1
|
Heo KS, Phan LP, Le NTT, Jin Y. Mechanistic insights and emerging therapeutic strategies targeting endothelial dysfunction in cardiovascular diseases. Arch Pharm Res 2025; 48:305-332. [PMID: 40301174 DOI: 10.1007/s12272-025-01542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/08/2025] [Indexed: 05/01/2025]
Abstract
Endothelial dysfunction plays a pivotal role in the pathogenesis of various cardiovascular diseases (CVDs), including atherosclerosis, hypertension, heart failure, stroke, and peripheral artery disease. It disrupts vascular homeostasis, leading to reduced nitric oxide (NO) bioavailability, increased oxidative stress, and chronic inflammation, all of which collectively drive vascular damage, atherosclerotic plaque formation, and thrombosis. Additionally, shear stress-induced alterations in blood flow patterns, particularly disturbed flow (d-flow), aggravate endothelial dysfunction. Furthermore, the endothelial-to-mesenchymal transition (EndMT), a process in which endothelial cells acquire mesenchymal-like properties, contributes to vascular remodeling and accelerates CVD progression.This review explores the significant role of epigenetic mechanisms, such as DNA methylation, histone modifications, and noncoding RNAs (ncRNAs), which serve as critical regulators of endothelial function in response to shear stress in endothelial dysfunction and the development of atherosclerosis. Furthermore, we discuss the pivotal role of endothelial dysfunction in cardiovascular and metabolic diseases, emphasizing the need for innovative therapeutic strategies beyond conventional treatments. In particular, we highlight the endothelial-protective mechanisms of emerging pharmacological agents, including proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RAs), and sodium-glucose cotransporter 2 (SGLT2) inhibitors, along with supporting clinical evidence demonstrating their efficacy in improving endothelial function and reducing cardiovascular risk.
Collapse
Affiliation(s)
- Kyung-Sun Heo
- Department of Pharmacology, Chungnam National University, College of Pharmacy, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Lan Phuong Phan
- Department of Pharmacology, Chungnam National University, College of Pharmacy, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Nhi Thi Thao Le
- Department of Pharmacology, Chungnam National University, College of Pharmacy, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Yujin Jin
- Department of Pharmacology, Chungnam National University, College of Pharmacy, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| |
Collapse
|
2
|
Wu HM, Chen LH, Chiu WJ, Tsai CL. LIF-STAT signaling in decidual cells: a possible role in embryo implantation and early pregnancy. J Mol Endocrinol 2024; 73:e240006. [PMID: 38722222 PMCID: PMC11227039 DOI: 10.1530/jme-24-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/09/2024] [Indexed: 06/30/2024]
Abstract
In this study, we investigate the effects of miRNA-138-5p and probable G-protein coupled receptor 124 (GPR124)-regulated inflammasome and downstream leukemia inhibitory factor (LIF)-STAT and adhesion molecule signaling in human decidual stromal cells. After informed consent was obtained from women aged 25-38 years undergoing surgical termination of the normal pregnancy and spontaneous miscarriage after 6-9 weeks of gestation, human decidual stromal cells were extracted from the decidual tissue. Extracellular vesicles (EVs) with microRNA (miRNA) between cells have been regarded as critical factors for embryo-maternal interactions on embryo implantation and programming of human pregnancy. MicroRNA-138-5p acts as the transcriptional regulator of GPR124 and the mediator of downstream inflammasome. LIF-regulated STAT activation and expression of integrins might influence embryo implantation. Hence, a better understanding of LIF-STAT and adhesion molecule signaling would elucidate the mechanism of microRNA-138-5p- and GPR124-regulated inflammasome activation on embryo implantation and pregnancy. Our results show that microRNA-138-5p, purified from the EVs of decidual stromal cells, inhibits the expression of GPR124 and the inflammasome, and activates the expression of LIF-STAT and adhesion molecules in human decidual stromal cells. Additionally, the knockdown of GPR124 and NLRP3 through siRNA increases the expression of LIF-STAT and adhesion molecules. The findings of this study help us gain a better understanding the role of EVs, microRNA-138-5p, GPR124, inflammasomes, LIF-STAT, and adhesion molecules in embryo implantation and programming of human pregnancy.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Wei-Jung Chiu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chia-Lung Tsai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan
| |
Collapse
|
3
|
Mao A, Zhang K, Kan H, Gao M, Wang Z, Zhou T, Shao J, He D. Single-Cell RNA-Seq Reveals Coronary Heterogeneity and Identifies CD133 +TRPV4 high Endothelial Subpopulation in Regulating Flow-Induced Vascular Tone in Mice. Arterioscler Thromb Vasc Biol 2024; 44:653-665. [PMID: 38269590 PMCID: PMC10880935 DOI: 10.1161/atvbaha.123.319516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Single-cell RNA-Seq analysis can determine the heterogeneity of cells between different tissues at a single-cell level. Coronary artery endothelial cells (ECs) are important to coronary blood flow. However, little is known about the heterogeneity of coronary artery ECs, and cellular identity responses to flow. Identifying endothelial subpopulations will contribute to the precise localization of vascular endothelial subpopulations, thus enabling the precision of vascular injury treatment. METHODS Here, we performed a single-cell RNA sequencing of 31 962 cells and functional assays of 3 branches of the coronary arteries (right coronary artery/circumflex left coronary artery/anterior descending left coronary artery) in wild-type mice. RESULTS We found a compendium of 7 distinct cell types in mouse coronary arteries, mainly ECs, granulocytes, cardiac myocytes, smooth muscle cells, lymphocytes, myeloid cells, and fibroblast cells, and showed spatial heterogeneity between arterial branches. Furthermore, we revealed a subpopulation of coronary artery ECs, CD133+TRPV4high ECs. TRPV4 (transient receptor potential vanilloid 4) in CD133+TRPV4high ECs is important for regulating vasodilation and coronary blood flow. CONCLUSIONS Our study elucidates the nature and range of coronary arterial cell diversity and highlights the importance of coronary CD133+TRPV4high ECs in regulating coronary vascular tone.
Collapse
Affiliation(s)
- Aiqin Mao
- Wuxi School of Medicine (A.M., K.Z., H.K., M.G., Z.W., T.Z., J.S.), Jiangnan University, China
- School of Food Science and Technology (A.M., D.H.), Jiangnan University, China
| | - Ka Zhang
- Wuxi School of Medicine (A.M., K.Z., H.K., M.G., Z.W., T.Z., J.S.), Jiangnan University, China
| | - Hao Kan
- Wuxi School of Medicine (A.M., K.Z., H.K., M.G., Z.W., T.Z., J.S.), Jiangnan University, China
| | - Mengru Gao
- Wuxi School of Medicine (A.M., K.Z., H.K., M.G., Z.W., T.Z., J.S.), Jiangnan University, China
| | - Zhiwei Wang
- Wuxi School of Medicine (A.M., K.Z., H.K., M.G., Z.W., T.Z., J.S.), Jiangnan University, China
| | - Tingting Zhou
- Wuxi School of Medicine (A.M., K.Z., H.K., M.G., Z.W., T.Z., J.S.), Jiangnan University, China
| | - Jing Shao
- Wuxi School of Medicine (A.M., K.Z., H.K., M.G., Z.W., T.Z., J.S.), Jiangnan University, China
| | - Dongxu He
- School of Food Science and Technology (A.M., D.H.), Jiangnan University, China
| |
Collapse
|
4
|
Jin N, Qiao B, Zhao M, Li L, Zhu L, Zang X, Gu B, Zhang H. Predicting cervical lymph node metastasis in OSCC based on computed tomography imaging genomics. Cancer Med 2023; 12:19260-19271. [PMID: 37635388 PMCID: PMC10557859 DOI: 10.1002/cam4.6474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND To investigate the correlation between computed tomography (CT) radiomic characteristics and key genes for cervical lymph node metastasis (LNM) in oral squamous cell carcinoma (OSCC). METHODS The region of interest was annotated at the edge of the primary tumor on enhanced CT images from 140 patients with OSCC and obtained radiomic features. Ribonucleic acid (RNA) sequencing was performed on pathological sections from 20 patients. the DESeq software package was used to compare differential gene expression between groups. Weighted gene co-expression network analysis was used to construct co-expressed gene modules, and the KEGG and GO databases were used for pathway enrichment analysis of key gene modules. Finally, Pearson correlation coefficients were calculated between key genes of enriched pathways and radiomic features. RESULTS Four hundred and eighty radiomic features were extracted from enhanced CT images of 140 patients; seven of these correlated significantly with cervical LNM in OSCC (p < 0.01). A total of 3527 differentially expressed RNAs were screened from RNA sequencing data of 20 cases. original_glrlm_RunVariance showed significant positive correlation with most long noncoding RNAs. CONCLUSIONS OSCC cervical LNM is related to the salivary hair bump signaling pathway and biological process. Original_glrlm_RunVariance correlated with LNM and most differentially expressed long noncoding RNAs.
