2+)-liganding aspartate residues of the C2B domain. Analytical ultracentrifugation (AUC) measurements indicated that, in solution, Munc13-4 was a monomeric prolate ellipsoid with dimensions consistent with a molecule that could bridge two fusing membranes. To address the potential role of Munc13-4 as a tethering protein in platelets, we examined mepacrine-stained, dense granule mobility and secretion in platelets from wild-type and Munc13-4 null (Unc13d(Jinx)) mice. In the absence of Munc13-4, dense granules were highly mobile in both resting and stimulated platelets, and stimulation-dependent granule release was absent. These observations suggest that dense granules are stably docked in resting platelets awaiting stimulation and that Munc13-4 plays a vesicle-stabilizing or tethering role in resting platelets and also in activated platelets in response to Ca(2+). In summary, we show that Munc13-4 conveys Ca(2+) sensitivity to platelet SNARE-mediated membrane fusion and reveal a potential mechanism by which Munc13-4 bridges and stabilizes apposing membranes destined for fusion.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The bioactive lysophospholipids, lysophosphatidic acid (LPA) and sphingosine 1 phosphate (S1P), have potent effects on blood and vascular cells. This review focuses their potential contributions to the development of atherosclerosis, acute complications such as acute myocardial infarction, and chronic ischemic cardiac damage. RECENT FINDINGS Exciting recent developments have provided insight into the molecular underpinnings of LPA and S1P receptor signaling. New lines of evidence suggest roles for these pathways in the development of atherosclerosis. In experimental animal models, the production, signaling, and metabolism of LPA may be influenced by environmental factors in the diet that synergize to promote the progression of atherosclerotic vascular disease. This is supported by observations of human polymorphisms in the lysophospholipid-metabolizing enzyme PPAP2B, which are associated with risk of coronary artery disease and myocardial infarction. S1P signaling protects from myocardial damage that follows acute and chronic ischemia, both by direct effects on cardiomyocytes and through stem cell recruitment to ischemic tissue. SUMMARY This review will suggest novel strategies to prevent the complications of coronary artery disease by targeting LPA production and signaling. Additionally, ways in which S1P signaling pathways may be harnessed to attenuate ischemia-induced cardiac dysfunction will be explored.
Collapse
Affiliation(s)
- Ahmed Abdel-Latif
- aDepartment of Veterans Affairs Medical Center bDivision of Cardiovascular Medicine, The Gill Heart Institute cUniversity of Kentucky, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
33
|
Quantification of sphingosine 1-phosphate by validated LC-MS/MS method revealing strong correlation with apolipoprotein M in plasma but not in serum due to platelet activation during blood coagulation. Anal Bioanal Chem 2015; 407:8533-42. [PMID: 26377937 PMCID: PMC4635185 DOI: 10.1007/s00216-015-9008-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 12/31/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a signalling sphingolipid affecting multiple cellular functions of vascular and immune systems. It circulates at submicromolar levels bound to HDL-associated apolipoprotein M (apoM) or to albumin. S1P in blood is mainly produced by platelets and erythrocytes, making blood sampling for S1P quantification delicate. Standardisation of sampling is thereby of great importance to obtain robust data. By optimising and characterising the extraction procedure and the LC-MS/MS analysis, we have developed and validated a highly specific and sensitive method for S1P quantification. Blood was collected from healthy individuals (n = 15) to evaluate the effects of differential blood sampling on S1P levels. To evaluate correlation between S1P and apoM in different types of plasma and serum, apoM was measured by ELISA. The method showed good accuracy and precision in the range of 0.011 to 0.9 μM with less than 0.07 % carryover. We found that the methanol precipitation used to extract S1P co-extracted apoM and several other HDL-proteins from plasma. The platelet-associated S1P was released during coagulation, thus increasing the S1P concentration to double in serum as compared to that in plasma. Gel filtration chromatography revealed that the platelet-released S1P was mainly bound to albumin. This explains why the strong correlation between S1P and apoM levels in plasma is lost upon the clotting process and hence not observed in serum. We have developed, characterised and validated an efficient, highly sensitive and specific method for the quantification of S1P in biological material.
