1
|
He P, Chang H, Qiu Y, Wang Z. Mitochondria associated membranes in dilated cardiomyopathy: connecting pathogenesis and cellular dysfunction. Front Cardiovasc Med 2025; 12:1571998. [PMID: 40166597 PMCID: PMC11955654 DOI: 10.3389/fcvm.2025.1571998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure, yet therapeutic options remain limited. While traditional research has focused on mechanisms such as energy deficits and calcium dysregulation, increasing evidence suggests that mitochondria-associated membranes (MAMs) could provide new insights into understanding and treating DCM. In this narrative review, we summarize the key role of MAMs, crucial endoplasmic reticulum (ER)-mitochondria interfaces, in regulating cellular processes such as calcium homeostasis, lipid metabolism, and mitochondrial dynamics. Disruption of MAMs function may initiate pathological cascades, including ER stress, inflammation, and cell death. These disruptions in MAM function lead to further destabilization of cellular homeostasis. Identifying MAMs as key modulators of cardiac health may provide novel insights for early diagnosis and targeted therapies in DCM.
Collapse
Affiliation(s)
- Pingge He
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongbo Chang
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yueqing Qiu
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhentao Wang
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Calorie restriction changes lipidomic profiles and maintains mitochondrial function and redox balance during isoproterenol-induced cardiac hypertrophy. J Physiol Biochem 2022; 78:283-294. [PMID: 35023023 DOI: 10.1007/s13105-021-00863-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Typically, healthy cardiac tissue utilizes more fat than any other organ. Cardiac hypertrophy induces a metabolic shift leading to a preferential consumption of glucose over fatty acids to support the high energetic demand. Calorie restriction is a dietary procedure that induces health benefits and lifespan extension in many organisms. Given the beneficial effects of calorie restriction, we hypothesized that calorie restriction prevents cardiac hypertrophy, lipid content changes, mitochondrial and redox dysregulation. Strikingly, calorie restriction reversed isoproterenol-induced cardiac hypertrophy. Isolated mitochondria from hypertrophic hearts produced significantly higher levels of succinate-driven H2O2 production, which was blocked by calorie restriction. Cardiac hypertrophy lowered mitochondrial respiratory control ratios, and decreased superoxide dismutase and glutathione peroxidase levels. These effects were also prevented by calorie restriction. We performed lipidomic profiling to gain insights into how calorie restriction could interfere with the metabolic changes induced by cardiac hypertrophy. Calorie restriction protected against the consumption of several triglycerides (TGs) linked to unsaturated fatty acids. Also, this dietary procedure protected against the accumulation of TGs containing saturated fatty acids observed in hypertrophic samples. Cardiac hypertrophy induced an increase in ceramides, phosphoethanolamines, and acylcarnitines (12:0, 14:0, 16:0, and 18:0). These were all reversed by calorie restriction. Altogether, our data demonstrate that hypertrophy changes the cardiac lipidome, causes mitochondrial disturbances, and oxidative stress. These changes are prevented (at least partially) by calorie restriction intervention in vivo. This study uncovers the potential for calorie restriction to become a new therapeutic intervention against cardiac hypertrophy, and mechanisms in which it acts.
Collapse
|
3
|
7-Ketocholesterol Induces Lipid Metabolic Reprogramming and Enhances Cholesterol Ester Accumulation in Cardiac Cells. Cells 2021; 10:cells10123597. [PMID: 34944104 PMCID: PMC8700522 DOI: 10.3390/cells10123597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 12/28/2022] Open
Abstract
7-Ketocholesterol (7KCh) is a major oxidized cholesterol product abundant in lipoprotein deposits and atherosclerotic plaques. Our previous study has shown that 7KCh accumulates in erythrocytes of heart failure patients, and further investigation centered on how 7KCh may affect metabolism in cardiomyocytes. We applied metabolomics to study the metabolic changes in cardiac cell line HL-1 after treatment with 7KCh. Mevalonic acid (MVA) pathway-derived metabolites, such as farnesyl-pyrophosphate and geranylgeranyl-pyrophosphate, phospholipids, and triacylglycerols levels significantly declined, while the levels of lysophospholipids, such as lysophosphatidylcholines (lysoPCs) and lysophosphatidylethanolamines (lysoPEs), considerably increased in 7KCh-treated cells. Furthermore, the cholesterol content showed no significant change, but the production of cholesteryl esters was enhanced in the treated cells. To explore the possible mechanisms, we applied mRNA-sequencing (mRNA-seq) to study genes differentially expressed in 7KCh-treated cells. The transcriptomic analysis revealed that genes involved in lipid metabolic processes, including MVA biosynthesis and cholesterol transport and esterification, were differentially expressed in treated cells. Integrated analysis of both metabolomic and transcriptomic data suggests that 7KCh induces cholesteryl ester accumulation and reprogramming of lipid metabolism through altered transcription of such genes as sterol O-acyltransferase- and phospholipase A2-encoding genes. The 7KCh-induced reprogramming of lipid metabolism in cardiac cells may be implicated in the pathogenesis of cardiovascular diseases.