Collapse
Affiliation(s)
- Nenghao Jin
- Medical School of Chinese PLABeijingChina
- Department of Stomatology, The First Medical CentreChinese PLA General HospitalBeijingChina
| | - Bo Qiao
- Medical School of Chinese PLABeijingChina
- Department of Stomatology, The First Medical CentreChinese PLA General HospitalBeijingChina
| | - Min Zhao
- Pharmaceutical Diagnostics, GE HealthcareBeijingChina
- Research Center of Medical Big Data, Chinese PLA General HospitalBeijingChina
| | - Liangbo Li
- Medical School of Chinese PLABeijingChina
- Department of Stomatology, The First Medical CentreChinese PLA General HospitalBeijingChina
| | - Liang Zhu
- Medical School of Chinese PLABeijingChina
- Department of Stomatology, The First Medical CentreChinese PLA General HospitalBeijingChina
| | - Xiaoyi Zang
- Medical School of Chinese PLABeijingChina
- Department of Stomatology, The First Medical CentreChinese PLA General HospitalBeijingChina
| | - Bin Gu
- Department of Stomatology, The First Medical CentreChinese PLA General HospitalBeijingChina
| | - Haizhong Zhang
- Department of Stomatology, The First Medical CentreChinese PLA General HospitalBeijingChina
| |
Collapse
|
5
|
Brain AVMs-Related microRNAs: Machine Learning Algorithm for Expression Profiles of Target Genes. Brain Sci 2022; 12:brainsci12121628. [PMID: 36552089 PMCID: PMC9775264 DOI: 10.3390/brainsci12121628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION microRNAs (miRNAs) are a class of non-coding RNAs playing a myriad of important roles in regulating gene expression. Of note, recent work demonstrated a critical role of miRNAs in the genesis and progression of brain arteriovenous malformations (bAVMs). Accordingly, here we examine miRNA signatures related to bAVMs and associated gene expression. In so doing we expound on the potential prognostic, diagnostic, and therapeutic significance of miRNAs in the clinical management of bAVMs. METHODS A PRISMA-based literature review was performed using PubMed/Medline database with the following search terms: "brain arteriovenous malformations", "cerebral arteriovenous malformations", "microRNA", and "miRNA". All preclinical and clinical studies written in English, regardless of date, were selected. For our bioinformatic analyses, miRWalk and miRTarBase machine learning algorithms were employed; the Kyoto Encyclopedia of Genes and Genomes (KEGG) database was quired for associated pathways/functions. RESULTS four studies were ultimately included in the final analyses. Sequencing data consistently revealed the decreased expression of miR-18a in bAVM-endothelial cells, resulting in increased levels of vascular endodermal growth factor (VEGF), Id-1, matrix metalloproteinase, and growth signals. Our analyses also suggest that the downregulation of miR-137 and miR-195* within vascular smooth muscle cells (VSMCs) may foster the activation of inflammation, aberrant angiogenesis, and phenotypic switching. In the peripheral blood, the overexpression of miR-7-5p, miR-629-5p, miR-199a-5p, miR-200b-3p, and let-7b-5p may contribute to endothelial proliferation and nidus development. The machine learning algorithms employed confirmed associations between miRNA-related target networks, vascular rearrangement, and bAVM progression. CONCLUSION miRNAs expression appears to be critical in managing bAVMs' post-transcriptional signals. Targets of microRNAs regulate canonical vascular proliferation and reshaping. Although additional scientific evidence is needed, the identification of bAVM miRNA signatures may facilitate the development of novel prognostic/diagnostic tools and molecular therapies for bAVMs.
Collapse
|
6
|
Wu HM, Lo TC, Tsai CL, Chen LH, Huang HY, Wang HS, Yu J. Extracellular Vesicle-Associated MicroRNA-138-5p Regulates Embryo Implantation and Early Pregnancy by Adjusting GPR124. Pharmaceutics 2022; 14:pharmaceutics14061172. [PMID: 35745744 PMCID: PMC9230557 DOI: 10.3390/pharmaceutics14061172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Functional embryo–maternal interactions occur during the embryo implantation and placentation. Extracellular vesicles with microRNA (miR) between cells have been considered of critical importance for embryo implantation and the programming of human pregnancy. MiR-138-5p functions as the transcriptional regulator of G protein-coupled receptor 124 (GPR124). However, the signaling pathway of miR138-5p- and GPR124-adjusted NLRP3 inflammasome activation remains unclear. In this study, we examine the roles of the miR138-5p and GPR124-regulated inflammasome in embryo implantation and early pregnancy. Human decidual stromal cells were isolated from the abortus tissue and collected by curettage from missed abortion patients and normal pregnant women at 6- to 12-week gestation, after informed consent. Isolated extracellular vesicles from decidua and decidual stromal cells were confirmed by transmission electron microscopy (TEM). Next-Generation Sequencing (NGS) and microarray were performed for miR analysis. The predicated target genes of the differentially expressed miR were analyzed to identify the target genes and their pathway. We demonstrated the down-regulation of miR-138-5p and the overexpression of GPR124 in spontaneous miscarriage compared to normal pregnancy. We also showed the excessive activation of the NLRP3 inflammasome in spontaneous miscarriage compared to normal pregnancy. Here, we newly demonstrate that the miR-138-5p and GPR124-adjusted NLRP3 inflammasome were expressed in extracellular vesicles derived from decidua and decidual stromal cells, indicating that the miR-138-5p, GPR124 and NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome have a potential modulatory role on the decidual programming and placentation of human pregnancy. Our findings represent a new concept regarding the role of extracellular vesicles, miR-138-5p, GPR124, and the NLRP3 inflammasome in normal early pregnancy and spontaneous miscarriage.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan; (C.-L.T.); (L.-H.C.); (H.-Y.H.); (H.-S.W.)
- Correspondence:
| | - Tzu-Chi Lo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan; (T.-C.L.); (J.Y.)
| | - Chia-Lung Tsai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan; (C.-L.T.); (L.-H.C.); (H.-Y.H.); (H.-S.W.)
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan; (C.-L.T.); (L.-H.C.); (H.-Y.H.); (H.-S.W.)
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan; (C.-L.T.); (L.-H.C.); (H.-Y.H.); (H.-S.W.)
| | - Hsin-Shih Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan; (C.-L.T.); (L.-H.C.); (H.-Y.H.); (H.-S.W.)
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan; (T.-C.L.); (J.Y.)
| |
Collapse
|
7
|
Yuan W, Xia H, Xu Y, Xu C, Chen N, Shao C, Dai Z, Chen R, Tao A. The role of ferroptosis in endothelial cell dysfunction. Cell Cycle 2022; 21:1897-1914. [PMID: 35579940 DOI: 10.1080/15384101.2022.2079054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ferroptosis is a form of iron-dependent cell death caused by an excessive accumulation of reactive oxygen species and lipid peroxidation. The importance of ferroptosis in the occurrence and progression of various diseases is gradually being recognized; however, the exact biological effects and potential mechanisms of endothelial cell ferroptosis remain unclear. The endothelium forms the innermost layer of the blood vessels and lymphatic vessels. It acts as an important functional interface, responds to various pathological stimuli and causes endothelial dysfunction. Here, we review recent findings to elucidate the role of ferroptosis in endothelial cells under different pathophysiologic settings.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Xia
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yao Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chong Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Nan Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhiyin Dai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rui Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Aibin Tao
- Department of Cardiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Silveira A, Gomes J, Roque F, Fernandes T, de Oliveira EM. MicroRNAs in Obesity-Associated Disorders: The Role of Exercise Training. Obes Facts 2022; 15:105-117. [PMID: 35051942 PMCID: PMC9021631 DOI: 10.1159/000517849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/09/2021] [Indexed: 11/19/2022] Open
Abstract
Obesity is a worldwide epidemic affecting over 13% of the adult population and is defined by an excess of body fat that predisposes comorbidities. It is considered a multifactorial disease in which environmental and genetic factors interact, and it is a risk marker for cardiovascular disease. Lifestyle modifications remain the mainstay of treatment for obesity based on adequate diet and physical exercise. In addition, obesity is related to cardiovascular and skeletal muscle disorders, such as cardiac hypertrophy, microvascular rarefaction, and skeletal muscle atrophy. The discovery of obesity-involved molecular pathways is an important step to improve both the prevention and management of this disease. MicroRNAs (miRNAs) are a class of gene regulators which bind most commonly, but not exclusively, to the 3'-untranslated regions of messenger RNAs of protein-coding genes and negatively regulate their expression. Considerable effort has been made to identify miRNAs and target genes that predispose to obesity. Besides their intracellular function, recent studies have demonstrated that miRNAs can be exported or released by cells and circulate within the blood in a remarkably stable form. The discovery of circulating miRNAs opens up intriguing possibilities for the use of circulating miRNA patterns as biomarkers for obesity and cardiovascular diseases. The aim of this review is to provide an overview of the recent discoveries of the role played by miRNAs in the obese phenotype and associated comorbidities. Furthermore, we will discuss the role of exercise training on regulating miRNAs, indicating the mechanisms related to these alterations.