Collapse
|
34
|
Książek M, Chacińska M, Chabowski A, Baranowski M. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J Lipid Res 2015; 56:1271-81. [PMID: 26014962 PMCID: PMC4479332 DOI: 10.1194/jlr.r059543] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/12/2015] [Indexed: 12/16/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that acts either as an intracellular messenger or as a ligand for its membrane receptors. S1P is a normal constituent of blood, where it is found both in plasma and blood cells. Compared with other cell types, sphingolipid metabolism in erythrocytes and platelets has unique features that allow the erythrocytes and platelets to accumulate S1P. In plasma, S1P is bound mainly to HDLs and albumin. Of note, metabolism and biological activity of S1P is to a large extent affected by the type of its carrier. Plasma S1P is characterized by a short half-life, indicating rapid clearance by degradative enzymes and the presence of high-capacity sources involved in maintaining its high concentration. These sources include blood cells, vascular endothelium, and hepatocytes. However, the extent to which each of these contributes to the plasma pool of S1P is a matter of debate. Circulating S1P plays a significant physiological role. It was found to be the key regulator of lymphocyte trafficking, endothelial barrier function, and vascular tone. The purpose of this review is to summarize the present state of knowledge on the metabolism, transport, and origin of plasma S1P, and to discuss the mechanisms regulating its homeostasis in blood.
Collapse
Affiliation(s)
- Monika Książek
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Marta Chacińska
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Marcin Baranowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
35
|
Urtz N, Gaertner F, von Bruehl ML, Chandraratne S, Rahimi F, Zhang L, Orban M, Barocke V, Beil J, Schubert I, Lorenz M, Legate KR, Huwiler A, Pfeilschifter JM, Beerli C, Ledieu D, Persohn E, Billich A, Baumruker T, Mederos y Schnitzler M, Massberg S. Sphingosine 1-Phosphate Produced by Sphingosine Kinase 2 Intrinsically Controls Platelet Aggregation In Vitro and In Vivo. Circ Res 2015; 117:376-87. [PMID: 26129975 DOI: 10.1161/circresaha.115.306901] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022]
Abstract
RATIONALE Platelets are known to play a crucial role in hemostasis. Sphingosine kinases (Sphk) 1 and 2 catalyze the conversion of sphingosine to the bioactive metabolite sphingosine 1-phosphate (S1P). Although platelets are able to secrete S1P on activation, little is known about a potential intrinsic effect of S1P on platelet function. OBJECTIVE To investigate the role of Sphk1- and Sphk2-derived S1P in the regulation of platelet function. METHODS AND RESULTS We found a 100-fold reduction in intracellular S1P levels in platelets derived from Sphk2(-/-) mutants compared with Sphk1(-/-) or wild-type mice, as analyzed by mass spectrometry. Sphk2(-/-) platelets also failed to secrete S1P on stimulation. Blood from Sphk2-deficient mice showed decreased aggregation after protease-activated receptor 4-peptide and adenosine diphosphate stimulation in vitro, as assessed by whole blood impedance aggregometry. We revealed that S1P controls platelet aggregation via the sphingosine 1-phosphate receptor 1 through modulation of protease-activated receptor 4-peptide and adenosine diphosphate-induced platelet activation. Finally, we show by intravital microscopy that defective platelet aggregation in Sphk2-deficient mice translates into reduced arterial thrombus stability in vivo. CONCLUSIONS We demonstrate that Sphk2 is the major Sphk isoform responsible for the generation of S1P in platelets and plays a pivotal intrinsic role in the control of platelet activation. Correspondingly, Sphk2-deficient mice are protected from arterial thrombosis after vascular injury, but have normal bleeding times. Targeting this pathway could therefore present a new therapeutic strategy to prevent thrombosis.
