1
|
Emerging Roles of Endocannabinoids as Key Lipid Mediators for a Successful Pregnancy. Int J Mol Sci 2023; 24:ijms24065220. [PMID: 36982295 PMCID: PMC10048990 DOI: 10.3390/ijms24065220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, Cannabis use/misuse for treating pregnancy-related symptoms and other chronic conditions has increased among pregnant women, favored by decriminalization and/or legalization of its recreational uses in addition to its easy accessibility. However, there is evidence that prenatal Cannabis exposure might have adverse consequences on pregnancy progression and a deleterious impact on proper neurodevelopmental trajectories in the offspring. Maternal Cannabis use could interfere with the complex and finely controlled role performed by the endocannabinoid system in reproductive physiology, impairing multiple gestational processes from blastocyst implantation to parturition, with long-lasting intergenerational effects. In this review, we discuss current clinical and preclinical evidence regarding the role of endocannabinoids in development, function, and immunity of the maternal–fetal interface, focusing on the impact of Cannabis constituents on each of these gestational processes. We also discuss the intrinsic limitations of the available studies and the future perspectives in this challenging research field.
Collapse
|
2
|
Cáceres D, Ochoa M, González-Ortiz M, Bravo K, Eugenín J. Effects of Prenatal Cannabinoids Exposure upon Placenta and Development of Respiratory Neural Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:199-232. [PMID: 37466775 DOI: 10.1007/978-3-031-32554-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cannabis use has risen dangerously during pregnancy in the face of incipient therapeutic use and a growing perception of safety. The main psychoactive compound of the Cannabis sativa plant is the phytocannabinoid delta-9-tetrahydrocannabinol (A-9 THC), and its status as a teratogen is controversial. THC and its endogenous analogues, anandamide (AEA) and 2-AG, exert their actions through specific receptors (eCBr) that activate intracellular signaling pathways. CB1r and CB2r, also called classic cannabinoid receptors, together with their endogenous ligands and the enzymes that synthesize and degrade them, constitute the endocannabinoid system. This system is distributed ubiquitously in various central and peripheral tissues. Although the endocannabinoid system's most studied role is controlling the release of neurotransmitters in the central nervous system, the study of long-term exposure to cannabinoids on fetal development is not well known and is vital for understanding environmental or pathological embryo-fetal or postnatal conditions. Prenatal exposure to cannabinoids in animal models has induced changes in placental and embryo-fetal organs. Particularly, cannabinoids could influence both neural and nonneural tissues and induce embryo-fetal pathological conditions in critical processes such as neural respiratory control. This review aims at the acute and chronic effects of prenatal exposure to cannabinoids on placental function and the embryo-fetal neurodevelopment of the respiratory pattern. The information provided here will serve as a theoretical framework to critically evaluate the teratogen effects of the consumption of cannabis during pregnancy.
Collapse
Affiliation(s)
- Daniela Cáceres
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Martín Ochoa
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Karina Bravo
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Facultad de Ingeniería, Universidad Autónoma de Chile, Providencia, Chile
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Chae SA, Son JS, Du M. Prenatal exercise in fetal development: a placental perspective. FEBS J 2021; 289:3058-3071. [PMID: 34449982 DOI: 10.1111/febs.16173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Maternal obesity (MO) and gestational diabetes mellitus (GDM) are common in Western societies, which impair fetal development and predispose offspring to metabolic dysfunction. Placenta is the organ linking the mother to her fetus, and MO suppresses the development of vascular system and expression of nutrient transporters in placenta, thereby affecting fetal development. For maintaining its proper physiological function, placenta is energy demanding, which is met through extensive oxidative phosphorylation. However, the oxidative capacity of placenta is suppressed due to MO and GDM. Recently, several studies showed that physical activity during pregnancy enhances oxidative metabolism and improves placental function, which might be partially mediated by exerkines, referring to cytokines elicited by exercise. In addition, as an endocrine organ, placenta secretes cytokines, termed placentokines, including apelin, superoxide dismutase 3, irisin, and adiponectin, which mediate fetal development and maternal metabolism. Possible molecular mechanisms linking maternal exercise and placentokines to placental and fetal development are further discussed. As an emerging field, up to now, available studies are limited, mostly conducted in rodents. Given the epidemics of obesity and metabolic disorders, as well as the prevalence of maternal sedentary lifestyle, the effects of exercise of pregnant women on placental function and placentokine secretion, as well as their impacts on fetal development, need to be further examined.