Collapse
Affiliation(s)
- Andre Silveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - João Gomes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda Roque
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
- *Tiago Fernandes,
| | - Edilamar Menezes de Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
- **Edilamar Menezes de Oliveira,
| |
Collapse
|
9
|
Li X, Yang Y, Wang Z, Jiang S, Meng Y, Song X, Zhao L, Zou L, Li M, Yu T. Targeting non-coding RNAs in unstable atherosclerotic plaques: Mechanism, regulation, possibilities, and limitations. Int J Biol Sci 2021; 17:3413-3427. [PMID: 34512156 PMCID: PMC8416736 DOI: 10.7150/ijbs.62506] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) caused by arteriosclerosis are the leading cause of death and disability worldwide. In the late stages of atherosclerosis, the atherosclerotic plaque gradually expands in the blood vessels, resulting in vascular stenosis. When the unstable plaque ruptures and falls off, it blocks the vessel causing vascular thrombosis, leading to strokes, myocardial infarctions, and a series of other serious diseases that endanger people's lives. Therefore, regulating plaque stability is the main means used to address the high mortality associated with CVDs. The progression of the atherosclerotic plaque is a complex integration of vascular cell apoptosis, lipid metabolism disorders, inflammatory cell infiltration, vascular smooth muscle cell migration, and neovascular infiltration. More recently, emerging evidence has demonstrated that non-coding RNAs (ncRNAs) play a significant role in regulating the pathophysiological process of atherosclerotic plaque formation by affecting the biological functions of the vasculature and its associated cells. The purpose of this paper is to comprehensively review the regulatory mechanisms involved in the susceptibility of atherosclerotic plaque rupture, discuss the limitations of current approaches to treat plaque instability, and highlight the potential clinical value of ncRNAs as novel diagnostic biomarkers and potential therapeutic strategies to improve plaque stability and reduce the risk of major cardiovascular events.
Collapse
Affiliation(s)
- Xiaoxin Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Yanyan Yang
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Liang Zhao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lu Zou
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Min Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Tao Yu
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
10
|
miR-149 Alleviates Ox-LDL-Induced Endothelial Cell Injury by Promoting Autophagy through Akt/mTOR Pathway. Cardiol Res Pract 2021; 2021:9963258. [PMID: 34484820 PMCID: PMC8416406 DOI: 10.1155/2021/9963258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/30/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background Atherosclerosis is a chronic process that takes place in the vascular wall and causes various cardiovascular diseases (CVDs). Micro-RNA-149 (miR-149) mediates many physiological and pathological processes, including atherosclerosis. However, it is unclear about the roles of miR-149 in endothelial injury. Here, we explored the protective effect and related mechanism of miR-149 in endothelial cells induced with oxidized low-density lipoprotein (ox-LDL). Methods Human endothelial cell lines (HUVECs) were exposed to ox-LDL to induce endothelial injury. Cell viability was determined by the CCK-8 assay. Autophagy was detected by immunofluorescence. RT-qPCR and western blot were carried out to determine the mRNA and protein expressions of Akt and mTOR. Results The miR-149 level in HUVECs was reduced by ox-LDL (100 μg/mL) incubation in a time-dependent manner. miR-149-mimic transfection markedly protected HUVECs from ox-LDL-induced injury, with increased cell viability and reduced caspase-3 activity. miR-149 mimics enhanced HUVEC autophagy, which was induced initially by ox-LDL. miR-149 mimics also markedly downregulated the expression of Akt, p-Akt, mTOR, and p-mTOR in ox-LDL-treated HUVECs. The miR-149-induced protection against HUVECs injury could be reversed by cotreatment with 3-methyladenine (3-MA, an autophagy inhibitor) or insulin (an activator of Akt/mTOR pathway). Conclusions miR-149 prevents ox-LDL-induced endothelial cell injury by enhancing autophagy via increasing Akt and mTOR expressions.
Collapse
|
11
|
Epigenetic modifications of the renin-angiotensin system in cardiometabolic diseases. Clin Sci (Lond) 2021; 135:127-142. [PMID: 33416084 DOI: 10.1042/cs20201287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Cardiometabolic diseases (CMDs) are among the most prevalent and the highest mortality diseases. Single disease etiology such as gene mutation, polymorphisms, or environmental exposure has failed to explain the origin of CMD. This can be evident in the discrepancies in disease susceptibility among individuals exposed to the same environmental insult or who acquire the same genetic variation. Epigenetics is the intertwining of genetic and environmental factors that results in diversity in the disease course, severity, and prognosis among individuals. Environmental exposures modify the epigenome and thus provide a link for translating environmental impact on changes in gene expression and precipitation to pathological conditions. Renin-angiotensin system (RAS) is comprising genes responsible for the regulation of cardiovascular, metabolic, and glycemic functions. Epigenetic modifications of RAS genes can lead to overactivity of the system, increased sympathetic activity and autonomic dysfunction ultimately contributing to the development of CMD. In this review, we describe the three common epigenetic modulations targeting RAS components and their impact on the susceptibility to cardiometabolic dysfunction. Additionally, we highlight the therapeutic efforts of targeting these epigenetic imprints to the RAS and its effects.
Collapse
|
12
|
An Insight into the microRNAs Associated with Arteriovenous and Cavernous Malformations of the Brain. Cells 2021; 10:cells10061373. [PMID: 34199498 PMCID: PMC8227573 DOI: 10.3390/cells10061373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Brain arteriovenous malformations (BAVMs) and cerebral cavernous malformations (CCMs) are rare developmental anomalies of the intracranial vasculature, with an irregular tendency to rupture, and as of yet incompletely deciphered pathophysiology. Because of their variety in location, morphology, and size, as well as unpredictable natural history, they represent a management challenge. MicroRNAs (miRNAs) are strands of non-coding RNA of around 20 nucleotides that are able to modulate the expression of target genes by binding completely or partially to their respective complementary sequences. Recent breakthroughs have been made on elucidating their contribution to BAVM and CCM occurrence, growth, and evolution; however, there are still countless gaps in our understanding of the mechanisms involved. Methods: We have searched the Medline (PubMed; PubMed Central) database for pertinent articles on miRNAs and their putative implications in BAVMs and CCMs. To this purpose, we employed various permutations of the terms and idioms: ‘arteriovenous malformation’, ‘AVM’, and ‘BAVM’, or ‘cavernous malformation’, ‘cavernoma’, and ‘cavernous angioma’ on the one hand; and ‘microRNA’, ‘miRNA’, and ‘miR’ on the other. Using cross-reference search; we then investigated additional articles concerning the individual miRNAs identified in other cerebral diseases. Results: Seven miRNAs were discovered to play a role in BAVMs, three of which were downregulated (miR-18a, miR-137, and miR-195*) and four upregulated (miR-7-5p, miR-199a-5p, miR-200b-3p, and let-7b-3p). Similarly, eight miRNAs were identified in CCM in humans and experimental animal models, two being upregulated (miR-27a and mmu-miR-3472a), and six downregulated (miR-125a, miR-361-5p, miR-370-3p, miR-181a-2-3p, miR-95-3p, and let-7b-3p). Conclusions: The following literature review endeavored to address the recent discoveries related to the various implications of miRNAs in the formation and growth of BAVMs and CCMs. Additionally, by presenting other cerebral pathologies correlated with these miRNAs, it aimed to emphasize the potential directions of upcoming research and biological therapies.
Collapse
|
13
|
Van Guilder GP, Preston CC, Munce TA, Faustino RS. Impacts of circulating microRNAs in exercise-induced vascular remodeling. Am J Physiol Heart Circ Physiol 2021; 320:H2401-H2415. [PMID: 33989080 DOI: 10.1152/ajpheart.00894.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cardiovascular adaptation underlies all athletic training modalities, with a variety of factors contributing to overall response during exercise-induced stimulation. In this regard the role of circulating biomarkers is a well-established and invaluable tool for monitoring cardiovascular function. Specifically, novel biomarkers such as circulating cell free DNA and RNA are now becoming attractive tools for monitoring cardiovascular function with the advent of next generation technologies that can provide unprecedented precision and resolution of these molecular signatures, paving the way for novel diagnostic and prognostic avenues to better understand physiological remodeling that occurs in trained versus untrained states. In particular, microRNAs are a species of regulatory RNAs with pleiotropic effects on multiple pathways in tissue-specific manners. Furthermore, the identification of cell free microRNAs within peripheral circulation represents a distal signaling mechanism that is just beginning to be explored via a diversity of molecular and bioinformatic approaches. This article provides an overview of the emerging field of sports/performance genomics with a focus on the role of microRNAs as novel functional diagnostic and prognostic tools, and discusses present knowledge in the context of athletic vascular remodeling. This review concludes with current advantages and limitations, touching upon future directions and implications for applying contemporary systems biology knowledge of exercise-induced physiology to better understand how disruption can lead to pathology.