Collapse
|
4
|
Zhang Y, Fu Y, Jiang T, Liu B, Sun H, Zhang Y, Fan B, Li X, Qin X, Zheng Q. Enhancing Fatty Acids Oxidation via L-Carnitine Attenuates Obesity-Related Atrial Fibrillation and Structural Remodeling by Activating AMPK Signaling and Alleviating Cardiac Lipotoxicity. Front Pharmacol 2021; 12:771940. [PMID: 34899326 PMCID: PMC8662783 DOI: 10.3389/fphar.2021.771940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in clinical setting. Its pathogenesis was associated with metabolic disorder, especially defective fatty acids oxidation (FAO). However, whether promoting FAO could prevent AF occurrence and development remains elusive. In this study, we established a mouse model of obesity-related AF through high-fat diet (HFD) feeding, and used l-carnitine (LCA, 150 mg/kg⋅BW/d), an endogenous cofactor of carnitine palmitoyl-transferase-1B (CPT1B; the rate-limiting enzyme of FAO) to investigate whether FAO promotion can attenuate the AF susceptibility in obesity. All mice underwent electrophysiological assessment for atrial vulnerability, and echocardiography, histology and molecular evaluation for AF substrates and underlying mechanisms, which were further validated by pharmacological experiments in vitro. HFD-induced obese mice increased AF vulnerability and exhibited apparent atrial structural remodeling, including left atrial dilation, cardiomyocyte hypertrophy, connexin-43 remodeling and fibrosis. Pathologically, HFD apparently leads to defective cardiac FAO and subsequent lipotoxicity, thereby evoking a set of pathological reactions including oxidative stress, DNA damage, inflammation, and insulin resistance. Enhancing FAO via LCA attenuated lipotoxicity and lipotoxicity-induced pathological changes in the atria of obese mice, resulting in restored structural remodeling and ameliorated AF susceptibility. Mechanistically, LCA activated AMPK/PGC1α signaling both in vivo and in vitro, and pharmacological inhibition of AMPK via Compound C attenuated LCA-induced cardio-protection in palmitate-treated primary atrial cardiomyocytes. Taken together, our results demonstrated that FAO promotion via LCA attenuated obesity-mediated AF and structural remodeling by activating AMPK signaling and alleviating atrial lipotoxicity. Thus, enhancing FAO may be a potential therapeutic target for AF.
Collapse
Affiliation(s)
- Yudi Zhang
- The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuping Fu
- The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tiannan Jiang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Binghua Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hongke Sun
- The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Zhang
- The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Boyuan Fan
- The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Li
- The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinghua Qin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qiangsun Zheng
- The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Ma D, Li X, Wang Y, Cai L, Wang Y. Excessive fat expenditure in cachexia is associated with dysregulated circadian rhythm: a review. Nutr Metab (Lond) 2021; 18:89. [PMID: 34627306 PMCID: PMC8502262 DOI: 10.1186/s12986-021-00616-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/20/2021] [Indexed: 01/06/2023] Open
Abstract
Cachexia is a progressive metabolic disorder characterized by the excessive depletion of adipose tissue. This hypermetabolic condition has catastrophic impacts on the survival and quality of life for patients suffering from critical illness. However, efficient therapies to prevent adipose expenditure have not been discovered. It has been established that the circadian clock plays an important role in modulating fat metabolic processes. Recently, an increasing number of studies had provided evidence showing that disrupted circadian rhythm leads to insulin resistance and obesity; however, studies analyzing the relationship between circadian misalignment and adipose tissue expenditure in cachexia are scarce. In the present review, we cover the involvement of the circadian clocks in the regulation of adipogenesis, lipid metabolism and thermogenesis as well as inflammation in white and brown adipose tissue. According to the present review, we conclude that circadian clock disruption is associated with lipid metabolism imbalance and elevated adipose tissue inflammation. Moreover, under cachexia conditions, lipid synthesis and storage processes lost rhythm and decreased, while lipolysis and thermogenesis activities remained high for 24 h. Therefore, disordered circadian clock may be responsible for fat expenditure in cachexia by adversely influencing lipid synthesis/ storage/lipolysis/utilization. Further study needs to be performed to explore the direct interaction between circadian clock and fat expenditure in cachexia, it will likely provide potential efficient drugs for the treatment of fat expenditure in cachexia.