Collapse
Affiliation(s)
- Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Jun Seok Son
- Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
4
|
Kuzma-Hunt AG, Truong VB, Favetta LA. Glucocorticoids, Stress and Delta-9 Tetrahydrocannabinol (THC) during Early Embryonic Development. Int J Mol Sci 2021; 22:7289. [PMID: 34298908 PMCID: PMC8307766 DOI: 10.3390/ijms22147289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Elevated molecular stress in women is known to have negative impacts on the reproductive development of oocytes and the embryos prior to implantation. In recent years, the prevalence of cannabis use among women of reproductive age has risen due to its ability to relieve psychological stress and nausea, which are mediated by its psychoactive component, ∆-9-tetrahydrocannabinol (THC). Although cannabis is the most popular recreational drug of the 21st century, much is unknown about its influence on molecular stress in reproductive tissues. The current literature has demonstrated that THC causes dose- and time-dependent alterations in glucocorticoid signaling, which have the potential to compromise morphology, development, and quality of oocytes and embryos. However, there are inconsistencies across studies regarding the mechanisms for THC-dependent changes in stress hormones and how either compounds may drive or arrest development. Factors such as variability between animal models, physiologically relevant doses, and undiscovered downstream gene targets of both glucocorticoids and THC could account for such inconsistencies. This review evaluates the results of studies which have investigated the effects of glucocorticoids on reproductive development and how THC may alter stress signaling in relevant tissues.
Collapse
Affiliation(s)
| | | | - Laura A. Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.G.K.-H.); (V.B.T.)
| |
Collapse
|
5
|
Almada M, Costa L, Fonseca B, Alves P, Braga J, Gonçalves D, Teixeira N, Correia-da-Silva G. The endocannabinoid 2-arachidonoylglycerol promotes endoplasmic reticulum stress in placental cells. Reproduction 2021; 160:171-180. [PMID: 32357311 PMCID: PMC7354702 DOI: 10.1530/rep-19-0539] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
Proliferation, differentiation and apoptosis of trophoblast cells are required for normal placental development. Impairment of those processes may lead to pregnancy-related diseases. Disruption of endoplasmic reticulum (ER) homeostasis has been associated with several reproductive pathologies including recurrent pregnancy loss and preeclampsia. In the unfolded protein response (UPR), specific ER-stress signalling pathways are activated to restore ER homeostasis, but if the adaptive response fails, apoptosis is triggered. Protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and Activating transcription factor 6 (ATF6) are central players in UPR and in ER-stress-induced apoptosis, as well as downstream transcription factors, as C/EBP homologous protein (CHOP). Our previous studies have shown that the endocannabinoid 2-arachidonoylglycerol (2-AG) modulates trophoblast cell turnover. Nevertheless, the role of ER-stress on 2-AG induced apoptosis and cannabinoid signalling in trophoblast has never been addressed. In this work, we used BeWo cells and human primary cytotrophoblasts isolated from term-placenta. The expression of ER-stress markers was analysed by qRT-PCR and Western blotting. ROS generation was assessed by fluorometric methods, while apoptosis was detected by the evaluation of caspase -3/-7 activities and Poly (ADP-ribose) polymerase (PARP) cleavage. Our findings indicate that 2-AG is able to induce ER-stress and apoptosis. Moreover, the eukaryotic initiation factor 2 (eIF2α)/CHOP pathway involved in ER-stress-induced apoptosis is triggered through a mechanism dependent on cannabinoid receptor CB2 activation. The results bring novel insights on the importance of ER-stress and cannabinoid signalling on 2-AG mechanisms of action in placenta.