Collapse
Affiliation(s)
- Gary P Van Guilder
- Vascular Protection Research Laboratory, Exercise & Sport Science Department, Western Colorado University, Gunnison, Colorado
| | - Claudia C Preston
- Genetics and Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Thayne A Munce
- Environmental Influences on Health & Disease Group, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
| | - Randolph S Faustino
- Genetics and Genomics Group, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
| |
Collapse
|
14
|
Sapp RM, Chesney CA, Springer CB, Laskowski MR, Singer DB, Eagan LE, Mascone SE, Evans WS, Prior SJ, Hagberg JM, Ranadive SM. Race-specific changes in endothelial inflammation and microRNA in response to an acute inflammatory stimulus. Am J Physiol Heart Circ Physiol 2021; 320:H2371-H2384. [PMID: 33961505 DOI: 10.1152/ajpheart.00991.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Both aberrant vascular reactivity to acute cardiovascular stress and epigenetic mechanisms such as microRNA (miR) may underlie the increased propensity for African Americans (AA) to develop cardiovascular disease. This study assessed racial differences in acute induced endothelial inflammation and related miRs. Cultured human umbilical vein endothelial cells (HUVECs) derived from AA and Caucasian Americans (CA) were exposed to influenza vaccine to determine changes in inflammatory markers, endothelial nitric oxide synthase (eNOS), and miR expression/release. Endothelial function [flow-mediated dilation (FMD)], circulating IL-6, and circulating miR were also measured in young, healthy AA and CA individuals before and after receiving the influenza vaccine. There were no significant racial differences in any parameters at baseline. The vaccine induced increases in IL-6 release (24%, P = 0.02) and ICAM-1 mRNA (40%, P = 0.03), as well as reduced eNOS mRNA (24%, P = 0.04) in AA HUVECs, but not in CA HUVECs (all P > 0.05). Intracellular levels of anti-inflammatory miR-221-3p and miR-222-3p increased specifically in CA HUVECs (72% and 53%, P = 0.04 and P = 0.06), whereas others did not change in either race. HUVEC secretion of several miRs decreased in both races, whereas the release of anti-inflammatory miR-150-5p was decreased only by AA cells (-30%, P = 0.03). In individuals of both races, circulating IL-6 increased approximately twofold 24 h after vaccination (both P < 0.01) and returned to baseline levels by 48 h, whereas FMD remained unchanged. Although macrovascular function was unaffected by acute inflammation in AA and CA individuals, AA endothelial cells exhibited increased susceptibility to acute inflammation and unique changes in related miR.NEW & NOTEWORTHY Used as an acute inflammatory stimulus, the influenza vaccine induced an inflammatory response and decreased eNOS gene expression in endothelial cells derived from African Americans, but not Caucasian Americans. Race-specific changes in intracellular expression and release of specific microRNAs also occurred and may contribute to an exaggerated inflammatory response in African Americans. In vivo, the vaccine caused similar systemic inflammation but had no effect on endothelial function or circulating microRNAs in individuals of either race.
Collapse
Affiliation(s)
- Ryan M Sapp
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Catalina A Chesney
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Catherine B Springer
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Matthew R Laskowski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland
| | - Daniel B Singer
- Department of Biology, University of Maryland, College Park, Maryland
| | - Lauren E Eagan
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Sara E Mascone
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - William S Evans
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Steven J Prior
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center, Baltimore, Maryland
| | - James M Hagberg
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| |
Collapse
|
15
|
Su X, Nie M, Zhang G, Wang B. MicroRNA in cardio-metabolic disorders. Clin Chim Acta 2021; 518:134-141. [PMID: 33823149 DOI: 10.1016/j.cca.2021.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/23/2022]
Abstract
Hyperlipidemia is correlated with several health problems that contain the combination of hypertension, obesity, and diabetes mellitus, which are grouped as metabolic syndrome. Though the lipid-lowering agents, such as statins, which aims to reduce serum low-density lipoprotein cholesterol (LDL-C) has been considered as one of the most effective therapeutics in treating hyperlipidemia and coronary artery diseases, the persistent high risk of atherosclerosis after intensive lipid-lowering therapy could not be simply explained by hyperlipidemia. Therefore, it is necessary to identify novel factors to manage treatment and to predict risk of cardio-metabolic events. Endeavor over the past several decades has demonstrated the important functions of microRNAs in modulating macrophage activation, lipid metabolism, and hyperlipidemia. In the present review, we summarized the recent findings which highlighted the contributions of microRNAs in regulating serum lipid metabolism. Furthermore, we also provided the potential mechanisms whereby microRNAs controlled lipid metabolism and the risk of cardio-metabolic disorders, which could help us to identify microRNAs as a promising therapeutic target for hyperlipidemia and its related cardiovascular diseases.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Meiling Nie
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Guoming Zhang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Bin Wang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
16
|
MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res 2020; 44:129-146. [DOI: 10.1038/s41440-020-00553-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
|
17
|
Kim H, Bae YU, Lee H, Kim H, Jeon JS, Noh H, Han DC, Byun DW, Kim SH, Park HK, Ryu S, Kwon SH. Effect of diabetes on exosomal miRNA profile in patients with obesity. BMJ Open Diabetes Res Care 2020; 8:8/1/e001403. [PMID: 32883688 PMCID: PMC7473624 DOI: 10.1136/bmjdrc-2020-001403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/01/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Obesity is a risk factor for type 2 diabetes mellitus (T2DM) and cardiovascular disease. T2DM increases the risk of cardiovascular-related death. We investigated changes in circulating exosomal microRNA (miRNA) profiles in patients with DM with obesity compared with patients without DM with obesity. RESEARCH DESIGN AND METHODS This prospective study involved 29 patients with obesity (patients without DM=16, patients with DM=13) and healthy volunteers (HVs) (n=18). We measured circulating levels of exosomal miRNAs by next-generation sequencing and compared miRNA levels across the three groups. RESULTS The expression levels of 25 miRNAs (upregulated=14, downregulated=11) differed between patients with obesity with DM and patients with obesity without DM. Compared with HV, patients with DM with obesity had 53 dysregulated miRNAs. Additionally, moving stepwise from HV to patients with obesity without DM to patients with obesity with DM, there was a consistent increase in expression levels of miR-23a-5p and miR-6087 and a consistent decrease in expressions levels of miR-6751-3p. CONCLUSIONS Our data show that the exosomal miRNAs is altered by dysregulated glucose metabolism in patients with obesity. This circulating exosomal miRNA signature in patients with obesity with or without DM is a potential biomarker and therapeutic target in these patients.
Collapse
Affiliation(s)
- Hyoshik Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Yun-Ui Bae
- Department of Clinical Endocrinology and Metabolism, Keimyung University School of Medicine, Daegu, Kyungsang buk do, The Republic of Korea
| | - Haekyung Lee
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Hyoungnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Jin Seok Jeon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Hyunjin Noh
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Dong Cheol Han
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Dong Won Byun
- Division of Endocrinology and Metabolism, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Sang Hyun Kim
- Department of Surgery, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Hyeong Kyu Park
- Division of Endocrinology and Metabolism, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Asan, Chungcheongnam-do, The Republic of Korea
| | - Soon Hyo Kwon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, The Republic of Korea
| |
Collapse
|
18
|
Florian IA, Timiș TL, Ungureanu G, Florian IS, Bălașa A, Berindan-Neagoe I. Deciphering the vascular labyrinth: role of microRNAs and candidate gene SNPs in brain AVM development - literature review. Neurol Res 2020; 42:1043-1054. [PMID: 32723034 DOI: 10.1080/01616412.2020.1796380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Brain arteriovenous malformations (AVMs) are a relatively infrequent vascular pathology of unknown etiology that, despite their rarity, cause the highest number of hemorrhagic strokes under the age of 30 years. They pose a challenge to all forms of treatment due to their variable morphology, location, size, and, last but not least, evolving nature. MicroRNAs (miRNAs) are non-coding RNA strands that may suppress the expression of target genes by binding completely or partially to their complementary sequences. Single nucleotide polymorphisms (SNPs), as the name implies, are variations in a single nucleotide in the DNA, usually found in the non-coding segments. Although the majority of SNPs are harmless, some located in the proximity of candidate genes may result in altered expression or function of these genes and cause diseases or affect how different pathologies react to treatment. The roles miRNAs and certain SNPs play in the development and growth of AVMs are currently uncertain, yet progress in deciphering the minutiae of this pathology is already visible. Methods and Results: We performed an electronic Medline (PubMed, PubMed Central) and Google Academic exploration using permutations of the terms: "arteriovenous malformations," "single nucleotide polymorphisms," "microRNA," "non-coding RNA," and "genetic mutations." The findings were then divided into two categories, namely the miRNAs and the candidate gene SNPs associated with AVMs respectively. 6 miRNAs and 12 candidate gene SNPs were identified and discussed. Conclusions: The following literature review focuses on the discoveries made in ascertaining the different implications of miRNAs and candidate gene SNPs in the formation and evolution of brain AVMs, as well as highlighting the possible directions of future research and biological treatment. Abbreviations: ACVRL1/ALK1: activin receptor-like kinase 1; Akt: protein kinase B; ANGPTL4: angiopoietin-like 4; ANRIL: antisense noncoding RNA in the INK4 locus; AVM: arteriovenous malformation; AVM-BEC: arteriovenous malformation brain endothelial cell; BRCA1: breast cancer type 1 susceptibility protein; CCS: case-control study; CDKN2A/B: cyclin-dependent kinase inhibitor 2A/B; CLTC: clathrin heavy chain; DNA: deoxyribonucleic acid; ERK: extracellular signal-regulated kinase; GPR124: probable G-protein coupled receptor 124; GWAS: genome-wide association study; HHT: hereditary hemorrhagic telangiectasia; HIF1A: hypoxia-inducible factor 1A; IA: intracranial aneurysm; ICH: intracranial hemorrhage; Id-1: inhibitor of DNA-binding protein A; IL-17: interleukin 17; MAP4K3: mitogen-activated protein kinase kinase kinase kinase 3; miRNA: microRNA; MMP: matrix metalloproteinase; NFkB: nuclear factor kappa-light-chain of activated B cells; NOTCH: neurogenic locus notch homolog; p38MAPK: p38 mitogen-activated protein kinase; PI3K: phosphoinositide 3-kinase; RBBP8: retinoblastoma-binding protein 8; RNA: ribonucleic acid; SNAI1: Snail Family Transcriptional Repressor 1; SNP: single nucleotide polymorphism; SOX-17: SRY-related HMG-box; TGF-β: transformation growth factor β; TGFR: transformation growth factor receptor; TIMP-4, tissue inhibitor of metalloproteinase 4; TSP-1: thrombospondin-1; UTR: untranslated region; VEGF: Vascular Endothelial Growth Factor; VSMC: vascular smooth muscle cell; Wnt1: Wnt family member 1.