Collapse
Affiliation(s)
- Dufang Ma
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Xiao Li
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Yongcheng Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Lu Cai
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China.
| |
Collapse
|
6
|
Wu Q, Zhao M, He X, Xue R, Li D, Yu X, Wang S, Zang W. Acetylcholine reduces palmitate-induced cardiomyocyte apoptosis by promoting lipid droplet lipolysis and perilipin 5-mediated lipid droplet-mitochondria interaction. Cell Cycle 2021; 20:1890-1906. [PMID: 34424820 DOI: 10.1080/15384101.2021.1965734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Lipid droplets (LDs), which are neutral lipid storage organelles, are important for lipid metabolism and energy homeostasis. LD lipolysis and interactions with mitochondria are tightly coupled to cellular metabolism and may be potential targets to buffer the effects of excessive toxic lipid species levels. Acetylcholine (ACh), the major neurotransmitter of the vagus nerve, exhibits cardioprotective effects. However, limited research has focused on its effects on LD lipolysis and the LD-mitochondria association in fatty acid (FA) overload models. Here, we reveal that palmitate (PA) induces an increase in expression of the FA transport protein cluster of differentiation 36 (CD36) and LD formation; remarkably reduces the expression of lipases involved in triacylglycerol (TAG) lipolysis, such as adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoacylglycerol lipase (MGL); impairs LD-mitochondria interaction; and decreases perilipin 5 (PLIN5) expression, resulting in LD accumulation and mitochondrial dysfunction, which ultimately lead to cardiomyocyte apoptosis. ACh significantly upregulates PLIN5 expression and improved LD lipolysis and the LD-mitochondria association. Moreover, ACh reduces CD36 expression, LD deposition and mitochondrial dysfunction, ultimately suppressing apoptosis in PA-treated neonatal rat ventricular cardiomyocytes (NRVCs). Knockdown of PLIN5, which plays a role in LD-mitochondria contact site formation, abolishes the protective effects of ACh in PA-treated NRVCs. Thus, ACh protects cardiomyocytes from PA-induced apoptosis, at least partly, by promoting LD lipolysis and activating LD-mitochondria interactions via PLIN5. These findings may aid in developing novel therapeutic approaches that target LD lipolysis and PLIN5-mediated LD-mitochondria interactions to prevent or alleviate lipotoxic cardiomyopathy.
Collapse
Affiliation(s)
- Qing Wu
- Department of Pharmacology,School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Ming Zhao
- Department of Pharmacology,School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Xi He
- Department of Pharmacology,School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Runqing Xue
- Department of Pharmacology,School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Dongling Li
- Department of Pharmacology,School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Xiaojiang Yu
- Department of Pharmacology,School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Shengpeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Weijin Zang
- Department of Pharmacology,School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
7
|
Shu H, Peng Y, Hang W, Nie J, Zhou N, Wang DW. The role of CD36 in cardiovascular disease. Cardiovasc Res 2020; 118:115-129. [PMID: 33210138 PMCID: PMC8752351 DOI: 10.1093/cvr/cvaa319] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
CD36, also known as the scavenger receptor B2, is a multifunctional receptor widely expressed in various organs. CD36 plays a crucial role in the uptake of long-chain fatty acids, the main metabolic substrate in myocardial tissue. The maturation and transportation of CD36 is regulated by post-translational modifications, including phosphorylation, ubiquitination, glycosylation, and palmitoylation. CD36 is decreased in pathological cardiac hypertrophy caused by ischaemia-reperfusion and pressure overload, and increased in diabetic cardiomyopathy and atherosclerosis. Deficiency of CD36 alleviates diabetic cardiomyopathy and atherosclerosis, while overexpression of CD36 eliminates ischaemia-reperfusion damage, together suggesting that CD36 is closely associated with the progression of cardiovascular diseases and may be a new therapeutic target. This review summarizes the regulation and post-translational modifications of CD36 and evaluates its role in cardiovascular diseases and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
8
|