Collapse
Affiliation(s)
- Marta Almada
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Lia Costa
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Bruno Fonseca
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Patrícia Alves
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Jorge Braga
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte Dr Albino Aroso, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Daniela Gonçalves
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte Dr Albino Aroso, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Natércia Teixeira
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Maia J, Fonseca BM, Cunha SC, Braga J, Gonçalves D, Teixeira N, Correia-da-Silva G. Impact of tetrahydrocannabinol on the endocannabinoid 2-arachidonoylglycerol metabolism: ABHD6 and ABHD12 as novel players in human placenta. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158807. [PMID: 32829065 DOI: 10.1016/j.bbalip.2020.158807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Cannabis use has been increasing worldwide for recreational and medical purposes. Consumption by pregnant women is associated with disturbances in pregnancy outcome, such as low birth weight, prematurity and intrauterine growth retardation, though the underlying biochemical mechanisms are unknown. The endocannabinoid system is involved in several reproductive events and the disruption of its homeostasis by ∆9-tetrahydrocannabinol (THC), the main psychoactive cannabinoid, may lead to a negative gestational outcome. In human placenta, THC impairs the levels of the endocannabinoid anandamide (AEA). The other major endocannabinoid, 2-arachidonoylglycerol (2-AG) also plays an important role on proper placentation and pregnancy success. However, THC impact on 2-AG homeostasis has never been addressed. Hence, the effects of THC in 2-AG levels and metabolic enzymes expression were explored. Long-term treatment impairs the expression of the main 2-AG synthetic and degradative enzymes. Curiously, with the highest concentration, despite the maintenance of diacylglycerol lipase alpha (DAGLα) and the decrease in monoacylglycerol lipase (MAGL) expression, 2-AG levels remain constant. Given the endocannabinoid signalling local tight regulation, we hypothesize the involvement of other 2-AG degradative enzymes. Indeed, THC increases the expression of the hydrolyzing enzymes alpha beta hydrolase domain-6 (ABHD6) and -12 (ABHD12), that we firstly describe in human placental tissues. The results show that THC, depending on time of exposure, induces alterations in 2-AG metabolic enzymes expression in placental explants, highlighting the importance of 2-AG regulation and endocannabinoid signalling in placental development. Alterations in this homeostasis may explain the negative pregnancy outcome related to cannabis consumption.
Collapse
Affiliation(s)
- João Maia
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bruno M Fonseca
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sara C Cunha
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Jorge Braga
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte-Centro Hospitalar do Porto, Porto, Portugal
| | - Daniela Gonçalves
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte-Centro Hospitalar do Porto, Porto, Portugal
| | - Natércia Teixeira
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
7
|
Cecconi S, Rapino C, Di Nisio V, Rossi G, Maccarrone M. The (endo)cannabinoid signaling in female reproduction: What are the latest advances? Prog Lipid Res 2019; 77:101019. [PMID: 31862482 DOI: 10.1016/j.plipres.2019.101019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Cannabis extracts like marijuana have the highest consumption rate worldwide. Yet, their societal acceptance as recreational and therapeutic drugs could represent a serious hazard to female human reproduction, because cannabis ingredients [termed (phyto)cannabinoids] can perturb an endogenous system of lipid signals known as endocannabinoids. Accumulated evidence on animal models and humans has demonstrated a crucial role of these endogenous signals on different aspects of female reproduction, where they act through an ensamble of proteins that synthesize, transport, degrade and traffic them. Several reports have recently evidenced the potential role of endocannabinoids as biomarkers of female infertility for disease treatment and prevention, as well as their possible epigenetic effects on pregnancy. The purpose of this review is to provide an update of data collected in the last decade on the effects of cannabinoids and endocannabinoids on female reproductive events, from development and maturation of follicles and oocytes, to fertilization, oviductal transport, implantation and labor. In this context, a particular attention has been devoted to the ovary and the production of fertilizable oocytes, because recent studies have addressed this hot topic with conflicting results among species.