Collapse
Affiliation(s)
- Ioan Alexandru Florian
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital , Cluj-Napoca, Romania.,Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Teodora Larisa Timiș
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Gheorghe Ungureanu
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital , Cluj-Napoca, Romania.,Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Ioan Stefan Florian
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital , Cluj-Napoca, Romania.,Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Adrian Bălașa
- Clinic of Neurosurgery, Tîrgu Mureș County Clinical Emergency Hospital , Tîrgu Mureș, Romania.,Department of Neurosurgery, Tîrgu Mureș University of Medicine, Pharmacy, Science and Technology , Tîrgu Mureș, Romania
| | - Ioana Berindan-Neagoe
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania.,Functional Genomics and Experimental Pathology Department, The Oncology Institute "Prof. Dr. Ion Chiricuta" , Cluj-Napoca, Romania
| |
Collapse
|
19
|
Ni YQ, Lin X, Zhan JK, Liu YS. Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging. Aging Dis 2020; 11:164-178. [PMID: 32010490 PMCID: PMC6961769 DOI: 10.14336/ad.2019.0402] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is a progressive loss of physiological integrity and functionality process which increases susceptibility and mortality to diseases. Vascular aging is a specific type of organic aging. The structure and function changes of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cause of vascular aging, which could influence the threshold, process, and severity of vascular related diseases. Accumulating evidences demonstrate that exosomes serve as novel intercellular information communicator between cell to cell by delivering variety biologically active cargos, especially exosomal non-coding RNAs (ncRNAs), which are associated with most of aging-related biological and functional disorders. In this review, we will summerize the emerging roles and mechanisms of exosomal ncRNAs in vascular aging and vascular aging related diseases, focusing on the role of exosomal miRNAs and lncRNAs in regulating the functions of ECs and VSMCs. Moreover, the relationship between the ECs and VSMCs linked by exosomes, the potential diagnostic and therapeutic application of exosomes in vascular aging and the clinical evaluation and treatment of vascular aging and vascular aging related diseases will also be discussed.
Collapse
Affiliation(s)
| | | | - Jun-Kun Zhan
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
20
|
Sapp RM, Shill DD, Dash C, Hicks JC, Adams‐Campbell LL, Hagberg JM. Circulating microRNAs and endothelial cell migration rate are associated with metabolic syndrome and fitness level in postmenopausal African American women. Physiol Rep 2019; 7:e14173. [PMID: 31347282 PMCID: PMC6658676 DOI: 10.14814/phy2.14173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023] Open
Abstract
Postmenopausal African American women are at elevated risk for metabolic syndrome (MetS), which predisposes them to cardiovascular disease and other chronic diseases. Circulating microRNAs (ci-miR) are potential mediators of cardiometabolic diseases also impacted by cardiorespiratory fitness (CRF) level. Using real-time quantitative PCR, we compared the expression of vascular-related ci-miRs (miR-21-5p, miR-92a-3p, miR-126-5p, miR-146a-5p, miR-150-5p, miR-221-3p) in sedentary, overweight/obese, postmenopausal African American women based on 1) presence (n = 31) or absence (n = 42) of MetS and 2) CRF level (VO2peak ) (Very Low < 18.0 mL·kg-1 ·min-1 [n = 31], Low = 18.0-22.0 mL·kg-1 ·min-1 [n = 24], or Moderate >22.0 mL·kg-1 ·min-1 [n = 18]). Endothelial migration rate in response to subjects' serum was assessed to determine the effect of circulating blood-borne factors on endothelial repair. Ci-miR-21-5p was the only ci-miR that differed between women with MetS compared to those without MetS (0.93 ± 0.43 vs. 1.28 ± 0.71, P = 0.03). There were borderline significant differences (P = 0.06-0.09) in ci-miR-21-5p, 126-5p, and 221-3p levels between the CRF groups, and these three ci-miRs correlated with VO2peak (r = -0.25 to -0.28, P < 0.05). Endothelial migration rate was impaired in response to serum from women with MetS compared to those without after 16-24 h. Serum from women with Moderate CRF induced greater endothelial migration than the Very Low and Low CRF groups after 4 and 16-24 h, that was also not different from a young, healthy reference group. Ci-miR-21-5p is lower in postmenopausal African American women with MetS, while ci-miRs-21-5p, 126-5p, and 221-3p are associated with CRF. Factors which impair endothelial cell migration rate are present in serum of women with MetS, though having Moderate CRF may be protective.
Collapse
Affiliation(s)
- Ryan M. Sapp
- Department of Kinesiology, School of Public HealthUniversity of MarylandCollege ParkMaryland
| | - Daniel D. Shill
- Department of Kinesiology, School of Public HealthUniversity of MarylandCollege ParkMaryland
| | - Chiranjeev Dash
- Georgetown Lombardi Comprehensive Cancer Center, Office of Minority Health & Health Disparities ResearchWashingtonDistrict of Columbia
| | - Jennifer C. Hicks
- Georgetown Lombardi Comprehensive Cancer Center, Office of Minority Health & Health Disparities ResearchWashingtonDistrict of Columbia
| | - Lucile L. Adams‐Campbell
- Georgetown Lombardi Comprehensive Cancer Center, Office of Minority Health & Health Disparities ResearchWashingtonDistrict of Columbia
| | - James M. Hagberg
- Department of Kinesiology, School of Public HealthUniversity of MarylandCollege ParkMaryland
| |
Collapse
|
21
|
Zhang L, Meng X, Zhu XW, Yang DC, Chen R, Jiang Y, Xu T. Long non-coding RNAs in Oral squamous cell carcinoma: biologic function, mechanisms and clinical implications. Mol Cancer 2019; 18:102. [PMID: 31133028 PMCID: PMC6535863 DOI: 10.1186/s12943-019-1021-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/22/2019] [Indexed: 01/17/2023] Open
Abstract
There is growing evidence that regions of the genome that cannot encode proteins play an important role in diseases. These regions are usually transcribed into long non-coding RNAs (lncRNAs). LncRNAs, little or no coding potential, are defined as capped transcripts longer than 200 nucleotides. New sequencing technologies have shown that a large number of aberrantly expressed lncRNAs are associated with multiple cancer types and indicated they have emerged as an important class of pervasive genes during the development and progression of cancer. However, the underlying mechanism in cancer is still unknown. Therefore, it is necessary to elucidate the lncRNA function. Notably, many lncRNAs dysregulation are associated with Oral squamous cell carcinoma (OSCC) and affect various aspects of cellular homeostasis, including proliferation, survival, migration or genomic stability. This review expounds the up- or down-regulation of lncRNAs in OSCC and the molecular mechanisms by which lncRNAs perform their function in the malignant cell. Finally, the potential of lncRNAs as non-invasive biomarkers for OSCC diagnosis are also described. LncRNAs hold promise as prospective novel therapeutic targets, but more research is needed to gain a better understanding of their biologic function.
Collapse
Affiliation(s)
- Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.,Department of Periodontology, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Xiang Meng
- School of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Xin-Wei Zhu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.,Outpatient Department of Binhu District, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Deng-Cheng Yang
- School of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ran Chen
- School of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Yong Jiang
- Department of Stomatology, The Fourth Affiliated Hospital of Anhui Medical University, 372 Tunxi Road, Hefei, 230000, Anhui Province, China.
| | - Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China. .,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
22
|
Fernández-Hernando C, Suárez Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr Opin Hematol 2019; 25:227-236. [PMID: 29547400 DOI: 10.1097/moh.0000000000000424] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Since the first discovery of microRNAs (miRNAs) in 1993, the involvement of miRNAs in different aspects of vascular disease has emerged as an important research field. In this review, we summarize the fundamental roles of miRNAs in controlling endothelial cell functions and their implication with several aspects of vascular dysfunction. RECENT FINDINGS MiRNAs have been found to be critical modulators of endothelial homeostasis. The dysregulation of miRNAs has been linked to endothelial dysfunction and the development and progression of vascular disease which and open new opportunities of using miRNAs as potential therapeutic targets for vascular disease. SUMMARY Further determination of miRNA regulatory circuits and defining miRNAs-specific target genes remains key to future miRNA-based therapeutic applications toward vascular disease prevention. Many new and unanticipated roles of miRNAs in the control of endothelial functions will assist clinicians and researchers in developing potential therapeutic applications.