Knapp M, Górski J, Lewkowicz J, Lisowska A, Gil M, Wójcik B, Hirnle T, Chabowski A, Mikłosz A. The Gene and Protein Expression of the Main Components of the Lipolytic System in Human Myocardium and Heart Perivascular Adipose Tissue. Effect of Coronary Atherosclerosis. Int J Mol Sci 2020; 21:ijms21030737. [PMID: 31979197 PMCID: PMC7037202 DOI: 10.3390/ijms21030737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of our study was to examine the regulation of triacylglycerols (TG) metabolism in myocardium and heart perivascular adipose tissue in coronary atherosclerosis. Adipose triglyceride lipase (ATGL) is the major TG-hydrolase. The enzyme is activated by a protein called comparative gene identification 58 (CGI-58) and inhibited by a protein called G0/G1 switch protein 2 (G0S2). Samples of the right atrial appendage and perivascular adipose tissue were obtained from two groups of patients: 1—with multivessel coronary artery disease qualified for coronary artery bypass grafting (CAD), 2—patients with no atherosclerosis qualified for a valve replacement (NCAD). The mRNA and protein analysis of ATGL, HSL, CGI-58, G0S2, FABP4, FAT/CD36, LPL, β-HAD, CS, COX4/1, FAS, SREBP-1c, GPAT1, COX-2, 15-LO, and NFκβ were determined by using real-time PCR and Western Blot. The level of lipids (i.e., TG, diacylglycerol (DG), and FFA) was examined by GLC. We demonstrated that in myocardium coronary atherosclerosis increases only the transcript level of G0S2 and FABP4. Most importantly, ATGL, β-HAD, and COX4/1 protein expression was reduced and it was accompanied by over double the elevation in TG content in the CAD group. The fatty acid synthesis and their cellular uptake were stable in the myocardium of patients with CAD. Additionally, the expression of proteins contributing to inflammation was increased in the myocardium of patients with coronary stenosis. Finally, in the perivascular adipose tissue, the mRNA of G0S2 was elevated, whereas the protein content of FABP-4 was increased and for COX4/1 diminished. These data suggest that a reduction in ATGL protein expression leads to myocardial steatosis in patients with CAD.
Collapse
Affiliation(s)
- Małgorzata Knapp
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.K.); (A.L.); (M.G.)
| | - Jan Górski
- Department of Medical Sciences, Lomza State University of Applied Sciences, 18-400 Lomza, Poland;
| | - Janina Lewkowicz
- Department of Cardiosurgery, Medical University of Bialystok, 15-089 Bialystok, Poland; (J.L.); (T.H.)
| | - Anna Lisowska
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.K.); (A.L.); (M.G.)
| | - Monika Gil
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.K.); (A.L.); (M.G.)
| | - Beata Wójcik
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (B.W.); (A.C.)
| | - Tomasz Hirnle
- Department of Cardiosurgery, Medical University of Bialystok, 15-089 Bialystok, Poland; (J.L.); (T.H.)
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (B.W.); (A.C.)
| | - Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (B.W.); (A.C.)
- Correspondence: ; Tel.: +48-85-746-55-85
| |
Collapse
|
9
|
Zhao X, Song X, Bai X, Tan Z, Ma X, Guo J, Zhang Z, Du Q, Huang Y, Tong D. microRNA-222 Attenuates Mitochondrial Dysfunction During Transmissible Gastroenteritis Virus Infection. Mol Cell Proteomics 2019; 18:51-64. [PMID: 30257878 PMCID: PMC6317483 DOI: 10.1074/mcp.ra118.000808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/13/2018] [Indexed: 12/30/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a member of Coronaviridae family. Our previous research showed that TGEV infection could induce mitochondrial dysfunction and upregulate miR-222 level. Therefore, we presumed that miR-222 might be implicated in regulating mitochondrial dysfunction induced by TGEV infection. To verify the hypothesis, the effect of miR-222 on mitochondrial dysfunction was tested and we showed that miR-222 attenuated TGEV-induced mitochondrial dysfunction. To investigate the underlying molecular mechanism of miR-222 in TGEV-induced mitochondrial dysfunction, a quantitative proteomic analysis of PK-15 cells that were transfected with miR-222 mimics and infected with TGEV was performed. In total, 4151 proteins were quantified and 100 differentially expressed proteins were obtained (57 upregulated, 43 downregulated), among which thrombospondin-1 (THBS1) and cluster of differentiation 47 (CD47) were downregulated. THBS1 was identified as the target of miR-222. Knockdown of THBS1 and CD47 decreased mitochondrial Ca2+ level and increased mitochondrial membrane potential (MMP) level. Reversely, overexpression of THBS1 and CD47 elevated mitochondrial Ca2+ level and reduced mitochondrial membrane potential (MMP) level. Together, our data establish a significant role of miR-222 in regulating mitochondrial dysfunction in response to TGEV infection.