Collapse
Affiliation(s)
- Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Cinzia Rapino
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Valentina Di Nisio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Gianna Rossi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; European Center for Brain Research (CERC)/Santa Lucia Foundation, Via del Fosso di Fiorano, 64 - 00143 Rome, Italy.
| |
Collapse
|
8
|
Almada M, Alves P, Fonseca BM, Carvalho F, Queirós CR, Gaspar H, Amaral C, Teixeira NA, Correia-da-Silva G. Synthetic cannabinoids JWH-018, JWH-122, UR-144 and the phytocannabinoid THC activate apoptosis in placental cells. Toxicol Lett 2019; 319:129-137. [PMID: 31730886 DOI: 10.1016/j.toxlet.2019.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 01/25/2023]
Abstract
The increasing use of synthetic cannabinoids (SCBs) in recreational settings is becoming a new paradigm of drug abuse. Although SCBs effects mimic those of the Cannabis sativa plant, these drugs are frequently more potent and hazardous. It is known that endocannabinoid signalling plays a crucial role in diverse reproductive events such as placental development. Moreover, the negative impact of the phytocannabinoid Δ9-tetrahydrocannabinol (THC) in pregnancy outcome, leading to prematurity, intrauterine growth restriction and low birth weight is well recognized, which makes women of childbearing age a sensitive group to developmental adverse effects of cannabinoids. Placental trophoblast turnover relies on regulated processes of proliferation and apoptosis for normal placental development. Here, we explored the impact of the SCBs JWH-018, JWH-122 and UR-144 and of the phytocannabinoid THC in BeWo cell line, a human placental cytotrophoblast cell model. All the cannabinoids caused a significant decrease in cell viability without LDH release, though this effect was only detected for the highest concentrations of THC. Moreover, a cell cycle arrest at the G2/M phase was also observed. JWH-018 and JWH-122 increased reactive oxygen species (ROS) production and THC, UR-144 and JWH-122 caused loss of mitochondrial membrane potential. All the compounds were able to induce caspase-9 activation. The involvement of apoptotic pathways was further confirmed through the significant increase in caspase -3/-7 activities. For UR-144, this effect was reversed by the CB1 antagonist AM281, for JWH-018 and THC this effect was mediated by both cannabinoid receptors CB1 and CB2 while for JWH-122 it was cannabinoid receptor-independent. This work demonstrates that THC and SCBs are able to induce apoptotic cell death. Although they may act through different mechanisms and potencies, the studied cannabinoids have the potential to disrupt gestational fundamental events.
Collapse
Affiliation(s)
- Marta Almada
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Patrícia Alves
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Bruno M Fonseca
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Cláudio R Queirós
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016, Lisboa, Portugal
| | - Helena Gaspar
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Cristina Amaral
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Natércia A Teixeira
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal.
| |
Collapse
|
9
|
Fonseca BM, Fernandes R, Almada M, Santos M, Carvalho F, Teixeira NA, Correia-da-Silva G. Synthetic cannabinoids and endometrial stromal cell fate: Dissimilar effects of JWH-122, UR-144 and WIN55,212-2. Toxicology 2019; 413:40-47. [PMID: 30502353 DOI: 10.1016/j.tox.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022]
Abstract
The emergence of synthetic cannabinoids (SCBs) as drugs of abuse in readily available "Spice" smoking blends has exposed users to much more potent cannabinoids than the phytocannabinoids present in Cannabis sativa L. Increasing reports of adverse reactions are emerging in the clinical literature. SCBs may disrupt the endocannabinoid signalling, which has been shown to be crucial within human endometrium remodelling process. Within this study, a telomerase-immortalised human endometrial stromal cell line (St-T1b) and primary human decidual fibroblasts (HdF) were used to determine the impact of SCBs JWH-122, UR-144 and WIN55,212-2 (WIN) on endometrial stromal cells. Our findings indicate that JWH-122 and UR-144 (0.01-25 μM) induce prompt ROS/RNS formation and endoplasmic reticulum (ER) stress without reduction in cell viability. Disturbances in the normal functions of the ER lead to cell stress response, which is after compensated with the increase in reduced/oxidized glutathione ratio (GSH/GSSG). Instead, WIN induces ER stress, mitochondrial dysfunction and apoptotic cell death. The addition of the CB1 antagonist AM281 significantly reduces the effects on cell viability, suggesting that CB1 plays a key role in WIN-induced apoptosis. Collectively, our data suggests that SCBs have dissimilar effects on human endometrial stromal cells and, thus, may impact human reproductive function through distinct mechanisms that are crucial for the understanding of the pathophysiological outcomes from its abuse.