Collapse
Affiliation(s)
- Carlos Fernández-Hernando
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
23
|
miR-449a induces EndMT, promotes the development of atherosclerosis by targeting the interaction between AdipoR2 and E-cadherin in Lipid Rafts. Biomed Pharmacother 2019; 109:2293-2304. [DOI: 10.1016/j.biopha.2018.11.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 11/25/2018] [Indexed: 02/06/2023] Open
|
24
|
Liu ZQ, Du JJ, Ren JJ, Zhang ZY, Guo XB, Yan YE, Jia XT, Gu NB, Di ZL, Li SZ. miR-183-96-182 clusters alleviated ox-LDL-induced vascular endothelial cell apoptosis in vitro by targeting FOXO1. RSC Adv 2018; 8:35031-35041. [PMID: 35547044 PMCID: PMC9087689 DOI: 10.1039/c8ra06866f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate the role of FOXO1 and miR-183-96-182 clusters in ox-LDL induced endothelial cell apoptosis. METHODS FOXO1 overexpression (OE) and knockdown (KD) as well as AKT1 OE in human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs) were achieved by lentiviral transduction. Upregulation of miR-183-5p, miR-182-5p or miR-96-5p was mimicked by agomir treatment. FOXO1 gene transcription was monitored by FOXO1 promotor reporter assay. Cell apoptosis in culture was monitored by TiterTACS in situ detection. Regulation of FOXO1 gene expression by an miRNA targeting mechanism was monitored by AGO2-RNA immunoprecipitation assay. RESULTS FOXO1 mRNA and protein expression levels in ox-LDL treated HUVECs or HAECs were significantly upregulated due to transcriptional and miRNA targeting mechanisms. MiR-183-5p, miR-182-5p and miR-96-5p expression levels in HUVECs or HAECs were significantly reduced by ox-LDL treatment, the overexpression of which by agomir treatment partially reduced the FOXO1 mRNA/protein expression levels and cell apoptosis which was upregulated by ox-LDL treatment. FOXO1 overexpression antagonized the effect of the agomir treatment indicated above. MiR-183-5p, miR-182-5p and miR-96-5p agomir treatment partially rescued the FOXO1 pSer256/total FOXO1 protein ratio and the AKT1 pSer473 level that were reduced by ox-LDL treatment in the HUVECs or HAECs. AKT1 overexpression significantly reduced FOXO1 protein expression, increased miR-182-5p and miR-183-5p expression, and partially alleviated ox-LDL induced HUVEC or HAEC apoptosis in an miR-183-5p and miR-182-5p-dependent manner. CONCLUSION miR-183-96-182 clusters could partially alleviate ox-LDL-induced apoptosis in HUVECs or HAECs by targeting FOXO1.
Collapse
Affiliation(s)
- Zhi-Qin Liu
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University, School of Medicine Xi'an 710003 Shaanxi China
| | - Jing-Jing Du
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University, School of Medicine Xi'an 710003 Shaanxi China
| | - Jing-Jing Ren
- Department of Hematology, Xi'an Central Hospital, Xi'an Jiaotong University, School of Medicine Xi'an 710003 Shaanxi China
| | - Zhi-Yong Zhang
- Department of Neurology, China-Japan Friendship Hospital Beijing 100029 China
| | - Xiao-Bo Guo
- Department of Hematology, Xi'an Central Hospital, Xi'an Jiaotong University, School of Medicine Xi'an 710003 Shaanxi China
| | - Yu-E Yan
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University, School of Medicine Xi'an 710003 Shaanxi China
| | - Xiao-Tao Jia
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University, School of Medicine Xi'an 710003 Shaanxi China
| | - Nai-Bing Gu
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University, School of Medicine Xi'an 710003 Shaanxi China
| | - Zheng-Li Di
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University, School of Medicine Xi'an 710003 Shaanxi China
| | - San-Zhong Li
- Department of Neurosurgery, Xi-jing Hospital Fourth Military Medical University No. 127, Changle Xi Road Xi'an 710032 Shaanxi China +86-185-9140-9510
| |
Collapse
|
25
|
MiR-323b-5p acts as a novel diagnostic biomarker for critical limb ischemia in type 2 diabetic patients. Sci Rep 2018; 8:15080. [PMID: 30305681 PMCID: PMC6179988 DOI: 10.1038/s41598-018-33310-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major contributor to peripheral artery disease (PAD), especially in cases that advance to critical limb ischemia (CLI). Accumulating evidence indicates that miRNAs play an important role in the development of PAD and T2DM. Due to the limited value of current diagnostic methods for CLI in T2DM patients, we compared the miRNA expression profiles of Chinese T2DM patients with or without CLI to find out whether distinctive miRNAs could serve as potential diagnostic biomarkers. We statistically identified 7 miRNAs (hsa-miR-200b-3p, hsa-miR-2115-3p, hsa-miR-431-5p, hsa-miR-486-5p, hsa-miR-210-3p, hsa-miR-1264, hsa-miR-323b-5p) which were up-regulated in the CLI group, whereas other 4 miRNAs (hsa-miR-5579-3p, hsa-miR-665, hsa-miR-4285, hsa-miR-500a-3p) were down-regulated. Our validation test suggested a relatively high diagnostic accuracy of serum hsa-miR-323b-5p levels for the detection of CLI in T2DM patients, with a sensitivity of 62.67% and a specificity of 80.65%. The area under the curve (AUC) for miR-323b-5p + confounding risk factors was 0.94 (95% CI: 0.884-0.994, P < 0.001), which was higher than that for miR-323b-5p. Taken together, our results indicate that circulating hsa-miR-323b-5p could be a promising serum biomarker for the diagnosis of critical limb ischemia in type 2 diabetic patients.
Collapse
|
26
|
Wang L, Xia JW, Ke ZP, Zhang BH. Blockade of NEAT1 represses inflammation response and lipid uptake via modulating miR-342-3p in human macrophages THP-1 cells. J Cell Physiol 2018; 234:5319-5326. [PMID: 30259979 DOI: 10.1002/jcp.27340] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
Atherosclerosis has been recognized as a chronic inflammation process induced by lipid of the vessel wall. Oxidized low-density lipoprotein (ox-LDL) can drive atherosclerosis progression involving macrophages. Recently, long noncoding RNAs (lncRNAs) have been reported to play critical roles in atherosclerosis development. In our current study, we focused on the biological roles of lncRNA NEAT1 in atherosclerosis progress. Here, we found that ox-LDL was able to trigger human macrophages THP-1 cells, a human monocytic cell line, apoptosis in a dose-dependent and time-dependent course. In addition, we observed that NEAT1 was significantly increased in THP-1 cells incubated with ox-LDL and meanwhile miR-342-3p was greatly decreased. Then, NEAT1 was silenced by transfection of small interfering RNA (siRNA) of NEAT1 into THP-1 cells. As exhibited, CD36, oil-red staining levels, total cholesterol (TC), total cholesterol (TG) levels and THP-1 cell apoptosis were obviously repressed by knockdown of NEAT1. Furthermore, inhibition of NEAT1 contributed to the repression of inflammation in vitro. Interleukin 6 (IL-6), IL-1β, cyclooxygenase-2 (COX-2) and tumour necrosis factor-alpha (TNF-α) protein levels were remarkably depressed by NEAT1 siRNA in THP-1 cells. By using bioinformatics analysis, miR-342-3p was predicted as a downstream target of NEAT1 and the correlation between them was confirmed in our study. Moreover, overexpression of miR-342-3p could also greatly suppress inflammation response and lipid uptake in THP-1 cells. Knockdown of NEAT1 and miR-342-3p mimics inhibited lipid uptake in THP-1 cells. In conclusion, we implied that blockade of NEAT1 repressed inflammation response through modulating miR-342-3p in human macrophages THP-1 cells and NEAT1 may offer a promising strategy to treat atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, China
| | - Jing-Wen Xia
- Department of Cardiology, Shanghai Songjiang District Center Hospital, Shanghai, China
| | - Zun-Ping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Bing-Hong Zhang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
27
|
Aryal B, Suárez Y. Non-coding RNA regulation of endothelial and macrophage functions during atherosclerosis. Vascul Pharmacol 2018; 114:64-75. [PMID: 29551552 DOI: 10.1016/j.vph.2018.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/12/2018] [Accepted: 03/01/2018] [Indexed: 12/16/2022]
Abstract
The endothelial lining can be viewed as the first line of defense against risk factors of vascular disease. Endothelial dysfunction is regarded as an initial event for atherogenesis since defects in vascular integrity and homeostasis are responsible for lipid infiltration and recruitment of monocytes into the vessel wall. Monocytes-turned-macrophages, which possess astounding inflammatory plasticity, perpetuate chronic inflammation and growth of atherosclerotic plaques and, are therefore central for the pathogenesis of atherosclerosis. Because endothelial cells and macrophages are key players during atherogenesis, it is crucial to understand the regulation of their functions in order to develop strategies to intervene disease progression. Interestingly, non-coding RNAs (ncRNAs), broad class of RNA molecules that do not code for proteins, are capable of reprogramming multiple cell functions and, thus, can be used as target agents. MicroRNAs are small ncRNAs whose roles in the regulation of vascular functions and development of atherosclerosis through post-transcriptional manipulation of gene expression have been widely explored. Recently, other ncRNAs including long noncoding RNAs (lncRNAs) have also emerged as potential regulators of these functions. However, given their poor-genetic conservation between species, much work will be needed to elucidate the specific role of lncRNAs in vascular biology. This review aims to provide a comprehensive perspective of ncRNA, mostly focusing in lncRNAs, mechanism of action and relevance in regulating lipid metabolism-independent endothelial and macrophages functions in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Binod Aryal
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yajaira Suárez
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA..