Collapse
Affiliation(s)
- Nicole Urtz
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Florian Gaertner
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Marie-Luise von Bruehl
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sue Chandraratne
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Faridun Rahimi
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Lin Zhang
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mathias Orban
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Verena Barocke
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Johannes Beil
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Irene Schubert
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Michael Lorenz
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kyle R Legate
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Andrea Huwiler
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Josef M Pfeilschifter
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christian Beerli
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - David Ledieu
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Elke Persohn
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Andreas Billich
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Baumruker
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Michael Mederos y Schnitzler
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Steffen Massberg
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland.
| |
Collapse
|
36
|
Weth D, Benetti C, Rauch C, Gstraunthaler G, Schmidt H, Geisslinger G, Sabbadini R, Proia RL, Kress M. Activated platelets release sphingosine 1-phosphate and induce hypersensitivity to noxious heat stimuli in vivo. Front Neurosci 2015; 9:140. [PMID: 25954148 PMCID: PMC4406086 DOI: 10.3389/fnins.2015.00140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/04/2015] [Indexed: 11/19/2022] Open
Abstract
At the site of injury activated platelets release various mediators, one of which is sphingosine 1-phosphate (S1P). It was the aim of this study to explore whether activated human platelets had a pronociceptive effect in an in vivo mouse model and whether this effect was based on the release of S1P and subsequent activation of neuronal S1P receptors 1 or 3. Human platelets were prepared in different concentrations (10(5)/μl, 10(6)/μl, 10(7)/μl) and assessed in mice with different genetic backgrounds (WT, S1P1 (fl/fl), SNS-S1P1 (-/-), S1P3 (-/-)). Intracutaneous injections of activated human platelets induced a significant, dose-dependent hypersensitivity to noxious thermal stimulation. The degree of heat hypersensitivity correlated with the platelet concentration as well as the platelet S1P content and the amount of S1P released upon platelet activation as measured with LC MS/MS. Despite the significant correlations between S1P and platelet count, no difference in paw withdrawal latency (PWL) was observed in mice with a global null mutation of the S1P3 receptor or a conditional deletion of the S1P1 receptor in nociceptive primary afferents. Furthermore, neutralization of S1P with a selective anti-S1P antibody did not abolish platelet induced heat hypersensitivity. Our results suggest that activated platelets release S1P and induce heat hypersensitivity in vivo. However, the platelet induced heat hypersensitivity was caused by mediators other than S1P.
Collapse
Affiliation(s)
- Daniela Weth
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of InnsbruckInnsbruck, Austria
| | - Camilla Benetti
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of InnsbruckInnsbruck, Austria
| | - Caroline Rauch
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of InnsbruckInnsbruck, Austria
| | - Gerhard Gstraunthaler
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of InnsbruckInnsbruck, Austria
| | - Helmut Schmidt
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical PharmacologyFrankfurt, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical PharmacologyFrankfurt, Germany
| | | | - Richard L. Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney DiseasesBethesda, MD, USA
| | - Michaela Kress
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of InnsbruckInnsbruck, Austria
| |
Collapse
|
37
|
Proia RL, Hla T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest 2015; 125:1379-87. [PMID: 25831442 DOI: 10.1172/jci76369] [Citation(s) in RCA: 413] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Membrane sphingolipids are metabolized to sphingosine-1-phosphate (S1P), a bioactive lipid mediator that regulates many processes in vertebrate development, physiology, and pathology. Once exported out of cells by cell-specific transporters, chaperone-bound S1P is spatially compartmentalized in the circulatory system. Extracellular S1P interacts with five GPCRs that are widely expressed and transduce intracellular signals to regulate cellular behavior, such as migration, adhesion, survival, and proliferation. While many organ systems are affected, S1P signaling is essential for vascular development, neurogenesis, and lymphocyte trafficking. Recently, a pharmacological S1P receptor antagonist has won approval to control autoimmune neuroinflammation in multiple sclerosis. The availability of pharmacological tools as well as mouse genetic models has revealed several physiological actions of S1P and begun to shed light on its pathological roles. The unique mode of signaling of this lysophospholipid mediator is providing novel opportunities for therapeutic intervention, with possibilities to target not only GPCRs but also transporters, metabolic enzymes, and chaperones.
Collapse
|