Collapse
Affiliation(s)
- Bruno M Fonseca
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, Porto, Portugal
| | - Renata Fernandes
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, Porto, Portugal
| | - Marta Almada
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, Porto, Portugal
| | - Márcia Santos
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, Porto, Portugal
| | - Natércia A Teixeira
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, Porto, Portugal.
| |
Collapse
|
10
|
Abán CE, Accialini PL, Etcheverry T, Leguizamón GF, Martinez NA, Farina MG. Crosstalk Between Nitric Oxide and Endocannabinoid Signaling Pathways in Normal and Pathological Placentation. Front Physiol 2018; 9:1699. [PMID: 30564135 PMCID: PMC6288445 DOI: 10.3389/fphys.2018.01699] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
Endocannabinoids are a group of endogenous lipid mediators that act as ligands of cannabinoid and vanilloid receptors, activating multiple signal transduction pathways. Together with enzymes responsible for their synthesis and degradation, these compounds constitute the endocannabinoid system (ECS), which is involved in different physiological processes in reproduction. The placenta, which is essential for the success of gestation and optimal fetal growth, undergoes constant tissue remodeling. ECS members are expressed in trophoblast cells, and current evidence suggests that this system is involved in placental development, apoptosis, and syncytialization. Impairment of endocannabinoid signaling has been associated with several pathological conditions such as intrauterine growth restriction and preeclampsia. Both clinical entities are characterized by dysregulation on vascular perfusion where nitrergic system performs a pivotal role. Nitric oxide (NO) is a potent local vasodepressor that exerts a critical role in the regulation of hemodynamic flow, contributing to the maintenance of low vascular resistance in the feto-placental circulation. NO production could be affected by different factors and growing evidence suggests that the endocannabinoid mediators may regulate nitrergic signaling. Herein, we review emerging knowledge supporting ECS-mediated regulation of NO production in normal placentation. Finally, we discuss how alterations in these systems could affect homoeostasis and contribute to the occurrence of placental-mediated pregnancy complications. Given the impact on women and perinatal heath, we will focus on current knowledge regarding the effects of ECS on nitrergic system in normal and pathological placentation.
Collapse
Affiliation(s)
- Cyntia E Abán
- Laboratorio de Investigación Aplicada a las Neurociencias (LIAN), FLENI - CONICET, Belén de Escobar, Argentina
| | - Paula L Accialini
- Laboratorio de Fisiopatología Placentaria, CEFyBO-UBA-CONICET, Buenos Aires, Argentina
| | - Tomás Etcheverry
- Laboratorio de Fisiopatología Placentaria, CEFyBO-UBA-CONICET, Buenos Aires, Argentina
| | | | - Nora A Martinez
- Laboratorio de Biología de la Reproducción, IFIBIO-UBA-CONICET, Buenos Aires, Argentina.,Red Iberoamericana de Alteraciones Vasculares Asociadas a Trastornos del Embarazo (RIVA-TREM), Buenos Aires, Argentina
| | - Mariana G Farina
- Laboratorio de Fisiopatología Placentaria, CEFyBO-UBA-CONICET, Buenos Aires, Argentina.,Red Iberoamericana de Alteraciones Vasculares Asociadas a Trastornos del Embarazo (RIVA-TREM), Buenos Aires, Argentina
| |
Collapse
|
11
|
Sheller-Miller S, Richardson L, Martin L, Jin J, Menon R. Systematic review of p38 mitogen-activated kinase and its functional role in reproductive tissues. Am J Reprod Immunol 2018; 80:e13047. [PMID: 30178469 PMCID: PMC6261682 DOI: 10.1111/aji.13047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress (OS) plays a role in uterine tissue remodeling during pregnancy and parturition. While p38 MAPK is an OS-response kinase, a precise functional role is unknown. Therefore, we conducted a systematic review of literature on p38 MAPK expression, activation, and function in reproductive tissues throughout pregnancy and parturition, published between January 1980 and August 2017, using four electronic databases (Web of Science, PubMed, Medline, and CoCHRANE). We identified 418 reports; 108 were selected for full-text evaluation and 74 were included in final review. p38 MAPK was investigated using feto-maternal primary or immortalized cells, tissue explants, and animal models. Western blot was most commonly used to report phosphorylated (active) p38 MAPK. Human placenta (27), chorioamniotic membranes (14), myometrium (13), decidua (8), and cervix (1) were the studied tissues. p38 MAPK's functions were tissue and gestational age dependent. Isoform specificity was hardly reported. p38 MAPK activity was induced by ROS or proinflammatory cytokines to promote cell signaling linked to cell fate, primed uterus, ripened cervix, and proinflammatory cytokine/chemokine production. In 35 years, reports on p38 MAPK's role during pregnancy and parturition are scarce and current literature is insufficient to provide a comprehensive description of p38 MAPK's mechanistic role during pregnancy and parturition.