| |
Collapse
|
28
|
Epigenetic Regulation of Vascular Aging and Age-Related Vascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:55-75. [PMID: 30232752 DOI: 10.1007/978-981-13-1117-8_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vascular aging refers to the structural and functional defects that occur in the aorta during the aging process and is characterized by increased vascular cell senescence, vascular dyshomeostasis, and vascular remodeling. Vascular aging is a major risk factor for vascular diseases. However, the current understanding of the biological process of vascular aging and age-related diseases is insufficient. Epigenetic regulation can influence gene expression independently of the gene sequence and mainly includes DNA methylation, histone modifications, and RNA-based gene regulation. Epigenetic regulation plays important roles in many physiological and pathophysiological processes and may explain some gaps in our knowledge regarding the interaction between genes and diseases. In this review, we summarize recent advances in the understanding of the epigenetic regulation of vascular aging and age-related diseases in terms of vascular cell senescence, vascular dyshomeostasis, and vascular remodeling. Moreover, the possibility of targeting epigenetic regulation to delay vascular aging and treat age-related vascular diseases is also discussed.
Collapse
|
29
|
Barutta F, Bellini S, Mastrocola R, Bruno G, Gruden G. MicroRNA and Microvascular Complications of Diabetes. Int J Endocrinol 2018; 2018:6890501. [PMID: 29707000 PMCID: PMC5863305 DOI: 10.1155/2018/6890501] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
In the last decade, miRNAs have received substantial attention as potential players of diabetes microvascular complications, affecting the kidney, the retina, and the peripheral neurons. Compelling evidence indicates that abnormally expressed miRNAs have pivotal roles in key pathogenic processes of microvascular complications, such as fibrosis, apoptosis, inflammation, and angiogenesis. Moreover, clinical research into innovative both diagnostic and prognostic tools suggests circulating miRNAs as possible novel noninvasive markers of diabetes microvascular complications. In this review, we summarize current knowledge and understanding of the role of miRNAs in the injury to the microvascular bed in diabetes and discuss the potential of miRNAs as clinical biomarkers of diabetes microvascular complications.
Collapse
Affiliation(s)
- F. Barutta
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| | - S. Bellini
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| | - R. Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - G. Bruno
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| | - G. Gruden
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
30
|
Hu J, Li P, Song Y, Ge YX, Meng XM, Huang C, Li J, Xu T. Progress and prospects of circular RNAs in Hepatocellular carcinoma: Novel insights into their function. J Cell Physiol 2017; 233:4408-4422. [PMID: 28833094 DOI: 10.1002/jcp.26154] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most predominant subjects of liver malignancies, which arouses global concern in the recent years. Advanced studies have found that Circular RNAs (circRNAs) are differentially expressed in HCC, with its regulatory capacity in HCC pathogenesis and metastasis. However, the underlying mechanism remains largely unknown. In this review, we summarized the functions and mechanisms of those aberrantly expressed circRNAs in HCC tissues. We hope to enlighten more comprehensive studies on the detailed mechanisms of circRNAs and explore their potential values in clinic applications. It revealed that hsa_circ_0004018 can be used as a potential biomarker in HCC diagnosis, with its superior sensitivity to alpha-fetoprotein (AFP). Notably, the correlation of circRNA abundance in the proliferation of liver regeneration (LR) has recently been clarified and different circRNA profiles served as candidates for nonalcoholic steatohepatitis (NASH) diagnosis also be discussed. Therefore, the improved understanding of circRNAs in HCC pathogenesis and metastasis proposed a novel basis for the early diagnosis in HCC patients, which provides a useful resource to explore the pathogenesis of HCC.
Collapse
Affiliation(s)
- Ji Hu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Peng Li
- Department of Medical, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Song
- Department of Pain treatment, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yun-Xuan Ge
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
31
|
Huang J, Song J, Qu M, Wang Y, An Q, Song Y, Yan W, Wang B, Wang X, Zhang S, Chen X, Zhao B, Liu P, Xu T, Zhang Z, Greenberg DA, Wang Y, Gao P, Zhu W, Yang GY. MicroRNA-137 and microRNA-195* inhibit vasculogenesis in brain arteriovenous malformations. Ann Neurol 2017; 82:371-384. [PMID: 28802071 DOI: 10.1002/ana.25015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 08/06/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Brain arteriovenous malformations (AVMs) are the most common cause of nontraumatic intracerebral hemorrhage in young adults. The genesis of brain AVM remains enigmatic. We investigated microRNA (miRNA) expression and its contribution to the pathogenesis of brain AVMs. METHODS We used a large-scale miRNA analysis of 16 samples including AVMs, hemangioblastoma, and controls to identify a distinct AVM miRNA signature. AVM smooth muscle cells (AVMSMCs) were isolated and identified by flow cytometry and immunohistochemistry, and candidate miRNAs were then tested in these cells. Migration, tube formation, and CCK-8-induced proliferation assays were used to test the effect of the miRNAs on phenotypic properties of AVMSMCs. A quantitative proteomics approach was used to identify protein expression changes in AVMSMCs treated with miRNA mimics. RESULTS A distinct AVM miRNA signature comprising a large portion of lowly expressed miRNAs was identified. Among these miRNAs, miR-137 and miR-195* levels were significantly decreased in AVMs and constituent AVMSMCs. Experimentally elevating the level of these microRNAs inhibited AVMSMC migration, tube formation, and survival in vitro and the formation of vascular rings in vivo. Proteomics showed the protein expression signature of AVMSMCs and identified downstream proteins regulated by miR-137 and miR-195* that were key signaling proteins involved in vessel development. INTERPRETATION Our results indicate that miR-137 and miR-195* act as vasculogenic suppressors in AVMs by altering phenotypic properties of AVMSMCs, and that the absence of miR-137 and miR-195* expression leads to abnormal vasculogenesis. Ann Neurol 2017;82:371-384.
Collapse
Affiliation(s)
- Jun Huang
- Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianping Song
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Meijie Qu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingzhu An
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Song
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Yan
- Department of Biostatistics, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bingshun Wang
- Institute of Systemic Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojin Wang
- Institute of Systemic Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Song Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xi Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Bing Zhao
- Emergency Department, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tongyi Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pingjin Gao
- Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Rujijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Wu Z, He Y, Li D, Fang X, Shang T, Zhang H, Zheng X. Long noncoding RNA MEG3 suppressed endothelial cell proliferation and migration through regulating miR-21. Am J Transl Res 2017; 9:3326-3335. [PMID: 28804550 PMCID: PMC5553882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/10/2017] [Indexed: 06/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) act critical roles in many biological processes, including cell proliferation, apoptosis, development, invasion and migration. LncRNA maternally expressed gene 3 (MEG3) is found to be downregulated in several tumors; however, its role in the atherosclerosis is still unknown. In the present study, we demonstrated that MEG3 expression level was downregulated in the coronary artery disease (CAD) tissues compared to in the control tissues. We also showed that TNF-α enhanced EC cell proliferation. In addition, the expression of MEG3 was increased in EC after treated with TNF-α. Overexpression of MEG3 suppressed EC cell proliferation and inhibited the expression of cyclin D1, ki-67 and PCNA. Elevated expression of MEG3 suppressed the type I collagen, type V collagen and proteoglycan expression. In addition, we showed that elevated expression of MEG3 suppressed the miR-21 expression in the EC and promoted the expression of RhoB and PTEN, which were the direct target genes of miR-21. We demonstrated that miR-21 expression level was upregulated in the CAD tissues compared to in the control tissues. Moreover, miR-21 expression was reversely correlated with MEG3 expression in the CAD tissues. Overexpression of MEG3 suppressed EC cell proliferation and type I collagen, type V collagen and proteoglycan expression through inhibiting miR-21 expression. These results suggested that MEG3 played a critical role in regulating EC proliferation and type I collagen, type V collagen and proteoglycan expression partly through suppressing miR-21 expression.