Collapse
Affiliation(s)
- Xiaomin Zhao
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiangjun Song
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaoyuan Bai
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhanhang Tan
- §Huyi District Center for Animal Disease Control and Prevention, Xi'an, Shaanxi 710300, P.R. China
| | - Xuelian Ma
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jianxiong Guo
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhichao Zhang
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Qian Du
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yong Huang
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Dewen Tong
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China;.
| |
Collapse
|
10
|
Lamontagne-Kam DM, Chalil A, Aristizabal Henao JJ, Hogenhout SJ, Stark KD. Concentrations of docosahexaenoic acid are reduced in maternal liver, adipose, and heart in rats fed high-fat diets without docosahexaenoic acid throughout pregnancy. Prostaglandins Leukot Essent Fatty Acids 2018; 138:30-37. [PMID: 30392578 DOI: 10.1016/j.plefa.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 11/20/2022]
Abstract
Fetal accretion for DHA is high during late pregnancy due to the brain growth spurt. Prior evidence suggests that DHA is mobilized from maternal liver and adipose to meet fetal accretion and physiological requirements. However, changes in the DHA levels of various maternal tissues throughout pregnancy and into lactation of mothers on diets with and without dietary DHA, and with a background dietary fatty acid profile that resembles human intake has not been examined. Sprague Dawley rats were fed a total western diet with (TWD + ) or without DHA (TWD-) along with a commercial rodent chow control (Chow) throughout pregnancy and postpartum. The fatty acid compositions of adipose, brain, heart, liver, erythrocytes, and plasma were determined before pregnancy, at 15 and 20 days of pregnancy, and 7 days postpartum. The placenta, fetuses, and pups were also examined when available. Maternal DHA concentrations were increased in plasma at 20 days pregnancy in all the diets with TWD + > Chow > TWD-. Maternal DHA concentrations in the TWD- group were lower in adipose throughout pregnancy as compared with the other diets. At postpartum, DHA concentrations decreased below baseline levels in the heart of the TWD- and Chow dams and the liver of the TWD- dams. Whole body DHA concentrations of the fetuses did not differ but there was evidence of decreased DHA in the whole body and tissues of the TWD- and Chow 7d old pups. In conclusion, it appears that in this rodent model of pregnancy, maternal adaptations were made to meet fetal DHA requirements, but they may compromise maternal DHA status and the ability to deliver DHA during lactation.
Collapse
Affiliation(s)
- Daniel M Lamontagne-Kam
- Department of Kinesiology, University of Waterloo, 200 University Avenue, Waterloo, ON, Canada, N2L 3G1
| | - Alan Chalil
- Department of Kinesiology, University of Waterloo, 200 University Avenue, Waterloo, ON, Canada, N2L 3G1
| | - Juan J Aristizabal Henao
- Department of Kinesiology, University of Waterloo, 200 University Avenue, Waterloo, ON, Canada, N2L 3G1
| | - Sam J Hogenhout
- Department of Kinesiology, University of Waterloo, 200 University Avenue, Waterloo, ON, Canada, N2L 3G1
| | - Ken D Stark
- Department of Kinesiology, University of Waterloo, 200 University Avenue, Waterloo, ON, Canada, N2L 3G1.
| |
Collapse
|
11
|
Abstract
Recently, the group of McBride reported a stunning observation regarding peroxisome biogenesis: newly born peroxisomes are hybrids of mitochondrial and ER-derived pre-peroxisomes. What was stunning? Studies performed with the yeast Saccharomyces cerevisiae had convincingly shown that peroxisomes are ER-derived, without indications for mitochondrial involvement. However, the recent finding using fibroblasts dovetails nicely with a mechanism inferred to be driving the eukaryotic invention of peroxisomes: reduction of mitochondrial reactive oxygen species (ROS) generation associated with fatty acid (FA) oxidation. This not only explains the mitochondrial involvement, but also its apparent absence in yeast. The latest results allow a reconstruction of the evolution of the yeast's highly derived metabolism and its limitations as a model organism in this instance. As I review here, peroxisomes are eukaryotic inventions reflecting mutual host endosymbiont adaptations: this is predicted by symbiogenetic theory, which states that the defining eukaryotic characteristics evolved as a result of mutual adaptations of two merging prokaryotes.
Collapse
Affiliation(s)
- Dave Speijer
- Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Lopaschuk GD. Preface to the BBA special issue "heart lipid metabolism". Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1423-4. [PMID: 27208401 DOI: 10.1016/j.bbalip.2016.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|