Collapse
Affiliation(s)
- Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Lauren Richardson
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Laura Martin
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | - Jin Jin
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| |
Collapse
|
12
|
Almada M, Costa L, Fonseca BM, Amaral C, Teixeira N, Correia-da-Silva G. The synthetic cannabinoid WIN-55,212 induced-apoptosis in cytotrophoblasts cells by a mechanism dependent on CB1 receptor. Toxicology 2017; 385:67-73. [PMID: 28495606 DOI: 10.1016/j.tox.2017.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system has evolved as a key regulator in several pathological and physiological processes, including placentation, decidualization and implantation. In addition, it is known that Cannabis and cannabinoids negatively affect female reproduction. Although, the biological action of synthetic cannabinoids, such as WIN-55,212, in human fertility and pregnancy outcome remain to be unveiled. A tight balance between proliferation, differentiation and apoptosis of trophoblast cells is required for placental development and pregnancy outcome. Therefore, in this work, the effects of the synthetic cannabinoid WIN-55,212 in placental cytotrophoblast cells were explored. For that, it was used a human choriocarcinoma cell line, BeWo cells, and primary cultures of human cytotrophoblasts isolated from term placentas. Results demonstrate that this synthetic cannabinoid induces cell cycle arrest. We also observed that cell viability loss was associated with a disruption of mitochondrial membrane potential and activation of caspases -9 and -3/-7 independently of reactive oxygen species (ROS) production or recruitment of the endoplasmic reticulum stress marker CHOP. Moreover, these effects were prevented by pre-incubation with a selective cannabinoid receptor 1 (CBR1) antagonist (AM281). Thus, our results provide strong evidences of the apoptotic process induced by WIN-55,212 through the activation of the CBR1, which may reveal the impact of cannabinoids consumption during placental development.
Collapse
Affiliation(s)
- Marta Almada
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Lia Costa
- Departamento de Biologia, Universidade de Aveiro, Portugal; UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Bruno Miguel Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Cristina Amaral
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Natércia Teixeira
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal.
| |
Collapse
|
13
|
The endocannabinoid system: A novel player in human placentation. Reprod Toxicol 2016; 61:58-67. [PMID: 26965993 DOI: 10.1016/j.reprotox.2016.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/28/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Cannabis sativa is the most consumed illegal drug around the world. Its consumption during pregnancy is associated with gestational complications, particularly with fetal growth restriction. Endocannabinoids (eCBs) are lipid molecules that act by activating the G-protein coupled cannabinoid receptors, which are also target of the phytocannabinoid Δ(9)-tetrahydrocannabinol (THC). The endocannabinoid system (ECS) participates in distinct biological processes, including pain, inflammation, neuroprotection, and several reproductive events. In addition, an abnormal expression of ECS is associated with infertility and miscarriages. This manuscript will review and discuss the expression of ECS in normal and pathological human placentas, and the role of eCBs and THC in trophoblast proliferation, apoptosis, differentiation, and function. The current evidence points towards a role of ECS in human placentation, shedding light on the contribution of the eCBs in the coordination of human placentation, and in the cellular mechanisms underlying the deleterious effects of cannabis consumption during pregnancy.
Collapse
|