Collapse
Affiliation(s)
- Ziheng Wu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, Zhejiang, People’s Republic of China
| | - Yangyan He
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, Zhejiang, People’s Republic of China
| | - Donglin Li
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, Zhejiang, People’s Republic of China
| | - Xin Fang
- Department of Vascular Surgery, Hangzhou First People’s HospitalHangzhou 310000, People’s Republic of China
| | - Tao Shang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, Zhejiang, People’s Republic of China
| | - Hongkun Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, Zhejiang, People’s Republic of China
| | - Xiangtao Zheng
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, People’s Republic of China
| |
Collapse
|
33
|
Njock MS, Fish JE. Endothelial miRNAs as Cellular Messengers in Cardiometabolic Diseases. Trends Endocrinol Metab 2017; 28:237-246. [PMID: 27989505 DOI: 10.1016/j.tem.2016.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023]
Abstract
Metabolic syndrome is a clustering of risk factors that increases susceptibility to serious cardiometabolic complications, including type 2 diabetes (T2D) and myocardial infarction. Understanding the underlying mechanisms will advance the development of diagnostic and therapeutic approaches. A prominent feature of cardiometabolic diseases is endothelial dysfunction. Endothelial cell (EC) homeostasis and response to pathological stimuli are controlled by gene regulatory networks in which miRNAs play a critical role. Recently, miRNAs have been implicated as cell-cell messengers that can influence cellular function. This review investigates the known and potential roles for miRNA-based cell-cell communication in the control of cardiovascular health and explores the value of identifying miRNA biomarkers and developing therapeutics that harness or antagonize miRNA-based communication.
Collapse
Affiliation(s)
- Makon-Sébastien Njock
- Laboratory of Molecular Angiogenesis, GIGA-R, University of Liège, Liège, Belgium; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada.
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada.
| |
Collapse
|
34
|
Li Y, Yang C, Zhang L, Yang P. MicroRNA-210 induces endothelial cell apoptosis by directly targeting PDK1 in the setting of atherosclerosis. Cell Mol Biol Lett 2017; 22:3. [PMID: 28536634 PMCID: PMC5415835 DOI: 10.1186/s11658-017-0033-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/12/2017] [Indexed: 12/18/2022] Open
Abstract
Background Atherosclerosis is a chronically inflammatory disease and one of the leading causes of deaths worldwide. Endothelial cell apoptosis plays a crucial role in its development. Several microRNAs (miRNAs) are reportedly involved in atherosclerotic plaque formation, including miRNA-210 (miR-210). However, the underlying mechanism of its role in endothelial cell apoptosis during atherosclerosis is still largely unknown. Methods A mouse model with atherosclerosis induced by a high-fat diet (HFD) was built in ApoE (-/-) mice. The levels of endothelial cell apoptosis were determined via flow cytometry. The expressions of miR-210 and PDK1 in purified CD31+ endothelial cells from mouse aorta were measured via RT-qPCR and western blot. Binding between miR-210 and the 3′-untranslated region (UTR) of PDK1 mRNA was predicted using bioinformatics analyses and confirmed with a dual luciferase reporter assay. The effects of miR-210 were further analyzed in an in vitro model using human aortic endothelial cells (HAECs) treated with oxidized low-density lipoprotein (ox-LDL). Results We found that the HFD mice developed atherosclerosis in 12 weeks and had a significantly higher percentage of endothelial cell apoptosis. The upregulated level of miR-210 in the HFD mice and HAECs inversely correlated with the level of PDK1. Inhibiting miR-210 expression significantly reduced HAEC apoptosis, as evidenced by the results of the MTT and flow cytometry experiments. Further analysis identified PDK1 as the target of miR-210 and showed that PDK1 overexpression reversed the pro-apoptotic effect of miR-210 through mediation of the P13K/Akt/mTOR pathways. Conclusion Our study suggests a novel role for miR-210 in the progression of atherosclerosis through the regulation of endothelial apoptosis. This indicates that miR-210 might have potential in treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ying Li
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, China.,Department of Neonatology, The First Hospital of Jilin University, 130021 Changchun, China
| | - Chunyan Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, China
| | - Lili Zhang
- Department of Ultrasonography, Eastern Division of First Hospital of Jilin University, 130021 Changchun, China
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, China
| |
Collapse
|
35
|
Wang D, Liu M, Gu S, Zhou Y, Li S. Microtopography Attenuates Endothelial Cell Proliferation by Regulating MicroRNAs. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jbnb.2017.83013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Pan Q, Liao X, Liu H, Wang Y, Chen Y, Zhao B, Lazartigues E, Yang Y, Ma X. MicroRNA-125a-5p alleviates the deleterious effects of ox-LDL on multiple functions of human brain microvessel endothelial cells. Am J Physiol Cell Physiol 2016; 312:C119-C130. [PMID: 27903586 DOI: 10.1152/ajpcell.00296.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 01/23/2023]
Abstract
MicroRNA-125a-5p (miR-125a-5p) could participate in the pathogenesis of vascular diseases. In this study, we investigated the role of miR-125a-5p in oxidized low-density lipoprotein (ox-LDL)-induced functional changes in human brain microvessel endothelial cells (HBMEC). The reactive oxygen species (ROS) production, nitric oxide (NO) generation, senescence, apoptosis, and functions of HBMEC were analyzed. For mechanism study, the epidermal growth factor receptor (EGFR)/extracellular signal-regulated protein kinase (ERK)/p38 mitogen-activated protein kinase (p38 MAPK) pathway and phosphatidylinositol-3-kinase (PI3K)/serine/threonine kinase (Akt)/endothelial nitric oxide synthase (eNOS) pathway were analyzed. Results showed the following: 1) Expression of miR-125a-5p was reduced in ox-LDL-treated HBMEC. 2) Overexpression of miR-125a-5p protected HBMEC from ox-LDL-induced apoptosis, senescence, ROS production, and NO reduction. 3) Overexpression of miR-125a-5p increased HBMEC proliferation, migration, and tube formation, while decreasing HBMEC adhesion to leukocytes, as well as counteracting the effects of ox-LDL on those functions. 4) The levels of EGFR/ERK/p38 MAPK pathway, PI3K/Akt/eNOS pathway, cleaved caspase-3, and adherent molecular ICAM-1 and VCAM-1 were associated with the effects of ox-LDL on these HBMEC functions. In conclusion, miR-125a-5p could counteract the effects of ox-LDL on various HBMEC functions via regulating the EGFR/ERK/p38 MAPK and PI3K/Akt/eNOS pathways and cleaved caspase-3, ICAM-1, and VCAM-1 expression.
Collapse
Affiliation(s)
- Qunwen Pan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Liao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua Liu
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanfang Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio; and
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiaotang Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China;
| |
Collapse
|
37
|
Roy S, Curry BC, Madahian B, Homayouni R. Prioritization, clustering and functional annotation of MicroRNAs using latent semantic indexing of MEDLINE abstracts. BMC Bioinformatics 2016; 17:350. [PMID: 27766940 PMCID: PMC5073981 DOI: 10.1186/s12859-016-1223-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background The amount of scientific information about MicroRNAs (miRNAs) is growing exponentially, making it difficult for researchers to interpret experimental results. In this study, we present an automated text mining approach using Latent Semantic Indexing (LSI) for prioritization, clustering and functional annotation of miRNAs. Results For approximately 900 human miRNAs indexed in miRBase, text documents were created by concatenating titles and abstracts of MEDLINE citations which refer to the miRNAs. The documents were parsed and a weighted term-by-miRNA frequency matrix was created, which was subsequently factorized via singular value decomposition to extract pair-wise cosine values between the term (keyword) and miRNA vectors in reduced rank semantic space. LSI enables derivation of both explicit and implicit associations between entities based on word usage patterns. Using miR2Disease as a gold standard, we found that LSI identified keyword-to-miRNA relationships with high accuracy. In addition, we demonstrate that pair-wise associations between miRNAs can be used to group them into categories which are functionally aligned. Finally, term ranking by querying the LSI space with a group of miRNAs enabled annotation of the clusters with functionally related terms. Conclusions LSI modeling of MEDLINE abstracts provides a robust and automated method for miRNA related knowledge discovery. The latest collection of miRNA abstracts and LSI model can be accessed through the web tool miRNA Literature Network (miRLiN) at http://bioinfo.memphis.edu/mirlin. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1223-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sujoy Roy
- Bioinformatics Program, University of Memphis, Memphis, 38152, USA.,Center for Translational Informatics, University of Memphis, Memphis, 38152, USA
| | - Brandon C Curry
- Bioinformatics Program, University of Memphis, Memphis, 38152, USA
| | - Behrouz Madahian
- Department of Mathematical Sciences, University of Memphis, Memphis, 38152, USA
| | - Ramin Homayouni
- Bioinformatics Program, University of Memphis, Memphis, 38152, USA. .,Center for Translational Informatics, University of Memphis, Memphis, 38152, USA. .,Department of Biology, University of Memphis, Memphis, 38152, USA.
| |
Collapse
|
38
|
Preface to: "microRNAs in lipid/energy metabolism and cardiometabolic disease". Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2039-2040. [PMID: 27396679 DOI: 10.1016/j.bbalip.2016.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Affiliation(s)
- Marpadga A Reddy
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|